×

Unconditional class group tabulation of imaginary quadratic fields to \(| \Delta| < 2^{40}\). (English) Zbl 1351.11074

The authors use efficient algorithms to tabulate class groups of imaginary quadratic fields of discriminant \(\Delta\) with \(|\Delta|<2\exp(40)\). This is a wonderful interesting report for all those who are interested in the class groups of imaginary quadratic fields, in particular when it comes to conjectures concerning the class groups and to the Cohen-Lenstra heuristics. Some pieces of information concerning the so-called exotic groups are also given. This work is achieved with the use of classical quadratic forms, some Jacobi theta series, and certain class number generating functions à la Watson when \(\Delta\ncong 1\pmod 8\). The group structure is obtained by the use of the factorization of the class number. The case \(\Delta\equiv 1\pmod 8\) is also dealt with, but this is slower than the case \(\Delta\not\equiv 1\pmod 8\). The authors use the methods of Buchmann, Jacobson, Teske, Ramachandran, Sutherland; some techniques based on the Eichler-Selberg trace formula allow them to remove ERH. The tables provide very interesting statistical data. For instance, we come across the number of non-cyclic odd parts of class groups, and across the cardinalities of class numbers divisible by the prime number \(q\) when \(q\) is 3, 5, 7, 11, 13. The smallest \(|\Delta|\) for which the 17-rank is 3 is exhibited. We learn about the first occurrences of doubly and trebly non-cyclic class groups. We also learn about the counts of class groups with \(q\)-rank equal to \(r\) for \(q=3,5,7\) and \(r=2,3\). And there are other interesting pieces of information.

MSC:

11R29 Class numbers, class groups, discriminants
11R11 Quadratic extensions
11Y40 Algebraic number theory computations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bach, Eric, Explicit bounds for primality testing and related problems, Math. Comp., 55, 191, 355-380 (1990) · Zbl 0701.11075 · doi:10.2307/2008811
[2] Bach, Eric, Improved approximations for Euler products. Number theory, Halifax, NS, 1994, CMS Conf. Proc. 15, 13-28 (1995), Amer. Math. Soc., Providence, RI · Zbl 0842.11046
[3] Bell, E. T., The class number relations implicit in the Disquisitiones Arithmeticae, Bull. Amer. Math. Soc., 30, 5-6, 236-238 (1924) · JFM 50.0083.04 · doi:10.1090/S0002-9904-1924-03891-9
[4] Buchmann, Johannes; Jacobson, Michael J., Jr.; Teske, Edlyn, On some computational problems in finite abelian groups, Math. Comp., 66, 220, 1663-1687 (1997) · Zbl 0894.11050 · doi:10.1090/S0025-5718-97-00880-6
[5] Borodin, A.; Moenck, R., Fast modular transforms, J. Comput. System Sci., 8, 366-386 (1974) · Zbl 0302.68064
[6] Buell, Duncan A., The last exhaustive computation of class groups of complex quadratic number fields. Number theory, Ottawa, ON, 1996, CRM Proc. Lecture Notes 19, 35-53 (1999), Amer. Math. Soc., Providence, RI · Zbl 0931.11059
[7] [Cho11] P. J. Cho, Sum of three squares and class numbers of imaginary quadratic fields, Proceedings of the Japan Academy 87, 2011, pp. 91-94. · Zbl 1256.11058
[8] Cohen, H.; Lenstra, H. W., Jr., Heuristics on class groups. Number theory, New York, 1982, Lecture Notes in Math. 1052, 26-36 (1984), Springer, Berlin · doi:10.1007/BFb0071539
[9] Cohen, Henri, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics 138, xii+534 pp. (1993), Springer-Verlag, Berlin · Zbl 0786.11071 · doi:10.1007/978-3-662-02945-9
[10] von zur Gathen, Joachim; Gerhard, J{\"u}rgen, Modern Computer Algebra, xiv+785 pp. (2003), Cambridge University Press, Cambridge · Zbl 1055.68168
[11] Gauss, Carl Friedrich, Disquisitiones arithmeticae, xx+472 pp. (1986), Springer-Verlag, New York
[12] Grosswald, Emil, Representations of Integers as Sums of Squares, xi+251 pp. (1985), Springer-Verlag, New York · Zbl 0574.10045 · doi:10.1007/978-1-4613-8566-0
[13] [flint] W. B. Hart, FLINT: Fast Library for Number Theory, version 2.4.1, \urlhttp://www.flintlib.org, 2014.
[14] Hafner, James L.; McCurley, Kevin S., A rigorous subexponential algorithm for computation of class groups, J. Amer. Math. Soc., 2, 4, 837-850 (1989) · Zbl 0702.11088 · doi:10.2307/1990896
[15] Hart, William B.; Tornar{\'{\i }}a, Gonzalo; Watkins, Mark, Congruent number theta coefficients to \(10^{12} \). Algorithmic number theory, Lecture Notes in Comput. Sci. 6197, 186-200 (2010), Springer, Berlin · Zbl 1260.11041 · doi:10.1007/978-3-642-14518-6\_17
[16] Jacobson, Michael J., Jr.; Ramachandran, Shantha; Williams, Hugh C., Numerical results on class groups of imaginary quadratic fields. Algorithmic number theory, Lecture Notes in Comput. Sci. 4076, 87-101 (2006), Springer, Berlin · Zbl 1143.11370 · doi:10.1007/11792086\_7
[17] Kani, Ernst, Idoneal numbers and some generalizations, Ann. Sci. Math. Qu\'ebec, 35, 2, 197-227 (2011) · Zbl 1253.11049
[18] [kronecker] L. Kronecker, \`“Uber die Anzahl der verschiedenen classen quadratischer Formen von negativer Determinante, Journal f\'”ur die reine und angewandte Mathematik 57 (4), 1860, pp. 248-255. · ERAM 057.1518cj
[19] [landau] E. Landau, \`“Uber die Klassenzahl imagin\'”ar-quadratischer Zahlk\`“orper, Ges. Wiss. G\'”ottingen, Math.-Phys., 1918, pp. 285-295.
[20] [littlewood] J. E. Littlewood, On the class number of the corpus \(P(\sqrt-k)\), Proceedings of the London Mathematical Society 27, 1928, pp. 358-372. · JFM 54.0206.02
[21] [lmfdb] The LMFDB Collaboration, The \(L\)-functions and Modular Forms Database, 2015.
[22] McCurley, Kevin S., Cryptographic key distribution and computation in class groups. Number theory and applications, Banff, AB, 1988, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 265, 459-479 (1989), Kluwer Acad. Publ., Dordrecht
[23] Mayer, Daniel C., The second \(p\)-class group of a number field, Int. J. Number Theory, 8, 2, 471-505 (2012) · Zbl 1261.11070 · doi:10.1142/S179304211250025X
[24] [mosunov1] A. S. Mosunov, Unconditional class group tabulation to \(2^40\), Master’s thesis, University of Calgary, Calgary, Alberta, 2014.
[25] [mosunov2] A. S. Mosunov, Class group tabulation program, \urlhttps://github.com/amosunov, 2014.
[26] [pari] The PARI Group, PARI/GP version 2.7.1, \urlhttp://pari.math.u-bordeaux.fr, Bordeaux, 2014.
[27] Ramar{\'e}, Olivier, Approximate formulae for \(L(1,\chi )\), Acta Arith., 100, 3, 245-266 (2001) · Zbl 0985.11037 · doi:10.4064/aa100-3-2
[28] [ramachandran] S. Ramachandran, Class groups of quadratic fields, Master’s thesis, University of Calgary, Calgary, Alberta, 2006.
[29] [sayles1] M. Sayles, Improved arithmetic in the ideal class group of imaginary quadratic fields with an application to integer factoring, Master’s thesis, University of Calgary, Calgary, Alberta, 2013.
[30] [sayles2] M. Sayles, C libraries optarith and qform for fast binary quadratic form arithmetic, \urlhttps://github.com/maxwellsayles, 2013.
[31] Shanks, Daniel, Systematic examination of Littlewood’s bounds on \(L(1,\,\chi )\). Analytic number theory, Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972, 267-283 (1973), Amer. Math. Soc., Providence, R.I.
[32] Sutherland, Andrew V., Structure computation and discrete logarithms in finite abelian \(p\)-groups, Math. Comp., 80, 273, 477-500 (2011) · Zbl 1225.11163 · doi:10.1090/S0025-5718-10-02356-2
[33] Schoof, Ren{\'e}; van der Vlugt, Marcel, Hecke operators and the weight distributions of certain codes, J. Combin. Theory Ser. A, 57, 2, 163-186 (1991) · Zbl 0729.11065 · doi:10.1016/0097-3165(91)90016-A
[34] Watson, G. N., Generating functions of class-numbers, Compositio Math., 1, 39-68 (1935) · JFM 60.0153.04
[35] Weinberger, P. J., Exponents of the class groups of complex quadratic fields, Acta Arith., 22, 117-124 (1973) · Zbl 0217.04202
[36] [westgrid] Hungabee specification, \urlhttps://www.westgrid.ca/support/systems/Hungabee, 2014. \endbiblist
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.