Talebi, Yahya; Hosseinpour, Mehrab; Moniri Hamzekolaee, Ali Reza Modules for which every non-cosingular submodule is a summand. (English) Zbl 1403.16003 Bull. Iran. Math. Soc. 43, No. 3, 911-922 (2017). MSC: 16D10 16D80 PDF BibTeX XML Cite \textit{Y. Talebi} et al., Bull. Iran. Math. Soc. 43, No. 3, 911--922 (2017; Zbl 1403.16003) Full Text: Link
Abed, Majid Mohammed; Ahmad, Abd Ghafur; Abdulkareem, A. O. On generalization of \(\mathrm{Rad}\)-\(D_{11}\)-module. (English) Zbl 1353.16003 Far East J. Math. Sci. (FJMS) 99, No. 4, 491-508 (2016). MSC: 16D70 16D80 PDF BibTeX XML Cite \textit{M. M. Abed} et al., Far East J. Math. Sci. (FJMS) 99, No. 4, 491--508 (2016; Zbl 1353.16003) Full Text: DOI Link
Polat, Nazlı M.; Çalışıcı, Hamza; Önal, Emine Modules that have a weak supplement in every cofinite extension. (English) Zbl 1351.16010 Palest. J. Math. 4, Spec. Iss., 553-556 (2015). MSC: 16D80 16D70 16L30 PDF BibTeX XML Cite \textit{N. M. Polat} et al., Palest. J. Math. 4, 553--556 (2015; Zbl 1351.16010) Full Text: Link
Abdioĝlu, Cihat; Şahinkaya, Serap Some results on \(\delta\)-semiperfect rings and \(\delta\)-supplemented modules. (English) Zbl 1334.16006 Kyungpook Math. J. 55, No. 2, 289-300 (2015). Reviewer: Frieda Theron (Potchefstroom) MSC: 16D80 16D70 16D10 PDF BibTeX XML Cite \textit{C. Abdioĝlu} and \textit{S. Şahinkaya}, Kyungpook Math. J. 55, No. 2, 289--300 (2015; Zbl 1334.16006) Full Text: DOI
Kör, Arda; Quynh, Truong Cong; Şahinkaya, Serap; Koşan, Muhammet Tamer Supplemented morphisms. (English) Zbl 1320.16001 Math. J. Okayama Univ. 57, 99-110 (2015). Reviewer: Frieda Theron (Potchefstroom) MSC: 16D10 16W20 16E30 16S50 16D40 PDF BibTeX XML Cite \textit{A. Kör} et al., Math. J. Okayama Univ. 57, 99--110 (2015; Zbl 1320.16001)
Büyükaşik, Engin; Tribak, Rachid On \(w\)-local modules and \(Rad\)-supplemented modules. (English) Zbl 1318.16008 J. Korean Math. Soc. 51, No. 5, 971-985 (2014). Reviewer: Septimiu Crivei (Cluj-Napoca) MSC: 16D80 13C13 16D70 13E10 PDF BibTeX XML Cite \textit{E. Büyükaşik} and \textit{R. Tribak}, J. Korean Math. Soc. 51, No. 5, 971--985 (2014; Zbl 1318.16008) Full Text: DOI Link
Amouzegar, Tayyebeh; Keskin Tütüncü, Derya; Talebi, Yahya t-dual Baer modules and t-lifting modules. (English) Zbl 1308.16006 Vietnam J. Math. 42, No. 2, 159-169 (2014). MSC: 16D80 16D50 16D70 16P60 PDF BibTeX XML Cite \textit{T. Amouzegar} et al., Vietnam J. Math. 42, No. 2, 159--169 (2014; Zbl 1308.16006) Full Text: DOI arXiv
Abed, Majid Mohammed; Ahmad, Abd Ghafur Some properties of weak-\(\oplus\)-supplemented module. (English) Zbl 1302.16003 Int. J. Pure Appl. Math. 92, No. 3, 351-358 (2014). MSC: 16D70 16D80 PDF BibTeX XML Cite \textit{M. M. Abed} and \textit{A. G. Ahmad}, Int. J. Pure Appl. Math. 92, No. 3, 351--358 (2014; Zbl 1302.16003) Full Text: DOI Link
Alvarado-García, Alejandro; Rincón-Mejía, Hugo Alberto; Ríos-Montes, José; Tomé-Arreola, Bertha Decomposing modules into direct sums of cotype submodules. (English) Zbl 1301.16009 J. Algebra Appl. 13, No. 5, Article ID 1350153, 14 p. (2014). Reviewer: Blas Torrecillas (Almeria) MSC: 16D90 16D80 16D70 PDF BibTeX XML Cite \textit{A. Alvarado-García} et al., J. Algebra Appl. 13, No. 5, Article ID 1350153, 14 p. (2014; Zbl 1301.16009) Full Text: DOI
Nebiyev, C.; Pancar, A. On supplement submodules. (English) Zbl 1297.16009 Ukr. Math. J. 65, No. 7, 1071-1078 (2013) and Ukr. Mat. Zh. 65, No. 7, 961-966 (2013). MSC: 16D70 13C05 16D80 PDF BibTeX XML Cite \textit{C. Nebiyev} and \textit{A. Pancar}, Ukr. Math. J. 65, No. 7, 1071--1078 (2013; Zbl 1297.16009) Full Text: DOI
Bilhan, Gökhan; Güroğlu, Ayşe Tugba A variation of supplemented modules. (English) Zbl 1281.16005 Turk. J. Math. 37, No. 3, 418-426 (2013). MSC: 16D80 13C10 13F05 PDF BibTeX XML Cite \textit{G. Bilhan} and \textit{A. T. Güroğlu}, Turk. J. Math. 37, No. 3, 418--426 (2013; Zbl 1281.16005) Full Text: Link
Tribak, Rachid On \(\delta\)-local modules and amply \(\delta\)-supplemented modules. (English) Zbl 1270.16003 J. Algebra Appl. 12, No. 2, Paper No. 1250144, 14 p. (2013). Reviewer: David Ssevviiri (Kampala) MSC: 16D80 16D70 16D10 16D40 16L30 16D60 PDF BibTeX XML Cite \textit{R. Tribak}, J. Algebra Appl. 12, No. 2, Paper No. 1250144, 14 p. (2013; Zbl 1270.16003) Full Text: DOI
Choubey, S. K.; Pandeya, B. M.; Gupta, A. J. Amply weak Rad-supplemented modules. (English) Zbl 1287.16011 Int. J. Algebra 6, No. 25-28, 1335-1341 (2012). MSC: 16D80 16D70 PDF BibTeX XML Cite \textit{S. K. Choubey} et al., Int. J. Algebra 6, No. 25--28, 1335--1341 (2012; Zbl 1287.16011) Full Text: Link
Wu, Dejun On NCS-modules. (English) Zbl 1289.16015 Southeast Asian Bull. Math. 36, No. 5, 721-727 (2012). MSC: 16D80 16D70 16D40 16D50 PDF BibTeX XML Cite \textit{D. Wu}, Southeast Asian Bull. Math. 36, No. 5, 721--727 (2012; Zbl 1289.16015)
Wang, Yongduo; Wu, Dejun On H-supplemented modules. (English) Zbl 1268.16003 Commun. Algebra 40, No. 10, 3679-3689 (2012). Reviewer: Ashish K. Srivastava (Saint Louis) MSC: 16D70 16D10 16D40 16D50 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{D. Wu}, Commun. Algebra 40, No. 10, 3679--3689 (2012; Zbl 1268.16003) Full Text: DOI
Tribak, Rachid Finitely generated \(\delta\)-supplemented modules are amply \(\delta\)-supplemented. (English) Zbl 1272.16007 Bull. Aust. Math. Soc. 86, No. 3, 430-439 (2012). MSC: 16D80 16D70 13C13 16D40 16L30 PDF BibTeX XML Cite \textit{R. Tribak}, Bull. Aust. Math. Soc. 86, No. 3, 430--439 (2012; Zbl 1272.16007) Full Text: DOI
Keskin Tütüncü, Derya A note on ADS* modules. (English) Zbl 1255.16004 Bull. Math. Sci. 2, No. 2, 359-363 (2012). MSC: 16D70 16D40 PDF BibTeX XML Cite \textit{D. Keskin Tütüncü}, Bull. Math. Sci. 2, No. 2, 359--363 (2012; Zbl 1255.16004) Full Text: DOI
Alvarado-García, Alejandro; Rincón-Mejía, Hugo Alberto; Ríos-Montes, José; Tomé-Arreola, Bertha On conatural classes and cotype submodules. (English) Zbl 1263.16010 Int. Electron. J. Algebra 11, 64-81 (2012). MSC: 16D90 16D80 16E10 PDF BibTeX XML Cite \textit{A. Alvarado-García} et al., Int. Electron. J. Algebra 11, 64--81 (2012; Zbl 1263.16010) Full Text: Link
Yüzbaşi, Figen; Eren, Şenol On (cofinitely) generalized amply weak supplemented modules. (English) Zbl 1257.16005 Int. J. Pure Appl. Math. 76, No. 3, 333-342 (2012). MSC: 16D70 16L30 16P70 PDF BibTeX XML Cite \textit{F. Yüzbaşi} and \textit{Ş. Eren}, Int. J. Pure Appl. Math. 76, No. 3, 333--342 (2012; Zbl 1257.16005) Full Text: Link
Çalışıcı, Hamza; Türkmen, Ergül Modules that have a supplement in every cofinite extension. (English) Zbl 1254.16002 Georgian Math. J. 19, No. 2, 209-216 (2012). Reviewer: Veereshwar A. Hiremath (Dharwad) MSC: 16D10 16D70 16L30 PDF BibTeX XML Cite \textit{H. Çalışıcı} and \textit{E. Türkmen}, Georgian Math. J. 19, No. 2, 209--216 (2012; Zbl 1254.16002) Full Text: DOI
Nematollahi, Mohammad Javad Quasi \(\delta\)-discrete modules. (English) Zbl 1272.16005 Algebras Groups Geom. 28, No. 3, 259-273 (2011). MSC: 16D80 16D70 16D40 PDF BibTeX XML Cite \textit{M. J. Nematollahi}, Algebras Groups Geom. 28, No. 3, 259--273 (2011; Zbl 1272.16005)
Alattass, Ali Omer A note on (amply) \(\delta_M\)-supplemented modules. (English) Zbl 1254.16005 Far East J. Math. Sci. (FJMS) 56, No. 2, 123-135 (2011). MSC: 16D80 16D90 16D40 16L30 PDF BibTeX XML Cite \textit{A. O. Alattass}, Far East J. Math. Sci. (FJMS) 56, No. 2, 123--135 (2011; Zbl 1254.16005) Full Text: Link
Alattass, Ali Omer Cofinitely \(\delta_M\)-supplemented and cofinitely \(\delta_M\)-semiperfect modules. (English) Zbl 1258.16007 Int. J. Algebra 5, No. 29-32, 1575-1588 (2011). Reviewer: Frieda Theron (Potchefstroom) MSC: 16D80 16D90 16D40 16L30 PDF BibTeX XML Cite \textit{A. O. Alattass}, Int. J. Algebra 5, No. 29--32, 1575--1588 (2011; Zbl 1258.16007) Full Text: Link
Zhou, Dexu On lifting modules relative to the class of all singular modules. (English) Zbl 1251.16006 Acta Math. Vietnam. 36, No. 3, 637-649 (2011). Reviewer: Veereshwar A. Hiremath (Dharwad) MSC: 16D80 16D70 16D40 16D10 PDF BibTeX XML Cite \textit{D. Zhou}, Acta Math. Vietnam. 36, No. 3, 637--649 (2011; Zbl 1251.16006)
Wang, Yongduo; Wu, Dejun; Liu, Zhongkui New characterizations of quasi-discrete (quasi-continuous) modules. (English) Zbl 1234.16001 JP J. Algebra Number Theory Appl. 23, No. 2, 241-248 (2011). MSC: 16D80 16D10 16D40 16D50 PDF BibTeX XML Cite \textit{Y. Wang} et al., JP J. Algebra Number Theory Appl. 23, No. 2, 241--248 (2011; Zbl 1234.16001) Full Text: Link
Kong, Fangdi; Peng, Shuhui When a cc-coclosed submodule is a direct summand? (English) Zbl 1237.16003 Int. J. Appl. Math. 24, No. 2, 195-199 (2011). Reviewer: Avanish Kumar Chaturvedi (Noida) MSC: 16D70 16D80 PDF BibTeX XML Cite \textit{F. Kong} and \textit{S. Peng}, Int. J. Appl. Math. 24, No. 2, 195--199 (2011; Zbl 1237.16003)
Türkmen, B. N.; Pancar, Ali A generalization of Rad-supplemented modules. (English) Zbl 1217.16008 Int. J. Pure Appl. Math. 68, No. 4, 477-485 (2011). MSC: 16D70 16L30 16D40 PDF BibTeX XML Cite \textit{B. N. Türkmen} and \textit{A. Pancar}, Int. J. Pure Appl. Math. 68, No. 4, 477--485 (2011; Zbl 1217.16008) Full Text: Link
Koşan, M. Tamer Corrigendum to “Generalized cofinitely semiperfect modules”. (English) Zbl 1253.16003 Int. Electron. J. Algebra 8, 219-220 (2010). MSC: 16D70 16L30 16D40 PDF BibTeX XML Cite \textit{M. T. Koşan}, Int. Electron. J. Algebra 8, 219--220 (2010; Zbl 1253.16003) Full Text: Link
Wang, Yongduo; Wu, Dejun A note on cofinitely \(\delta\)-lifting (supplemented) modules. (English) Zbl 1210.16006 Int. J. Algebra 4, No. 9-12, 439-446 (2010). MSC: 16D70 16D40 16L30 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{D. Wu}, Int. J. Algebra 4, No. 9--12, 439--446 (2010; Zbl 1210.16006) Full Text: Link
Wang, Yongduo; Wu, Dejun On cofinitely lifting modules. (English) Zbl 1201.16008 Algebra Colloq. 17, No. 4, 659-666 (2010). MSC: 16D70 16D10 16D40 16D80 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{D. Wu}, Algebra Colloq. 17, No. 4, 659--666 (2010; Zbl 1201.16008) Full Text: DOI Link
Ertaş, Nil Orhan; Acar, Ummuhan \((*)\)-generalized projective modules and lifting modules. (English) Zbl 1197.16001 Int. Math. Forum 5, No. 1-4, 59-68 (2010). MSC: 16D40 16D70 16D80 PDF BibTeX XML Cite \textit{N. O. Ertaş} and \textit{U. Acar}, Int. Math. Forum 5, No. 1--4, 59--68 (2010; Zbl 1197.16001) Full Text: Link
Talebi, Yahya; Talaee, Behnam On generalized \(\delta\)-supplemented modules. (English) Zbl 1233.16006 Vietnam J. Math. 37, No. 4, 515-525 (2009). MSC: 16D70 16D80 16D10 16P70 PDF BibTeX XML Cite \textit{Y. Talebi} and \textit{B. Talaee}, Vietnam J. Math. 37, No. 4, 515--525 (2009; Zbl 1233.16006) Full Text: Link
Türkmen, Ergül; Pancar, Ali On cofinitely Rad-supplemented modules. (English) Zbl 1189.16003 Int. J. Pure Appl. Math. 53, No. 2, 153-162 (2009). MSC: 16D70 16L30 16D40 PDF BibTeX XML Cite \textit{E. Türkmen} and \textit{A. Pancar}, Int. J. Pure Appl. Math. 53, No. 2, 153--162 (2009; Zbl 1189.16003)
Koşan, M. Tamer Generalized cofinitely semiperfect modules. (English) Zbl 1193.16003 Int. Electron. J. Algebra 5, 58-69 (2009); Corrigendum 8, 219-220 (2010). MSC: 16D70 16L30 16D40 PDF BibTeX XML Cite \textit{M. T. Koşan}, Int. Electron. J. Algebra 5, 58--69 (2009; Zbl 1193.16003) Full Text: Link
Tribak, Rachid On cofinitely lifting and cofinitely weak lifting modules. (English) Zbl 1226.16005 Commun. Algebra 36, No. 12, 4448-4460 (2008). MSC: 16D70 13C13 16D50 16D80 PDF BibTeX XML Cite \textit{R. Tribak}, Commun. Algebra 36, No. 12, 4448--4460 (2008; Zbl 1226.16005) Full Text: DOI
Wu, Dejun; Kong, Fangdi On \(\mathcal B(M,X)\)-cc-projective modules. (English) Zbl 1146.16302 Int. J. Pure Appl. Math. 44, No. 2, 205-209 (2008). MSC: 16D40 16D70 PDF BibTeX XML Cite \textit{D. Wu} and \textit{F. Kong}, Int. J. Pure Appl. Math. 44, No. 2, 205--209 (2008; Zbl 1146.16302)
Orhan, Nil; Keskin Tütüncü, Derya Direct sums of lifting modules. (English) Zbl 1179.16001 East-West J. Math. 9, No. 1, 53-62 (2007). Reviewer: José L. Gómez-Pardo (Santiago de Compostela) MSC: 16D70 16D40 16D80 16L30 PDF BibTeX XML Cite \textit{N. Orhan} and \textit{D. Keskin Tütüncü}, East-West J. Math. 9, No. 1, 53--62 (2007; Zbl 1179.16001)
Wang, Yongduo \(\delta\)-small submodules and \(\delta\)-supplemented modules. (English) Zbl 1152.16003 Int. J. Math. Math. Sci. 2007, Article ID 58132, 8 p. (2007). Reviewer: Iuliu Crivei (Cluj-Napoca) MSC: 16D70 16P70 PDF BibTeX XML Cite \textit{Y. Wang}, Int. J. Math. Math. Sci. 2007, Article ID 58132, 8 p. (2007; Zbl 1152.16003) Full Text: DOI EuDML
Wang, Yongduo; Sun, Qing A note on \(\oplus\)-cofinitely supplemented modules. (English) Zbl 1136.16007 Int. J. Math. Math. Sci. 2007, Article ID 10836, 5 p. (2007). MSC: 16D70 16D40 16L30 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{Q. Sun}, Int. J. Math. Math. Sci. 2007, Article ID 10836, 5 p. (2007; Zbl 1136.16007) Full Text: DOI EuDML
Wu, De-Jun On \(cf\)-lifting modules and hollow-lifting modules. (English) Zbl 1133.16001 Int. J. Appl. Math. 20, No. 5, 671-677 (2007). MSC: 16D40 16D70 PDF BibTeX XML Cite \textit{D.-J. Wu}, Int. J. Appl. Math. 20, No. 5, 671--677 (2007; Zbl 1133.16001)
Wang, Yongduo; Ding, Nanqing Generalized lifting modules. (English) Zbl 1130.16004 Int. J. Math. Math. Sci. 2006, No. 2, Article ID 47390, 9 p. (2006). MSC: 16D80 16D50 16D70 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{N. Ding}, Int. J. Math. Math. Sci. 2006, No. 2, Article ID 47390, 9 p. (2006; Zbl 1130.16004) Full Text: DOI EuDML
Wu, Dejun On direct sums of lifting modules and internal exchange property. (English) Zbl 1107.16008 Kyungpook Math. J. 46, No. 1, 11-18 (2006). Reviewer: Iuliu Crivei (Cluj-Napoca) MSC: 16D70 16D50 PDF BibTeX XML Cite \textit{D. Wu}, Kyungpook Math. J. 46, No. 1, 11--18 (2006; Zbl 1107.16008)
Keskin Tütüncü, Derya; Tribak, Rachid When \(M\)-cosingular modules are projective. (English) Zbl 1115.16001 Vietnam J. Math. 33, No. 2, 214-221 (2005). MSC: 16D40 16D80 16E10 PDF BibTeX XML Cite \textit{D. Keskin Tütüncü} and \textit{R. Tribak}, Vietnam J. Math. 33, No. 2, 214--221 (2005; Zbl 1115.16001)
Wang, Yongduo A note on modules with \((D_{11}^+)\). (English) Zbl 1101.16005 Southeast Asian Bull. Math. 29, No. 5, 999-1002 (2005). MSC: 16D50 16D70 PDF BibTeX XML Cite \textit{Y. Wang}, Southeast Asian Bull. Math. 29, No. 5, 999--1002 (2005; Zbl 1101.16005)
Wu, Dejun \(\chi\)-lifting modules. (Chinese. English summary) Zbl 1092.16501 J. Lanzhou Univ. Technol. 31, No. 6, 141-143 (2005). MSC: 16D80 16D70 PDF BibTeX XML Cite \textit{D. Wu}, J. Lanzhou Univ. Technol. 31, No. 6, 141--143 (2005; Zbl 1092.16501)
Orhan, Nil; Keskin Tütüncü, Derya Hollow dimension of modules. (English) Zbl 1082.16030 J. Zhejiang Univ., Sci. 6A, No. 10, 1055-1057 (2005). MSC: 16P60 16E10 16D70 PDF BibTeX XML Cite \textit{N. Orhan} and \textit{D. Keskin Tütüncü}, J. Zhejiang Univ., Sci. 6A, No. 10, 1055--1057 (2005; Zbl 1082.16030) Full Text: DOI
Keskin Tütüncü, Derya; Tribak, Rachid On lifting modules and weak lifting modules. (English) Zbl 1088.16006 Kyungpook Math. J. 45, No. 3, 445-453 (2005). Reviewer: Iuliu Crivei (Cluj-Napoca) MSC: 16D70 16D50 13E05 13F10 16D25 PDF BibTeX XML Cite \textit{D. Keskin Tütüncü} and \textit{R. Tribak}, Kyungpook Math. J. 45, No. 3, 445--453 (2005; Zbl 1088.16006)
Keskin Tütüncü, Derya On coclosed submodules. (English) Zbl 1083.16005 Indian J. Pure Appl. Math. 36, No. 3, 135-144 (2005). Reviewer: Septimiu Crivei (Cluj-Napoca) MSC: 16D80 PDF BibTeX XML Cite \textit{D. Keskin Tütüncü}, Indian J. Pure Appl. Math. 36, No. 3, 135--144 (2005; Zbl 1083.16005)
Orhan, Nil; Keskin Tütüncü, Derya Characterizations of lifting modules in terms of cojective modules and the class of \(\mathcal B(M,X)\). (English) Zbl 1082.16005 Int. J. Math. 16, No. 6, 647-660 (2005). Reviewer: Frieda Theron (Pretoria) MSC: 16D80 16D70 PDF BibTeX XML Cite \textit{N. Orhan} and \textit{D. Keskin Tütüncü}, Int. J. Math. 16, No. 6, 647--660 (2005; Zbl 1082.16005) Full Text: DOI
Keskin Tütüncü, Derya Characterizations of discrete and quasi-discrete modules. (English) Zbl 1094.16005 Soochow J. Math. 31, No. 2, 179-185 (2005). Reviewer: Xue Weimin (Fujian) MSC: 16D70 PDF BibTeX XML Cite \textit{D. Keskin Tütüncü}, Soochow J. Math. 31, No. 2, 179--185 (2005; Zbl 1094.16005)
Keskín Tütüncü, Derya; Orhan, Níl CCSR-modules and weak lifting modules. (English) Zbl 1078.16505 East-West J. Math. 5, No. 1, 89-96 (2003). MSC: 16D80 16L30 PDF BibTeX XML Cite \textit{D. Keskín Tütüncü} and \textit{N. Orhan}, East-West J. Math. 5, No. 1, 89--96 (2003; Zbl 1078.16505)
Nebiyev, C.; Pancar, A. On \(\pi\)-projective modules. (English) Zbl 1059.13005 Int. J. Appl. Math. 12, No. 1, 51-57 (2003). Reviewer: Iuliu Crivei (Cluj-Napoca) MSC: 13C10 PDF BibTeX XML Cite \textit{C. Nebiyev} and \textit{A. Pancar}, Int. J. Appl. Math. 12, No. 1, 51--57 (2003; Zbl 1059.13005)
Nguyen Huu Bi; Le Duc Thoang; Le Van Thuyet Some results on the dimension of modules. (English) Zbl 1071.16501 Proceedings of the international conference on algebra and its applications (ICAA 2002), Chulalongkorn University, Bangkok, Thailand, March 18–20, 2002. Bangkog: Chulalongkorn University, Department of Mathematics (ISBN 970-13-2182-1). 253-260 (2002). MSC: 16D80 16D70 16P60 PDF BibTeX XML Cite \textit{Nguyen Huu Bi} et al., in: Proceedings of the international conference on algebra and its applications (ICAA 2002), Chulalongkorn University, Bangkok, Thailand, March 18--20, 2002. Bangkog: Chulalongkorn University, Department of Mathematics. 253--260 (2002; Zbl 1071.16501) Full Text: Link
Talebi, Y.; Vanaja, N. The torsion theory cogenerated by \(M\)-small modules. (English) Zbl 1005.16029 Commun. Algebra 30, No. 3, 1449-1460 (2002). Reviewer: Y.Kurata (Hadano) MSC: 16S90 PDF BibTeX XML Cite \textit{Y. Talebi} and \textit{N. Vanaja}, Commun. Algebra 30, No. 3, 1449--1460 (2002; Zbl 1005.16029) Full Text: DOI
Keskin, Derya An approach to extending and lifting modules by modular lattices. (English) Zbl 0998.16004 Indian J. Pure Appl. Math. 33, No. 1, 81-86 (2002). Reviewer: Toma Albu (Ankara) MSC: 16D70 06C05 16D80 16D40 PDF BibTeX XML Cite \textit{D. Keskin}, Indian J. Pure Appl. Math. 33, No. 1, 81--86 (2002; Zbl 0998.16004)
Alizade, R.; Bilhan, G.; Smith, P. F. Modules whose maximal submodules have supplements. (English) Zbl 0989.16001 Commun. Algebra 29, No. 6, 2389-2405 (2001). Reviewer: Xue Weimin (Fujian) MSC: 16D70 16L30 PDF BibTeX XML Cite \textit{R. Alizade} et al., Commun. Algebra 29, No. 6, 2389--2405 (2001; Zbl 0989.16001) Full Text: DOI
Smith, Patrick F. Finitely generated supplemented modules are amply supplemented. (English) Zbl 1271.16007 Arab. J. Sci. Eng., Sect. C, Theme Issues 25, No. 2, 69-79 (2000). MSC: 16D80 16D70 PDF BibTeX XML Cite \textit{P. F. Smith}, Arab. J. Sci. Eng., Sect. C, Theme Issues 25, No. 2, 69--79 (2000; Zbl 1271.16007)
Keskin, Derya Modules which are self-projective relative to coclosed submodules. (English) Zbl 1034.16002 An. Ştiinţ. Univ. “Ovidius” Constanţa, Ser. Mat. 8, No. 2, 47-51 (2000). MSC: 16D40 16D80 PDF BibTeX XML Cite \textit{D. Keskin}, An. Ştiinţ. Univ. ``Ovidius'' Constanţa, Ser. Mat. 8, No. 2, 47--51 (2000; Zbl 1034.16002)
Fieldhouse, David J. Semi-perfect and F-semi-perfect modules. (English) Zbl 0581.16019 Int. J. Math. Math. Sci. 8, 545-548 (1985). Reviewer: L.C.A.van Leeuwen MSC: 16L30 16D40 16D70 PDF BibTeX XML Cite \textit{D. J. Fieldhouse}, Int. J. Math. Math. Sci. 8, 545--548 (1985; Zbl 0581.16019) Full Text: DOI EuDML
Hausen, Jutta; Johnson, Johnny A. A new characterization of perfect and semi-perfect rings. (English) Zbl 0543.16015 Bull. Calcutta Math. Soc. 75, 57-58 (1983). Reviewer: L.Bican MSC: 16D80 16W99 16Gxx PDF BibTeX XML Cite \textit{J. Hausen} and \textit{J. A. Johnson}, Bull. Calcutta Math. Soc. 75, 57--58 (1983; Zbl 0543.16015)