×

Exponential function method for solving nonlinear ordinary differential equations with constant coefficients on a semi-infinite domain. (English) Zbl 1335.34041

Summary: A new approach, named the exponential function method (EFM) is used to obtain solutions to nonlinear ordinary differential equations with constant coefficients in a semi-infinite domain. The form of the solutions of these problems is considered to be an expansion of exponential functions with unknown coefficients. The derivative and product operational matrices arising from substituting in the proposed functions convert the solutions of these problems into an iterative method for finding the unknown coefficients. The method is applied to two problems: viscous flow due to a stretching sheet with surface slip and suction; and mageto hydrodynamic (MHD) flow of an incompressible viscous fluid over a stretching sheet. The two resulting solutions are compared against some standard methods which demonstrates the validity and applicability of the new approach.

MSC:

34A45 Theoretical approximation of solutions to ordinary differential equations
34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbasbandy S and Hayat T, Solution of the MHD Falkner-Skan flow by homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul.14 (2009) 3591-3598 · Zbl 1221.76133 · doi:10.1016/j.cnsns.2009.01.030
[2] Abbasbandy S, Ghehsareh H R and Hashim I, An approximate solution of the MHD flow over a non-linear stretching sheet by rational chebyshev collocation method, U.P.B. Sci. Bull. Series A74 (2012) 47-58 · Zbl 1299.76175
[3] Ahmad F, A simple analytical solution for the steady flow of a third grade fluid in a porous half space, Commun. Nonlinear. Sci. Numer. Simul.14 (2009) 2848-2852 · Zbl 1221.76134 · doi:10.1016/j.cnsns.2008.09.029
[4] Boyd J P, Orthogonal rational functions on a semi-infinite interval, J. Comput. Phys.70 (1987) 63-88 · Zbl 0614.42013 · doi:10.1016/0021-9991(87)90002-7
[5] Boyd J P, Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys.69 (1987) 112-142 · Zbl 0615.65090 · doi:10.1016/0021-9991(87)90158-6
[6] Boyd J P, Chebyshev and Fourier Spectral Methods, Second Edition (2000) (New York: Dover)
[7] Boyd J P, Rangan C and Bucksbaum P H, Pseudospectral methods on a semi-infinite interval with application to the hydrogen atom: a comparison of the mapped Fourier-sine method with Laguerre series and rational Chebyshev expansions, J. Comput. Phys.188 (2003) 56-74 · Zbl 1028.65086 · doi:10.1016/S0021-9991(03)00127-X
[8] Chaim T, Hydromagnetic flow over a surface stretching with a power-law velocity, Int. J. Eng. Sci.33 (1995) 429-435 · Zbl 0899.76375 · doi:10.1016/0020-7225(94)00066-S
[9] Christov C, A complete orthogonal system of functions in l2(−∞,∞) space, SIAM J. Appl. Math.42 (1982) 1337-1344 · Zbl 0562.33009 · doi:10.1137/0142093
[10] Crane L, Flow past a stretching plate, Z. Angew. Math. Phys.21 (1970) 645-647 · doi:10.1007/BF01587695
[11] Dehghan M and Azizibroojeni A, The solution of the Falkner-Skan equation arising in the modelling of boundary-layer problems via variational iteration method, Int. J. Numer. Method. H.21 (2011) 136-149 · Zbl 1231.76203 · doi:10.1108/09615531111105362
[12] Guo B Y, Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations, J. Math. Anal. Appl.243 (2000) 373-408 · Zbl 0951.41006 · doi:10.1006/jmaa.1999.6677
[13] Guo B Y, Jacobi spectral approximation and its applications to differential equations on the half line, J. Comput. Math.18 (2000) 95-112 · Zbl 0948.65071
[14] Guo B Y, Shen J and Wang Z Q, A rational approximation and its applications to differential equations on the half line, J. Sci. Comput.15 (2000) 117-147 · Zbl 0984.65104 · doi:10.1023/A:1007698525506
[15] Hayat T, Hussain Q and Javed T, The modified decomposition method and Padé approximants for the MHD flow over a non-linear stretching sheet, Nonlinear Analysis: Real World Applications10 (2009) 966-973 · Zbl 1167.76385 · doi:10.1016/j.nonrwa.2007.11.020
[16] Kazem S, Shaban M and Abbasbandy S, Improved analytical solutions to a stagnation-point flow past a porous stretching sheet with heat generation, J. Franklin Institute348 (2011) 2044-2058 · Zbl 1358.76057 · doi:10.1016/j.jfranklin.2011.05.020
[17] Kazem S, Rad J A, Parand K and Abbasbandy S, A new method for solving steady flow of a third-grade fluid in a porous half space based on radial basis functions, Z. Naturforsch. A66 (2014) 591-598
[18] Kazem S, Rad J A, Parand K, Shaban M and Saberi H, The numerical study on the unsteady flow of gas in a semi-infinite porous medium using an RBF collocation method, Int. J. Comput. Math.89 (2012) 2240-2258 · Zbl 1255.65184 · doi:10.1080/00207160.2012.704995
[19] Khan Y, Abdou M, Faraz N, Yildirim A and Wu Q, Numerical solution of MHD flow over a nonlinear porous stretching sheet, Iran. J. Chem. Chem. Eng.31 (2012) 125-132
[20] Parand K and Razzaghi M, Rational Legendre approximation for solving some physical problems on semi-infinite intervals, Phys. Scripta69 (2004) 353-357 · Zbl 1063.65146 · doi:10.1238/Physica.Regular.069a00353
[21] Parand K and Razzaghi M, Rational Chebyshev Tau method for solving higher-order ordinary differential equations, Int. J. Comput. Math.81 (2004) 73-80 · Zbl 1047.65052
[22] Parand K, Abbasbandy S, Kazem S and Rezaei A, Comparison between two common collocation approaches based on radial basis functions for the case of heat transfer equations arising in porous medium, Commun. Nonlinear. Sci. Numer. Simul.16 (2011) 1396-1407 · Zbl 1221.76156 · doi:10.1016/j.cnsns.2010.07.011
[23] Parand K, Dehghan M and Baharifard F, Solving a laminar boundary layer equation with the rational gegenbauer functions, Appl. Math. Model.37 (2013) 851-863 · Zbl 1351.76025 · doi:10.1016/j.apm.2012.02.041
[24] Rudin W, Principles of mathematical analysis (1976) (New York: McGraw-Hill) · Zbl 0346.26002
[25] Shankar P N, The embedding method for linear partial differential equations in unbounded and multiply connected domains, Proc. Indian Acad. Sci. (Math. Sci.)116 (2006) 361-371 · Zbl 1106.65101 · doi:10.1007/BF02829751
[26] Wang C, Analysis of viscous flow due to a stretching sheet with surface slip and suction, Nonlinear Analysis: Real World Applications10 (2009) 375-380 · Zbl 1154.76330 · doi:10.1016/j.nonrwa.2007.09.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.