Banjai, Lehel; Melenk, Jens M.; Schwab, Christoph Exponential convergence of hp FEM for spectral fractional diffusion in polygons. (English) Zbl 07643514 Numer. Math. 153, No. 1, 1-47 (2023). MSC: 65-XX 26A33 65N12 65N30 PDF BibTeX XML Cite \textit{L. Banjai} et al., Numer. Math. 153, No. 1, 1--47 (2023; Zbl 07643514) Full Text: DOI arXiv OpenURL
Du, Zhongjie; He, Chuanjiang Anisotropic diffusion with fuzzy-based source for binarization of degraded document images. (English) Zbl 07627675 Appl. Math. Comput. 441, Article ID 127684, 19 p. (2023). MSC: 94Axx 68Uxx 65Mxx PDF BibTeX XML Cite \textit{Z. Du} and \textit{C. He}, Appl. Math. Comput. 441, Article ID 127684, 19 p. (2023; Zbl 07627675) Full Text: DOI OpenURL
Castañeda, Antonio Rafael Selva; del Pozo, Josue Mariño; Ramirez-Torres, Erick Eduardo; Oria, Eduardo José Roca; Bolaños Vaillant, Sorangel; Montijano, Juan I.; Bergues Cabrales, Luis Enrique Spatio temporal dynamics of direct current in treated anisotropic tumors. (English) Zbl 07594650 Math. Comput. Simul. 203, 609-632 (2023). MSC: 92-XX 82-XX PDF BibTeX XML Cite \textit{A. R. S. Castañeda} et al., Math. Comput. Simul. 203, 609--632 (2023; Zbl 07594650) Full Text: DOI OpenURL
Cavalcante, T. M.; Lira Filho, R. J. M.; Souza, A. C. R.; Carvalho, D. K. E.; Lyra, P. R. M. A multipoint flux approximation with a diamond stencil and a non-linear defect correction strategy for the numerical solution of steady state diffusion problems in heterogeneous and anisotropic media satisfying the discrete maximum principle. (English) Zbl 07632591 J. Sci. Comput. 93, No. 2, Paper No. 42, 15 p. (2022). MSC: 65N06 65N12 76M20 35J05 PDF BibTeX XML Cite \textit{T. M. Cavalcante} et al., J. Sci. Comput. 93, No. 2, Paper No. 42, 15 p. (2022; Zbl 07632591) Full Text: DOI OpenURL
Fatone, Lorella; Funaro, Daniele High-order discretization of backward anisotropic diffusion and application to image processing. (English) Zbl 07603243 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 68, No. 2, 295-310 (2022). MSC: 68U10 65M06 PDF BibTeX XML Cite \textit{L. Fatone} and \textit{D. Funaro}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 68, No. 2, 295--310 (2022; Zbl 07603243) Full Text: DOI arXiv OpenURL
Azis, Mohammad Ivan A boundary integral equation formulation for an unsteady anisotropic-diffusion convection equation of exponentially variable coefficients and compressible flow. (English) Zbl 07603197 Kyungpook Math. J. 62, No. 3, 557-581 (2022). MSC: 35Q35 35K51 35N10 44A10 65M38 65M80 76N10 76R50 PDF BibTeX XML Cite \textit{M. I. Azis}, Kyungpook Math. J. 62, No. 3, 557--581 (2022; Zbl 07603197) Full Text: DOI OpenURL
Métivier, L.; Brossier, R. On the use of nonlinear anisotropic diffusion filters for seismic imaging using the full waveform. (English) Zbl 1498.35622 Inverse Probl. 38, No. 11, Article ID 115001, 36 p. (2022). MSC: 35R30 35K20 35K59 PDF BibTeX XML Cite \textit{L. Métivier} and \textit{R. Brossier}, Inverse Probl. 38, No. 11, Article ID 115001, 36 p. (2022; Zbl 1498.35622) Full Text: DOI OpenURL
Zhou, Yanhui; Wu, Jiming A new high order finite volume element solution on arbitrary triangular and quadrilateral meshes. (English) Zbl 07590683 Appl. Math. Lett. 134, Article ID 108354, 10 p. (2022). Reviewer: Abdallah Bradji (Annaba) MSC: 65N08 65N50 65N15 65N12 65N30 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. Wu}, Appl. Math. Lett. 134, Article ID 108354, 10 p. (2022; Zbl 07590683) Full Text: DOI OpenURL
Matsuzawa, Hiroshi; Nara, Mitsunori Asymptotic behavior of spreading fronts in an anisotropic multi-stable equation on \(\mathbb{R}^N\). (English) Zbl 07583870 Discrete Contin. Dyn. Syst. 42, No. 10, 4707-4740 (2022). Reviewer: Thomas Giletti (Vandœuvre-lès-Nancy) MSC: 35C07 35B40 35K15 35K57 35K59 53E10 PDF BibTeX XML Cite \textit{H. Matsuzawa} and \textit{M. Nara}, Discrete Contin. Dyn. Syst. 42, No. 10, 4707--4740 (2022; Zbl 07583870) Full Text: DOI OpenURL
Wei, Yabing; Lü, Shujuan; Wang, Fenling; Liu, F.; Zhao, Yanmin Global superconvergence analysis of nonconforming finite element method for time fractional reaction-diffusion problem with anisotropic data. (English) Zbl 07566248 Comput. Math. Appl. 119, 159-173 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{Y. Wei} et al., Comput. Math. Appl. 119, 159--173 (2022; Zbl 07566248) Full Text: DOI OpenURL
Kumar, Santosh; Alam, Khursheed; Chauhan, Alka Fractional derivative based nonlinear diffusion model for image denoising. (English) Zbl 1491.65020 S\(\vec{\text{e}}\)MA J. 79, No. 2, 355-364 (2022). MSC: 65D18 26A33 65M06 68U10 PDF BibTeX XML Cite \textit{S. Kumar} et al., S\(\vec{\text{e}}\)MA J. 79, No. 2, 355--364 (2022; Zbl 1491.65020) Full Text: DOI OpenURL
Chen, Yong Robust anisotropic diffusion filter via robust spatial gradient estimation. (English) Zbl 1491.94005 Multidimensional Syst. Signal Process. 33, No. 2, 501-525 (2022). MSC: 94A08 PDF BibTeX XML Cite \textit{Y. Chen}, Multidimensional Syst. Signal Process. 33, No. 2, 501--525 (2022; Zbl 1491.94005) Full Text: DOI OpenURL
Pan, Kejia; Wu, Xiaoxin; Xu, Yufeng; Yuan, Guangwei An exact-interface-fitted mesh generator and linearity-preserving finite volume scheme for anisotropic elliptic interface problems. (English) Zbl 07536783 J. Comput. Phys. 463, Article ID 111293, 25 p. (2022). MSC: 65Nxx 65Mxx 35Jxx PDF BibTeX XML Cite \textit{K. Pan} et al., J. Comput. Phys. 463, Article ID 111293, 25 p. (2022; Zbl 07536783) Full Text: DOI OpenURL
Dahmen, Nour; Droniou, Jérôme; Rogier, François A cost-effective nonlinear extremum-preserving finite volume scheme for highly anisotropic diffusion on Cartesian grids, with application to radiation belt dynamics. (English) Zbl 07536760 J. Comput. Phys. 463, Article ID 111258, 19 p. (2022). MSC: 65Nxx 35Jxx 65Mxx PDF BibTeX XML Cite \textit{N. Dahmen} et al., J. Comput. Phys. 463, Article ID 111258, 19 p. (2022; Zbl 07536760) Full Text: DOI arXiv OpenURL
Huang, Weijie; Jiang, Wei; Wang, Yan A \(\theta\)-\(L\) approach for solving solid-state dewetting problems. (English) Zbl 1499.65495 J. Comput. Math. 40, No. 2, 275-293 (2022). MSC: 65M60 65M06 65M12 74K35 76A20 PDF BibTeX XML Cite \textit{W. Huang} et al., J. Comput. Math. 40, No. 2, 275--293 (2022; Zbl 1499.65495) Full Text: DOI OpenURL
Pan, Kejia; Wu, Xiaoxin; Yu, Yunlong; Sheng, Zhiqiang; Yuan, Guangwei Extrapolation cascadic multigrid method for cell-centered FV discretization of diffusion equations with strongly discontinuous and anisotropic coefficients. (English) Zbl 1486.65281 Commun. Comput. Phys. 31, No. 5, 1561-1584 (2022). MSC: 65N55 65N08 PDF BibTeX XML Cite \textit{K. Pan} et al., Commun. Comput. Phys. 31, No. 5, 1561--1584 (2022; Zbl 1486.65281) Full Text: DOI OpenURL
Pan, Kejia; Wu, Xiaoxin; Hu, Hongling; Yu, Yunlong; Li, Zhilin A new FV scheme and fast cell-centered multigrid solver for 3D anisotropic diffusion equations with discontinuous coefficients. (English) Zbl 07524790 J. Comput. Phys. 449, Article ID 110794, 19 p. (2022). MSC: 65Nxx 65Mxx 35Jxx PDF BibTeX XML Cite \textit{K. Pan} et al., J. Comput. Phys. 449, Article ID 110794, 19 p. (2022; Zbl 07524790) Full Text: DOI OpenURL
Yang, Hongtao; Yu, Boyang; Li, Yonghai; Yuan, Guangwei Monotonicity correction for second order element finite volume methods of anisotropic diffusion problems. (English) Zbl 07524764 J. Comput. Phys. 449, Article ID 110759, 33 p. (2022). MSC: 65Nxx 65Mxx 35Jxx PDF BibTeX XML Cite \textit{H. Yang} et al., J. Comput. Phys. 449, Article ID 110759, 33 p. (2022; Zbl 07524764) Full Text: DOI OpenURL
Anguill, Pierre; Cargo, Patricia; Énaux, Cedric; Hoch, Philippe; Labourasse, Emmanuel; Samba, Gerald An asymptotic preserving method for the linear transport equation on general meshes. (English) Zbl 07517118 J. Comput. Phys. 450, Article ID 110859, 28 p. (2022). MSC: 65Mxx 82Cxx 76Mxx PDF BibTeX XML Cite \textit{P. Anguill} et al., J. Comput. Phys. 450, Article ID 110859, 28 p. (2022; Zbl 07517118) Full Text: DOI HAL OpenURL
Azis, M. I. An LT-BEM formulation for problems of anisotropic functionally graded materials governed by transient diffusion-convection-reaction equation. (English) Zbl 07496064 Eng. Anal. Bound. Elem. 135, 196-205 (2022). MSC: 65M38 44A10 35K20 35N10 PDF BibTeX XML Cite \textit{M. I. Azis}, Eng. Anal. Bound. Elem. 135, 196--205 (2022; Zbl 07496064) Full Text: DOI OpenURL
Azis, Moh. Ivan; Abbaszadeh, Mostafa; Dehghan, Mehdi An LT-BEM for an unsteady diffusion-convection problem of another class of anisotropic FGMs. (English) Zbl 1499.65707 Int. J. Comput. Math. 99, No. 3, 575-590 (2022). MSC: 65N38 35K51 44A10 35N10 PDF BibTeX XML Cite \textit{Moh. I. Azis} et al., Int. J. Comput. Math. 99, No. 3, 575--590 (2022; Zbl 1499.65707) Full Text: DOI OpenURL
El Hakoume, A.; Afraites, L.; Laghrib, A. Well-posedness and simulation results of a coupled denoising PDE. (English) Zbl 1484.94006 Nonlinear Anal., Real World Appl. 65, Article ID 103499, 29 p. (2022). MSC: 94A08 68U10 35K57 49J45 49N90 PDF BibTeX XML Cite \textit{A. El Hakoume} et al., Nonlinear Anal., Real World Appl. 65, Article ID 103499, 29 p. (2022; Zbl 1484.94006) Full Text: DOI OpenURL
Lai, Ming-Chih; Park, Sangbeom; Seol, Yunchang An energy stable finite difference method for anisotropic surface diffusion on closed curves. (English) Zbl 07478983 Appl. Math. Lett. 127, Article ID 107848, 12 p. (2022). MSC: 65-XX 82-XX PDF BibTeX XML Cite \textit{M.-C. Lai} et al., Appl. Math. Lett. 127, Article ID 107848, 12 p. (2022; Zbl 07478983) Full Text: DOI OpenURL
Yang, Jiabao; Guo, Zhichang; Zhang, Dazhi; Wu, Boying; Du, Shan An anisotropic diffusion system with nonlinear time-delay structure tensor for image enhancement and segmentation. (English) Zbl 07469194 Comput. Math. Appl. 107, 29-44 (2022). MSC: 94-XX 68-XX PDF BibTeX XML Cite \textit{J. Yang} et al., Comput. Math. Appl. 107, 29--44 (2022; Zbl 07469194) Full Text: DOI OpenURL
Zhou, Yanhui; Wu, Jiming A family of quadratic finite volume element schemes for anisotropic diffusion problems on triangular meshes. (English) Zbl 1495.65195 J. Comput. Appl. Math. 402, Article ID 113794, 25 p. (2022). Reviewer: Abdallah Bradji (Annaba) MSC: 65N08 65N30 65N15 35A01 35A02 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. Wu}, J. Comput. Appl. Math. 402, Article ID 113794, 25 p. (2022; Zbl 1495.65195) Full Text: DOI OpenURL
Wang, Jiangfu; Sheng, Zhiqiang; Yuan, Guangwei A vertex-centered finite volume scheme preserving the discrete maximum principle for anisotropic and discontinuous diffusion equations. (English) Zbl 1498.65191 J. Comput. Appl. Math. 402, Article ID 113785, 19 p. (2022). Reviewer: Abdellatif Bourhim (Syracuse) MSC: 65N08 35B09 35B50 PDF BibTeX XML Cite \textit{J. Wang} et al., J. Comput. Appl. Math. 402, Article ID 113785, 19 p. (2022; Zbl 1498.65191) Full Text: DOI OpenURL
Beringhier, Marianne; Gigliotti, Marco; Vannucci, Paolo Identification of diffusion properties of polymer-matrix composite materials with complex texture. (English) Zbl 07619869 Mariano, Paolo Maria (ed.), Variational views in mechanics. Cham: Birkhäuser. Adv. Mech. Math., 289-309 (2021). MSC: 74E30 74E25 74E10 74P10 PDF BibTeX XML Cite \textit{M. Beringhier} et al., in: Variational views in mechanics. Cham: Birkhäuser. 289--309 (2021; Zbl 07619869) Full Text: DOI OpenURL
Yu, Jimin; Yin, Jiajun; Zhou, Shangbo; Huang, Saiao; Xie, Xianzhong An image super-resolution reconstruction model based on fractional-order anisotropic diffusion equation. (English) Zbl 07610945 Math. Biosci. Eng. 18, No. 5, 6581-6607 (2021). MSC: 94-XX PDF BibTeX XML Cite \textit{J. Yu} et al., Math. Biosci. Eng. 18, No. 5, 6581--6607 (2021; Zbl 07610945) Full Text: DOI OpenURL
Barbu, Tudor Automatic edge detection solution using anisotropic diffusion-based multi-scale image analysis and fine-to-coarse tracking. (English) Zbl 07559992 Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 22, No. 3, 265-273 (2021). MSC: 68U10 35K20 35K10 94A08 PDF BibTeX XML Cite \textit{T. Barbu}, Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 22, No. 3, 265--273 (2021; Zbl 07559992) OpenURL
Li, Yifei; Bao, Weizhu An energy-stable parametric finite element method for anisotropic surface diffusion. (English) Zbl 07516468 J. Comput. Phys. 446, Article ID 110658, 27 p. (2021). MSC: 65Mxx 35Kxx 74Gxx PDF BibTeX XML Cite \textit{Y. Li} and \textit{W. Bao}, J. Comput. Phys. 446, Article ID 110658, 27 p. (2021; Zbl 07516468) Full Text: DOI arXiv OpenURL
Barbu, Tudor Nonlinear PDE-based models for photon-limited image restoration. (English) Zbl 07455322 Appl. Sci. 23, 5-16 (2021). MSC: 68U10 94A08 93E11 60G35 35A15 35-XX 35Kxx 35K10 35K55 35Lxx 35L70 PDF BibTeX XML Cite \textit{T. Barbu}, Appl. Sci. 23, 5--16 (2021; Zbl 07455322) Full Text: Link OpenURL
Zhang, Zhiguang; Liu, Qiang; Gao, Tianling A fast explicit diffusion algorithm of fractional order anisotropic diffusion for image denoising. (English) Zbl 07454693 Inverse Probl. Imaging 15, No. 6, 1451-1469 (2021). MSC: 68U10 35R11 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Inverse Probl. Imaging 15, No. 6, 1451--1469 (2021; Zbl 07454693) Full Text: DOI OpenURL
Bodduna, Kireeti; Weickert, Joachim; Cárdenas, Marcelo Multi-frame super-resolution from noisy data. (English) Zbl 1487.94019 Elmoataz, Abderrahim (ed.) et al., Scale space and variational methods in computer vision. 8th international conference, SSVM 2021, virtual event, May 16–20, 2021. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 12679, 565-577 (2021). MSC: 94A08 68U10 PDF BibTeX XML Cite \textit{K. Bodduna} et al., Lect. Notes Comput. Sci. 12679, 565--577 (2021; Zbl 1487.94019) Full Text: DOI arXiv OpenURL
Zhang, Xiaofei; Liu, Chungen Minimal brake orbits of first-order convex Hamiltonian systems with anisotropic growth. (English) Zbl 1476.34104 SN Partial Differ. Equ. Appl. 2, No. 4, Paper No. 45, 8 p. (2021). MSC: 34C25 37J40 58E05 70H05 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{C. Liu}, SN Partial Differ. Equ. Appl. 2, No. 4, Paper No. 45, 8 p. (2021; Zbl 1476.34104) Full Text: DOI OpenURL
Alnashri, Yahya; Alzubaidi, Hasan A gradient discretisation method for anisotropic reaction-diffusion models with applications to the dynamics of brain tumors. (English) Zbl 07446781 Comput. Methods Appl. Math. 21, No. 4, 753-775 (2021). MSC: 65-XX 35K57 65N12 65M08 PDF BibTeX XML Cite \textit{Y. Alnashri} and \textit{H. Alzubaidi}, Comput. Methods Appl. Math. 21, No. 4, 753--775 (2021; Zbl 07446781) Full Text: DOI arXiv OpenURL
Xie, Hui; Xu, Xuejun; Zhai, Chuanlei; Yong, Heng A positivity-preserving finite volume scheme with least square interpolation for 3D anisotropic diffusion equation. (English) Zbl 07435289 J. Sci. Comput. 89, No. 3, Paper No. 53, 25 p. (2021). MSC: 65N08 65K10 65D05 65N12 65N15 35B09 PDF BibTeX XML Cite \textit{H. Xie} et al., J. Sci. Comput. 89, No. 3, Paper No. 53, 25 p. (2021; Zbl 07435289) Full Text: DOI OpenURL
Li, Xiaoqin Image texture analysis and edge detection algorithm based on anisotropic diffusion equation. (English) Zbl 1478.94062 Adv. Math. Phys. 2021, Article ID 9910882, 11 p. (2021). MSC: 94A08 68U10 35Q94 PDF BibTeX XML Cite \textit{X. Li}, Adv. Math. Phys. 2021, Article ID 9910882, 11 p. (2021; Zbl 1478.94062) Full Text: DOI OpenURL
Lian, Yanjian; Bui, Ha H.; Nguyen, Giang D.; Tran, Hieu T.; Haque, Asadul A general SPH framework for transient seepage flows through unsaturated porous media considering anisotropic diffusion. (English) Zbl 07427404 Comput. Methods Appl. Mech. Eng. 387, Article ID 114169, 43 p. (2021). MSC: 76-XX 74-XX PDF BibTeX XML Cite \textit{Y. Lian} et al., Comput. Methods Appl. Mech. Eng. 387, Article ID 114169, 43 p. (2021; Zbl 07427404) Full Text: DOI OpenURL
Gander, Martin J.; Halpern, Laurence; Hubert, Florence; Krell, Stella Discrete optimization of Robin transmission conditions for anisotropic diffusion with discrete duality finite volume methods. (English) Zbl 1482.65224 Vietnam J. Math. 49, No. 4, 1349-1378 (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65N55 65N08 65F10 65N12 PDF BibTeX XML Cite \textit{M. J. Gander} et al., Vietnam J. Math. 49, No. 4, 1349--1378 (2021; Zbl 1482.65224) Full Text: DOI HAL OpenURL
Reutskiy, Sergiy; Lin, Ji; Zheng, Bin; Tong, Jiyou A novel B-spline method for modeling transport problems in anisotropic inhomogeneous media. (English) Zbl 1499.65577 Adv. Appl. Math. Mech. 13, No. 3, 590-618 (2021). MSC: 65M70 65M06 65N35 65D07 76S05 35Q35 PDF BibTeX XML Cite \textit{S. Reutskiy} et al., Adv. Appl. Math. Mech. 13, No. 3, 590--618 (2021; Zbl 1499.65577) Full Text: DOI OpenURL
Feo, Filomena; Vázquez, Juan Luis; Volzone, Bruno Anisotropic \(p\)-Laplacian evolution of fast diffusion type. (English) Zbl 1472.35234 Adv. Nonlinear Stud. 21, No. 3, 523-555 (2021). MSC: 35K92 35K65 35A08 35B40 PDF BibTeX XML Cite \textit{F. Feo} et al., Adv. Nonlinear Stud. 21, No. 3, 523--555 (2021; Zbl 1472.35234) Full Text: DOI arXiv OpenURL
Ouédraogo, Adama; Houede, Dofyniwassouani Alain; Ibrango, Idrissa Renormalized solutions for convection-diffusion problems involving a nonlocal operator. (English) Zbl 1471.35305 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 5, Paper No. 55, 27 p. (2021). MSC: 35R11 35L65 35K59 PDF BibTeX XML Cite \textit{A. Ouédraogo} et al., NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 5, Paper No. 55, 27 p. (2021; Zbl 1471.35305) Full Text: DOI OpenURL
Miranville, Alain; Moroşanu, Costică A qualitative analysis of a nonlinear second-order anisotropic diffusion problem with non-homogeneous Cauchy-Stefan-Boltzmann boundary conditions. (English) Zbl 1470.35199 Appl. Math. Optim. 84, No. 1, 227-244 (2021). MSC: 35K59 35K20 35K61 35B45 35B65 PDF BibTeX XML Cite \textit{A. Miranville} and \textit{C. Moroşanu}, Appl. Math. Optim. 84, No. 1, 227--244 (2021; Zbl 1470.35199) Full Text: DOI OpenURL
Theljani, Anis Multi-scale non-standard fourth-order PDE in image denoising and its fixed point algorithm. (English) Zbl 1471.65126 Int. J. Numer. Anal. Model. 18, No. 1, 38-61 (2021). MSC: 65M32 47J25 65M50 65M22 94A08 35G30 35Q68 65J15 PDF BibTeX XML Cite \textit{A. Theljani}, Int. J. Numer. Anal. Model. 18, No. 1, 38--61 (2021; Zbl 1471.65126) Full Text: Link OpenURL
Antontsev, S.; De Oliveira, H. B.; Khompysh, Kh. Kelvin-Voigt equations with anisotropic diffusion, relaxation and damping: blow-up and large time behavior. (English) Zbl 1472.35284 Asymptotic Anal. 121, No. 2, 125-157 (2021). MSC: 35Q35 76A10 35B44 74B10 PDF BibTeX XML Cite \textit{S. Antontsev} et al., Asymptotic Anal. 121, No. 2, 125--157 (2021; Zbl 1472.35284) Full Text: DOI OpenURL
Robbe, Pieterjan; Nuyens, Dirk; Vandewalle, Stefan Enhanced multi-index Monte Carlo by means of multiple semicoarsened multigrid for anisotropic diffusion problems. (English) Zbl 07361106 Numer. Linear Algebra Appl. 28, No. 3, e2281, 16 p. (2021). MSC: 68R10 05Cxx PDF BibTeX XML Cite \textit{P. Robbe} et al., Numer. Linear Algebra Appl. 28, No. 3, e2281, 16 p. (2021; Zbl 07361106) Full Text: DOI arXiv OpenURL
Zhou, Yanhui; Wu, Jiming High order locally conservative finite element solutions for anisotropic diffusion problems in two dimensions. (English) Zbl 07351756 Comput. Math. Appl. 92, 1-12 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. Wu}, Comput. Math. Appl. 92, 1--12 (2021; Zbl 07351756) Full Text: DOI OpenURL
Riya; Gupta, Bhupendra; Lamba, Subir Singh An efficient anisotropic diffusion model for image denoising with edge preservation. (English) Zbl 07351714 Comput. Math. Appl. 93, 106-119 (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{Riya} et al., Comput. Math. Appl. 93, 106--119 (2021; Zbl 07351714) Full Text: DOI OpenURL
Bildhauer, M.; Cárdenas, M.; Fuchs, M.; Weickert, J. Existence theory for the EED inpainting problem. (English) Zbl 1464.94003 St. Petersbg. Math. J. 32, No. 3, 481-497 (2021) and Algebra Anal. 32, No. 3, 127-148 (2020). MSC: 94A08 68U10 35J25 65D17 PDF BibTeX XML Cite \textit{M. Bildhauer} et al., St. Petersbg. Math. J. 32, No. 3, 481--497 (2021; Zbl 1464.94003) Full Text: DOI arXiv OpenURL
Cheng, Hanz Martin; ten Thije Boonkkamp, Jan A generalised complete flux scheme for anisotropic advection-diffusion equations. (English) Zbl 1465.65115 Adv. Comput. Math. 47, No. 2, Paper No. 19, 26 p. (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65N08 35J15 PDF BibTeX XML Cite \textit{H. M. Cheng} and \textit{J. ten Thije Boonkkamp}, Adv. Comput. Math. 47, No. 2, Paper No. 19, 26 p. (2021; Zbl 1465.65115) Full Text: DOI arXiv OpenURL
Wang, Yuxi; Liu, Bingchen; Sun, Yurou Asymptotic property of singular solutions in some nonstandard parabolic equation. (English) Zbl 1467.76064 Nonlinear Anal., Real World Appl. 60, Article ID 103301, 21 p. (2021). MSC: 76R99 76W05 35Q35 35K57 35R09 PDF BibTeX XML Cite \textit{Y. Wang} et al., Nonlinear Anal., Real World Appl. 60, Article ID 103301, 21 p. (2021; Zbl 1467.76064) Full Text: DOI OpenURL
Amorino, Chiara; Gloter, Arnaud Invariant density adaptive estimation for ergodic jump-diffusion processes over anisotropic classes. (English) Zbl 1465.62067 J. Stat. Plann. Inference 213, 106-129 (2021). MSC: 62G07 62H12 60J60 60J76 60H10 PDF BibTeX XML Cite \textit{C. Amorino} and \textit{A. Gloter}, J. Stat. Plann. Inference 213, 106--129 (2021; Zbl 1465.62067) Full Text: DOI arXiv OpenURL
Finkelshtein, Dmitri; Kondratiev, Yuri; Tkachov, Pasha Doubly nonlocal Fisher-KPP equation: front propagation. (English) Zbl 1472.35051 Appl. Anal. 100, No. 7, 1373-1396 (2021). Reviewer: Thomas Giletti (Vandœuvre-lès-Nancy) MSC: 35B40 35K55 35K57 35R09 PDF BibTeX XML Cite \textit{D. Finkelshtein} et al., Appl. Anal. 100, No. 7, 1373--1396 (2021; Zbl 1472.35051) Full Text: DOI arXiv OpenURL
Kim, Yong-Jung; Seo, Hyowon Model for heterogeneous diffusion. (English) Zbl 1467.35315 SIAM J. Appl. Math. 81, No. 2, 335-354 (2021). MSC: 35Q82 82C40 82D20 35K05 60J60 60J65 PDF BibTeX XML Cite \textit{Y.-J. Kim} and \textit{H. Seo}, SIAM J. Appl. Math. 81, No. 2, 335--354 (2021; Zbl 1467.35315) Full Text: DOI OpenURL
Mudunuru, M. K.; Karra, S. Physics-informed machine learning models for predicting the progress of reactive-mixing. (English) Zbl 07338011 Comput. Methods Appl. Mech. Eng. 374, Article ID 113560, 34 p. (2021). MSC: 92-XX 68-XX PDF BibTeX XML Cite \textit{M. K. Mudunuru} and \textit{S. Karra}, Comput. Methods Appl. Mech. Eng. 374, Article ID 113560, 34 p. (2021; Zbl 07338011) Full Text: DOI arXiv OpenURL
Chen, Yong; He, Taoshun Image denoising via an adaptive weighted anisotropic diffusion. (English) Zbl 1458.94024 Multidimensional Syst. Signal Process. 32, No. 2, 651-669 (2021). MSC: 94A08 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{T. He}, Multidimensional Syst. Signal Process. 32, No. 2, 651--669 (2021; Zbl 1458.94024) Full Text: DOI OpenURL
Cuevas, Erik; Becerra, Héctor; Luque, Alberto Anisotropic diffusion filtering through multi-objective optimization. (English) Zbl 07318227 Math. Comput. Simul. 181, 410-429 (2021). MSC: 45Kxx 49Qxx 35Kxx 65Rxx PDF BibTeX XML Cite \textit{E. Cuevas} et al., Math. Comput. Simul. 181, 410--429 (2021; Zbl 07318227) Full Text: DOI OpenURL
Dreyfuss, Pierre; Houamed, Haroune Uniqueness result for the 3-D Navier-Stokes-Boussinesq equations with horizontal dissipation. (English) Zbl 1476.76019 J. Math. Fluid Mech. 23, No. 1, Paper No. 19, 24 p. (2021). Reviewer: Raphaël Danchin (Paris) MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{P. Dreyfuss} and \textit{H. Houamed}, J. Math. Fluid Mech. 23, No. 1, Paper No. 19, 24 p. (2021; Zbl 1476.76019) Full Text: DOI arXiv OpenURL
Wei, Yabing; Lü, Shujuan; Chen, Hu; Zhao, Yanmin; Wang, Fenling Convergence analysis of the anisotropic FEM for 2D time fractional variable coefficient diffusion equations on graded meshes. (English) Zbl 1452.65254 Appl. Math. Lett. 111, Article ID 106604, 8 p. (2021). MSC: 65M60 65M22 65N30 65M12 65M15 35R11 26A33 PDF BibTeX XML Cite \textit{Y. Wei} et al., Appl. Math. Lett. 111, Article ID 106604, 8 p. (2021; Zbl 1452.65254) Full Text: DOI OpenURL
Bagheri, Mehran; Slater, Gary W. Diffusion in an array of immobile anisotropic obstacles: the influence of local orientation, bottlenecks, and free volume in absence of dead-ends. (English) Zbl 07572434 Physica A 539, Article ID 122924, 11 p. (2020). MSC: 82-XX PDF BibTeX XML Cite \textit{M. Bagheri} and \textit{G. W. Slater}, Physica A 539, Article ID 122924, 11 p. (2020; Zbl 07572434) Full Text: DOI OpenURL
Gao, Yanni; Yuan, Guangwei; Wang, Shuai; Hang, Xudeng A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes. (English) Zbl 07504690 J. Comput. Phys. 407, Article ID 109143, 26 p. (2020). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{Y. Gao} et al., J. Comput. Phys. 407, Article ID 109143, 26 p. (2020; Zbl 07504690) Full Text: DOI OpenURL
Zhou, Yanhui A class of bubble enriched quadratic finite volume element schemes on triangular meshes. (English) Zbl 1483.65172 Int. J. Numer. Anal. Model. 17, No. 6, 872-899 (2020). MSC: 65N08 35R35 65N12 65N15 PDF BibTeX XML Cite \textit{Y. Zhou}, Int. J. Numer. Anal. Model. 17, No. 6, 872--899 (2020; Zbl 1483.65172) Full Text: Link OpenURL
Soumanou, V. M. Serge; Moumouni, Sounmaïla; Massou, Siaka; Essoun, Adébayo L. Application of the digital resolution of anisotropic and nonlinear diffusion equation to image processing. (English) Zbl 1484.35265 Adv. Differ. Equ. Control Process. 23, No. 2, 105-123 (2020). MSC: 35K57 35A24 35B65 35E05 68U10 PDF BibTeX XML Cite \textit{V. M. S. Soumanou} et al., Adv. Differ. Equ. Control Process. 23, No. 2, 105--123 (2020; Zbl 1484.35265) Full Text: DOI OpenURL
Boada, Angel; Paolini, Christopher; Castillo, Jose E. High-order mimetic finite differences for anisotropic elliptic equations. (English) Zbl 07426181 Comput. Fluids 213, Article ID 104746, 9 p. (2020). MSC: 76-XX PDF BibTeX XML Cite \textit{A. Boada} et al., Comput. Fluids 213, Article ID 104746, 9 p. (2020; Zbl 07426181) Full Text: DOI OpenURL
Zhang, Xiaoting; He, Chuanjiang; Guo, Jiebin Selective diffusion involving reaction for binarization of bleed-through document images. (English) Zbl 1481.94045 Appl. Math. Modelling 81, 844-854 (2020). MSC: 94A08 35K59 65D18 PDF BibTeX XML Cite \textit{X. Zhang} et al., Appl. Math. Modelling 81, 844--854 (2020; Zbl 1481.94045) Full Text: DOI OpenURL
Zhang, Yanyan; Sun, Jingjing An improved BM3D algorithm based on anisotropic diffusion equation. (English) Zbl 1470.94029 Math. Biosci. Eng. 17, No. 5, 4970-4989 (2020). MSC: 94A08 68U10 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{J. Sun}, Math. Biosci. Eng. 17, No. 5, 4970--4989 (2020; Zbl 1470.94029) Full Text: DOI OpenURL
Bora, Aniruddha; Dai, Weizhong Gradient preserved method for solving heat conduction equation with variable coefficients in double layers. (English) Zbl 1497.65117 Appl. Math. Comput. 386, Article ID 125516, 24 p. (2020). MSC: 65M06 65M12 80A19 PDF BibTeX XML Cite \textit{A. Bora} and \textit{W. Dai}, Appl. Math. Comput. 386, Article ID 125516, 24 p. (2020; Zbl 1497.65117) Full Text: DOI OpenURL
Tschumperlé, David; Porquet, Christine; Mahboubi, Amal Reconstruction of smooth 3D color functions from keypoints: application to lossy compression and exemplar-based generation of color LUTs. (English) Zbl 1497.68543 SIAM J. Imaging Sci. 13, No. 3, 1511-1535 (2020). MSC: 68U10 35Q68 65D18 68P30 68W25 PDF BibTeX XML Cite \textit{D. Tschumperlé} et al., SIAM J. Imaging Sci. 13, No. 3, 1511--1535 (2020; Zbl 1497.68543) Full Text: DOI OpenURL
Jacobs, Bas; Molenaar, Jaap; Deinum, Eva E. Robust banded protoxylem pattern formation through microtubule-based directional ROP diffusion restriction. (English) Zbl 1453.92204 J. Theor. Biol. 502, Article ID 110351, 17 p. (2020). MSC: 92C80 92C15 PDF BibTeX XML Cite \textit{B. Jacobs} et al., J. Theor. Biol. 502, Article ID 110351, 17 p. (2020; Zbl 1453.92204) Full Text: DOI OpenURL
Wei, Yabing; Zhao, Yanmin; Wang, Fenling; Tang, Yifa; Yang, Jiye Superconvergence analysis of anisotropic FEMs for time fractional variable coefficient diffusion equations. (English) Zbl 1451.65154 Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4411-4429 (2020). MSC: 65M60 65N30 65M06 65M12 65D05 35R11 26A33 PDF BibTeX XML Cite \textit{Y. Wei} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4411--4429 (2020; Zbl 1451.65154) Full Text: DOI OpenURL
Oulhaj, Ahmed Ait Hammou; Maltese, David Convergence of a positive nonlinear control volume finite element scheme for an anisotropic seawater intrusion model with sharp interfaces. (English) Zbl 1452.65246 Numer. Methods Partial Differ. Equations 36, No. 1, 133-153 (2020). MSC: 65M60 65M06 65M08 65M12 35K65 76S05 35R35 76M10 86A05 PDF BibTeX XML Cite \textit{A. A. H. Oulhaj} and \textit{D. Maltese}, Numer. Methods Partial Differ. Equations 36, No. 1, 133--153 (2020; Zbl 1452.65246) Full Text: DOI HAL OpenURL
Reutskiy, Sergiy; Lin, Ji A RBF-based technique for 3D convection-diffusion-reaction problems in an anisotropic inhomogeneous medium. (English) Zbl 1443.65392 Comput. Math. Appl. 79, No. 6, 1875-1888 (2020). MSC: 65N35 65D12 35C10 35J25 PDF BibTeX XML Cite \textit{S. Reutskiy} and \textit{J. Lin}, Comput. Math. Appl. 79, No. 6, 1875--1888 (2020; Zbl 1443.65392) Full Text: DOI OpenURL
Gander, Martin J.; Halpern, Laurence; Hubert, Florence; Krell, Stella Optimized overlapping DDFV Schwarz algorithms. (English) Zbl 1454.65180 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer. Springer Proc. Math. Stat. 323, 365-373 (2020). MSC: 65N55 65N08 65N12 42A38 65Y05 PDF BibTeX XML Cite \textit{M. J. Gander} et al., Springer Proc. Math. Stat. 323, 365--373 (2020; Zbl 1454.65180) Full Text: DOI OpenURL
Reutskiy, Sergiy; Zhang, Yuhui; Lin, Ji; Lu, Jun; Xu, Haifeng; He, Yongjun A novel B-spline method to analyze convection-diffusion-reaction problems in anisotropic inhomogeneous medium. (English) Zbl 1464.65279 Eng. Anal. Bound. Elem. 118, 216-224 (2020). MSC: 65N99 PDF BibTeX XML Cite \textit{S. Reutskiy} et al., Eng. Anal. Bound. Elem. 118, 216--224 (2020; Zbl 1464.65279) Full Text: DOI OpenURL
Lerouvillois, Vincent Hydrodynamic limit of a \((2+1)\)-dimensional crystal growth model in the anisotropic KPZ class. (English) Zbl 1456.60188 Electron. J. Probab. 25, Paper No. 76, 35 p. (2020). MSC: 60J25 60K35 82C24 PDF BibTeX XML Cite \textit{V. Lerouvillois}, Electron. J. Probab. 25, Paper No. 76, 35 p. (2020; Zbl 1456.60188) Full Text: DOI arXiv Euclid OpenURL
Donatelli, Marco; Krause, Rolf; Mazza, Mariarosa; Trotti, Ken Multigrid preconditioners for anisotropic space-fractional diffusion equations. (English) Zbl 1443.65122 Adv. Comput. Math. 46, No. 3, Paper No. 49, 31 p. (2020). MSC: 65M06 35R11 65M12 65M55 PDF BibTeX XML Cite \textit{M. Donatelli} et al., Adv. Comput. Math. 46, No. 3, Paper No. 49, 31 p. (2020; Zbl 1443.65122) Full Text: DOI OpenURL
Deng, Weihua; Wang, Xudong; Zhang, Pingwen Anisotropic nonlocal diffusion operators for normal and anomalous dynamics. (English) Zbl 1448.60192 Multiscale Model. Simul. 18, No. 1, 415-443 (2020). MSC: 60K50 35R11 82C31 PDF BibTeX XML Cite \textit{W. Deng} et al., Multiscale Model. Simul. 18, No. 1, 415--443 (2020; Zbl 1448.60192) Full Text: DOI arXiv OpenURL
Peng, Gang; Gao, Zhiming; Feng, Xinlong A novel cell-centered finite volume scheme with positivity-preserving property for the anisotropic diffusion problems on general polyhedral meshes. (English) Zbl 1437.65166 Appl. Math. Lett. 104, Article ID 106252, 10 p. (2020). MSC: 65N08 35J15 PDF BibTeX XML Cite \textit{G. Peng} et al., Appl. Math. Lett. 104, Article ID 106252, 10 p. (2020; Zbl 1437.65166) Full Text: DOI OpenURL
Guo, Chang; Zhao, Weifeng; Lin, Ping On the collision matrix of the lattice Boltzmann method for anisotropic convection-diffusion equations. (English) Zbl 1433.76123 Appl. Math. Lett. 105, Article ID 106304, 7 p. (2020). MSC: 76M28 76R50 35Q35 PDF BibTeX XML Cite \textit{C. Guo} et al., Appl. Math. Lett. 105, Article ID 106304, 7 p. (2020; Zbl 1433.76123) Full Text: DOI OpenURL
Zhao, Yong; Wu, Yao; Chai, Zhenhua; Shi, Baochang A block triple-relaxation-time lattice Boltzmann model for nonlinear anisotropic convection-diffusion equations. (English) Zbl 1437.65222 Comput. Math. Appl. 79, No. 9, 2550-2573 (2020). MSC: 65N75 76M28 35Q20 76P05 76R50 35Q35 PDF BibTeX XML Cite \textit{Y. Zhao} et al., Comput. Math. Appl. 79, No. 9, 2550--2573 (2020; Zbl 1437.65222) Full Text: DOI arXiv OpenURL
Harbrecht, Helmut; Schmidlin, Marc Multilevel methods for uncertainty quantification of elliptic PDEs with random anisotropic diffusion. (English) Zbl 1431.35258 Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 1, 54-81 (2020). MSC: 35R60 65N30 60H35 PDF BibTeX XML Cite \textit{H. Harbrecht} and \textit{M. Schmidlin}, Stoch. Partial Differ. Equ., Anal. Comput. 8, No. 1, 54--81 (2020; Zbl 1431.35258) Full Text: DOI arXiv Link OpenURL
Ong, Thanh Hai; Hoang, Thi-Thao-Phuong Optimized Schwarz and finite element cell-centered method for heterogeneous anisotropic diffusion problems. (English) Zbl 1441.76117 Appl. Numer. Math. 151, 380-401 (2020). MSC: 76R50 65M55 76M10 PDF BibTeX XML Cite \textit{T. H. Ong} and \textit{T.-T.-P. Hoang}, Appl. Numer. Math. 151, 380--401 (2020; Zbl 1441.76117) Full Text: DOI OpenURL
Frid, Hermano; Li, Yachun Asymptotic decay of Besicovitch almost periodic entropy solutions to anisotropic degenerate parabolic-hyperbolic equations. (English) Zbl 1437.35432 J. Differ. Equations 268, No. 9, 4998-5034 (2020). Reviewer: Ahmed Youssfi (Fès) MSC: 35K59 35L65 35K15 35K65 35B10 35B40 35K10 PDF BibTeX XML Cite \textit{H. Frid} and \textit{Y. Li}, J. Differ. Equations 268, No. 9, 4998--5034 (2020; Zbl 1437.35432) Full Text: DOI arXiv OpenURL
Lin, Ji; Reutskiy, Sergiy A cubic B-spline semi-analytical algorithm for simulation of 3D steady-state convection-diffusion-reaction problems. (English) Zbl 1433.65018 Appl. Math. Comput. 371, Article ID 124944, 16 p. (2020). MSC: 65D07 65N35 35K57 PDF BibTeX XML Cite \textit{J. Lin} and \textit{S. Reutskiy}, Appl. Math. Comput. 371, Article ID 124944, 16 p. (2020; Zbl 1433.65018) Full Text: DOI OpenURL
Conte, Martina; Gerardo-Giorda, Luca; Groppi, Maria Glioma invasion and its interplay with nervous tissue and therapy: a multiscale model. (English) Zbl 1429.92052 J. Theor. Biol. 486, Article ID 110088, 17 p. (2020). MSC: 92C32 92C17 92C15 92C50 35Q92 PDF BibTeX XML Cite \textit{M. Conte} et al., J. Theor. Biol. 486, Article ID 110088, 17 p. (2020; Zbl 1429.92052) Full Text: DOI OpenURL
Kopteva, Natalia How accurate are finite elements on anisotropic triangulations in the maximum norm? (English) Zbl 1431.65203 J. Comput. Appl. Math. 364, Article ID 112316, 11 p. (2020). MSC: 65N15 65N30 35J05 PDF BibTeX XML Cite \textit{N. Kopteva}, J. Comput. Appl. Math. 364, Article ID 112316, 11 p. (2020; Zbl 1431.65203) Full Text: DOI arXiv OpenURL
Arkhincheev, V. E. The calculation of effective three-dimensional diffusion coefficient from survival probability asymptotic at anisotropic diffusion in medium with absorbing traps. (English) Zbl 07559013 Physica A 518, 343-348 (2019). MSC: 82-XX PDF BibTeX XML Cite \textit{V. E. Arkhincheev}, Physica A 518, 343--348 (2019; Zbl 07559013) Full Text: DOI OpenURL
Filippi, E.; Brestenský, J.; Šoltis, T. Effects of anisotropic diffusion on onset of rotating magnetoconvection in plane layer; stationary modes. (English) Zbl 1499.86017 Geophys. Astrophys. Fluid Dyn. 113, No. 1-2, 80-106 (2019). MSC: 86A25 PDF BibTeX XML Cite \textit{E. Filippi} et al., Geophys. Astrophys. Fluid Dyn. 113, No. 1--2, 80--106 (2019; Zbl 1499.86017) Full Text: DOI OpenURL
Xie, Hui; Zhai, Chuanlei; Xu, Xuejun; Peng, Jun; Yong, Heng A monotone finite volume scheme with fixed stencils for 3D heat conduction equation. (English) Zbl 1473.65148 Commun. Comput. Phys. 26, No. 4, 1118-1142 (2019). MSC: 65M08 35R05 76S05 PDF BibTeX XML Cite \textit{H. Xie} et al., Commun. Comput. Phys. 26, No. 4, 1118--1142 (2019; Zbl 1473.65148) Full Text: DOI OpenURL
Lin, Ji; Reutskiy, Sergiy; Chen, C. S.; Lu, Jun A novel method for solving time-dependent 2D advection-diffusion-reaction equations to model transfer in nonlinear anisotropic media. (English) Zbl 1473.65330 Commun. Comput. Phys. 26, No. 1, 233-264 (2019). MSC: 65N35 65N40 65Y20 PDF BibTeX XML Cite \textit{J. Lin} et al., Commun. Comput. Phys. 26, No. 1, 233--264 (2019; Zbl 1473.65330) Full Text: DOI OpenURL
Gao, Yanni; Wang, Shuai; Yuan, Guangwei; Hang, Xudeng A nonlinear finite volume element method satisfying maximum principle for anisotropic diffusion problems on arbitrary triangular meshes. (English) Zbl 1473.65262 Commun. Comput. Phys. 26, No. 1, 135-159 (2019). MSC: 65N08 65N12 65N15 PDF BibTeX XML Cite \textit{Y. Gao} et al., Commun. Comput. Phys. 26, No. 1, 135--159 (2019; Zbl 1473.65262) Full Text: DOI OpenURL
Gautam, K.; Narayana, P. A. L.; Hill, A. A. Thermo-convective carbon sequestration in horizontal porous layers. (English) Zbl 1471.76031 IMA J. Appl. Math. 84, No. 3, 650-668 (2019). MSC: 76E06 76E30 76S05 76V05 76R50 80A19 PDF BibTeX XML Cite \textit{K. Gautam} et al., IMA J. Appl. Math. 84, No. 3, 650--668 (2019; Zbl 1471.76031) Full Text: DOI OpenURL
Xu, Haohao; Gong, Yuchen; Xia, Xinyi; Li, Dong; Yan, Zhuangzhi; Shi, Jun; Zhang, Qi Gabor-based anisotropic diffusion with lattice Boltzmann method for medical ultrasound despeckling. (English) Zbl 1471.92194 Math. Biosci. Eng. 16, No. 6, 7546-7561 (2019). Reviewer: Fritz Keinert (Ames) MSC: 92C55 PDF BibTeX XML Cite \textit{H. Xu} et al., Math. Biosci. Eng. 16, No. 6, 7546--7561 (2019; Zbl 1471.92194) Full Text: DOI OpenURL
Barbu, Tudor; Moroşanu, Costică Compound PDE-based additive denoising solution combining an improved anisotropic diffusion model to a 2D Gaussian filter kernel. (English) Zbl 1462.35179 East Asian J. Appl. Math. 9, No. 1, 1-12 (2019). MSC: 35K59 35K20 94A08 35K60 PDF BibTeX XML Cite \textit{T. Barbu} and \textit{C. Moroşanu}, East Asian J. Appl. Math. 9, No. 1, 1--12 (2019; Zbl 1462.35179) Full Text: DOI OpenURL
Chamarthi, Amareshwara Sainadh; Nishikawa, Hiroaki; Komurasaki, Kimiya First order hyperbolic approach for anisotropic diffusion equation. (English) Zbl 1452.65298 J. Comput. Phys. 396, 243-263 (2019). MSC: 65N06 76W05 76M20 76R50 65Z05 PDF BibTeX XML Cite \textit{A. S. Chamarthi} et al., J. Comput. Phys. 396, 243--263 (2019; Zbl 1452.65298) Full Text: DOI arXiv OpenURL
Terekhov, Kirill M.; Vassilevski, Yuri V. Finite volume method for coupled subsurface flow problems. I: Darcy problem. (English) Zbl 1452.65307 J. Comput. Phys. 395, 298-306 (2019). MSC: 65N08 76R50 76M12 PDF BibTeX XML Cite \textit{K. M. Terekhov} and \textit{Y. V. Vassilevski}, J. Comput. Phys. 395, 298--306 (2019; Zbl 1452.65307) Full Text: DOI OpenURL
Chang, Lina; Sheng, Zhiqiang; Yuan, Guangwei An improvement of the two-point flux approximation scheme on polygonal meshes. (English) Zbl 1452.65305 J. Comput. Phys. 392, 187-204 (2019). MSC: 65N08 65N50 PDF BibTeX XML Cite \textit{L. Chang} et al., J. Comput. Phys. 392, 187--204 (2019; Zbl 1452.65305) Full Text: DOI OpenURL
Carpio, Jaime; Prieto, Juan Luis; Galán del Sastre, Pedro An anisotropic adaptive, Lagrange-Galerkin numerical method for spray combustion. (English) Zbl 1451.76065 J. Comput. Phys. 381, 246-274 (2019). MSC: 76M10 65M60 65M50 76V05 76R50 76T10 PDF BibTeX XML Cite \textit{J. Carpio} et al., J. Comput. Phys. 381, 246--274 (2019; Zbl 1451.76065) Full Text: DOI OpenURL
Barbu, Tudor Segmentation-based non-texture image compression framework using anisotropic diffusion models. (English) Zbl 1474.94008 Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 20, No. 2, 123-131 (2019). MSC: 94A08 68P30 PDF BibTeX XML Cite \textit{T. Barbu}, Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 20, No. 2, 123--131 (2019; Zbl 1474.94008) OpenURL
Cangiani, A.; Georgoulis, E. H.; Giani, Stefano; Metcalfe, S. \(hp\)-adaptive discontinuous Galerkin methods for non-stationary convection-diffusion problems. (English) Zbl 1443.65197 Comput. Math. Appl. 78, No. 9, 3090-3104 (2019). MSC: 65M60 PDF BibTeX XML Cite \textit{A. Cangiani} et al., Comput. Math. Appl. 78, No. 9, 3090--3104 (2019; Zbl 1443.65197) Full Text: DOI OpenURL