Furuichi, Shigeru; Yanagi, Kenjiro; Moradi, Hamid Reza Mathematical inequalities on some weighted means. (English) Zbl 07716094 J. Math. Inequal. 17, No. 2, 447-457 (2023). MSC: 26E60 26D07 26D15 26D99 PDF BibTeX XML Cite \textit{S. Furuichi} et al., J. Math. Inequal. 17, No. 2, 447--457 (2023; Zbl 07716094) Full Text: DOI arXiv
Rashid, Mohammad H. M.; Bani-Ahmad, Feras New versions of refinements and reverses of Young-type inequalities with the Kantorovich constant. (English) Zbl 07714812 Spec. Matrices 11, Article ID 2022-0180, 23 p. (2023). Reviewer: Minghua Lin (Xi’an) MSC: 15A45 15A60 47A60 39B62 PDF BibTeX XML Cite \textit{M. H. M. Rashid} and \textit{F. Bani-Ahmad}, Spec. Matrices 11, Article ID 2022--0180, 23 p. (2023; Zbl 07714812) Full Text: DOI
Seddik, Ameur Operator inequalities related to the arithmetic-geometric mean inequality and characterizations. (English) Zbl 07638084 Adv. Oper. Theory 8, No. 1, Paper No. 8, 43 p. (2023). MSC: 47A63 47A64 47B15 47-02 PDF BibTeX XML Cite \textit{A. Seddik}, Adv. Oper. Theory 8, No. 1, Paper No. 8, 43 p. (2023; Zbl 07638084) Full Text: DOI
Sababheh, Mohammad; Furuichi, Shigeru; Heydarbeygi, Zahra; Moradi, Hamid Reza On the arithmetic-geometric mean inequality. (English) Zbl 1480.26024 J. Math. Inequal. 15, No. 3, 1255-1266 (2021). MSC: 26E60 26A51 PDF BibTeX XML Cite \textit{M. Sababheh} et al., J. Math. Inequal. 15, No. 3, 1255--1266 (2021; Zbl 1480.26024) Full Text: DOI
Moslehian, Mohammad Sal; Sano, Takashi; Sugawara, Kota The arithmetic-geometric mean inequality of indefinite type. (English) Zbl 07378008 Arch. Math. 117, No. 3, 347-359 (2021). MSC: 47A64 15A45 PDF BibTeX XML Cite \textit{M. S. Moslehian} et al., Arch. Math. 117, No. 3, 347--359 (2021; Zbl 07378008) Full Text: DOI
Yang, Zhen-Hang; Tian, Jing-Feng; Zhu, Ya-Ru A sharp lower bound for the complete elliptic integrals of the first kind. (English) Zbl 1455.33014 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 8, 16 p. (2021). Reviewer: István Mező (Nanjing) MSC: 33E05 26E60 40A99 41A21 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 8, 16 p. (2021; Zbl 1455.33014) Full Text: DOI
Kashuri, Artion; Ali, Muhammad Aamir; Abbas, Mujahid Some new integral inequalities for \(\rho\)-convex functions. (English) Zbl 1458.26020 Mat. Bilt. 44, No. 2, 119-129 (2020). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26D07 26A33 26A51 26D15 PDF BibTeX XML Cite \textit{A. Kashuri} et al., Mat. Bilt. 44, No. 2, 119--129 (2020; Zbl 1458.26020) Full Text: DOI
Ighachane, Mohamed Amine; Akkouchi, Mohamed; Benabdi, El Hassan A new generalized refinement of the weighted arithmetic-geometric mean inequality. (English) Zbl 1453.26040 Math. Inequal. Appl. 23, No. 3, 1079-1085 (2020). MSC: 26E60 26D07 26D15 PDF BibTeX XML Cite \textit{M. A. Ighachane} et al., Math. Inequal. Appl. 23, No. 3, 1079--1085 (2020; Zbl 1453.26040) Full Text: DOI
Wang, Miao-Kun; Chu, Yu-Ming; Li, Yong-Min; Zhang, Wen Asymptotic expansion and bounds for complete elliptic integrals. (English) Zbl 1455.33013 Math. Inequal. Appl. 23, No. 3, 821-841 (2020). Reviewer: Thomas Ernst (Uppsala) MSC: 33E05 26E60 PDF BibTeX XML Cite \textit{M.-K. Wang} et al., Math. Inequal. Appl. 23, No. 3, 821--841 (2020; Zbl 1455.33013) Full Text: DOI
Yang, Zhen-Hang; Qian, Wei-Mao; Zhang, Wen; Chu, Yu-Ming Notes on the complete elliptic integral of the first kind. (English) Zbl 1440.33020 Math. Inequal. Appl. 23, No. 1, 77-93 (2020). Reviewer: Cristian Lăzureanu (Timisoara) MSC: 33E05 26E60 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., Math. Inequal. Appl. 23, No. 1, 77--93 (2020; Zbl 1440.33020) Full Text: DOI
Qian, Wei-Mao; He, Zai-Yin; Chu, Yu-Ming Approximation for the complete elliptic integral of the first kind. (English) Zbl 1434.33023 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 57, 12 p. (2020). MSC: 33E05 26E60 PDF BibTeX XML Cite \textit{W.-M. Qian} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 57, 12 p. (2020; Zbl 1434.33023) Full Text: DOI
Yang, Chaojun; Gao, Yaxin; Lu, Fangyan Some refinements of Young type inequality for positive linear map. (English) Zbl 1486.47031 Math. Slovaca 69, No. 4, 919-930 (2019). MSC: 47A63 PDF BibTeX XML Cite \textit{C. Yang} et al., Math. Slovaca 69, No. 4, 919--930 (2019; Zbl 1486.47031) Full Text: DOI
Padmanabhan, Ranganathan; Shukla, Alok Means compatible with semigroup laws. (English) Zbl 1435.20082 Quasigroups Relat. Syst. 27, No. 2, 317-324 (2019). MSC: 20N05 26E60 PDF BibTeX XML Cite \textit{R. Padmanabhan} and \textit{A. Shukla}, Quasigroups Relat. Syst. 27, No. 2, 317--324 (2019; Zbl 1435.20082) Full Text: arXiv Link
Gao, Peng On a result of Cartwright and Field. (English) Zbl 1498.26085 J. Inequal. Appl. 2018, Paper No. 349, 13 p. (2018). MSC: 26E60 26D20 PDF BibTeX XML Cite \textit{P. Gao}, J. Inequal. Appl. 2018, Paper No. 349, 13 p. (2018; Zbl 1498.26085) Full Text: DOI arXiv
Huang, Li-Guo; Yin, Li; Wang, Yong-Li; Lin, Xiu-Li Some Wilker and Cusa type inequalities for generalized trigonometric and hyperbolic functions. (English) Zbl 1497.26016 J. Inequal. Appl. 2018, Paper No. 52, 8 p. (2018). MSC: 26D05 33B10 26D15 26D07 PDF BibTeX XML Cite \textit{L.-G. Huang} et al., J. Inequal. Appl. 2018, Paper No. 52, 8 p. (2018; Zbl 1497.26016) Full Text: DOI
Yang, Zhen-Hang; Qian, Wei-Mao; Chu, Yu-Ming Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. (English) Zbl 1403.33012 Math. Inequal. Appl. 21, No. 4, 1185-1199 (2018). MSC: 33E05 26E60 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., Math. Inequal. Appl. 21, No. 4, 1185--1199 (2018; Zbl 1403.33012) Full Text: DOI
Bertot, Yves; Rideau, Laurence; Théry, Laurent Distant decimals of \(\pi \): formal proofs of some algorithms computing them and guarantees of exact computation. (English) Zbl 1448.68455 J. Autom. Reasoning 61, No. 1-4, 33-71 (2018). MSC: 68V15 11Y60 65D99 PDF BibTeX XML Cite \textit{Y. Bertot} et al., J. Autom. Reasoning 61, No. 1--4, 33--71 (2018; Zbl 1448.68455) Full Text: DOI
Toader, Gheorghe; Costin, Iulia Means in mathematical analysis. Bivariate means. (English) Zbl 1384.26005 Mathematical Analysis and its Applications. Amsterdam: Elsevier/Academic Press (ISBN 978-0-12-811080-5/pbk; 978-0-12-811081-2/ebook). xx, 204 p. (2018). Reviewer: József Sándor (Cluj-Napoca) MSC: 26-02 26E30 35-02 58-02 00A69 PDF BibTeX XML Cite \textit{G. Toader} and \textit{I. Costin}, Means in mathematical analysis. Bivariate means. Amsterdam: Elsevier/Academic Press (2018; Zbl 1384.26005) Full Text: Link
Burić, Tomislav; Elezović, Neven Computation and analysis of the asymptotic expansions of the compound means. (English) Zbl 1411.26023 Appl. Math. Comput. 303, 48-54 (2017). MSC: 26E60 41A60 26D15 PDF BibTeX XML Cite \textit{T. Burić} and \textit{N. Elezović}, Appl. Math. Comput. 303, 48--54 (2017; Zbl 1411.26023) Full Text: DOI
Adiyasuren, Vandanjav; Batbold, Tserendorj Extension of the refined Gibbs’ inequality. (English) Zbl 1384.26047 Probl. Anal. Issues Anal. 6(24), No. 1, 3-10 (2017). MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{V. Adiyasuren} and \textit{T. Batbold}, Probl. Anal. Issues Anal. 6(24), No. 1, 3--10 (2017; Zbl 1384.26047) Full Text: DOI MNR
Qi, Feng Bounding the difference and ratio between the weighted arithmetic and geometric means. (English) Zbl 1378.26028 Int. J. Anal. Appl. 13, No. 2, 132-135 (2017). MSC: 26E60 26D07 PDF BibTeX XML Cite \textit{F. Qi}, Int. J. Anal. Appl. 13, No. 2, 132--135 (2017; Zbl 1378.26028) Full Text: Link
Zhao, Xianhe; Li, Le; Zuo, Hongliang Further improved Young inequalities for operators and matrices. (English) Zbl 1489.47032 J. Math. Inequal. 11, No. 4, 1023-1029 (2017). MSC: 47A63 15A45 PDF BibTeX XML Cite \textit{X. Zhao} et al., J. Math. Inequal. 11, No. 4, 1023--1029 (2017; Zbl 1489.47032) Full Text: DOI
Jain, K. C.; Chhabra, Praphull New information inequalities in terms of relative arithmetic-geometric divergence and Renyi’s entropy. (English) Zbl 1374.94713 Palest. J. Math. 6, Spec. Iss. II, 314-319 (2017). MSC: 94A17 26D15 PDF BibTeX XML Cite \textit{K. C. Jain} and \textit{P. Chhabra}, Palest. J. Math. 6, 314--319 (2017; Zbl 1374.94713) Full Text: Link
Bakherad, Mojtaba; Lashkaripour, Rahmatollah; Hajmohamadi, Monire Extensions of interpolation between the arithmetic-geometric mean inequality for matrices. (English) Zbl 1370.47018 J. Inequal. Appl. 2017, Paper No. 209, 10 p. (2017). MSC: 47A64 15A60 PDF BibTeX XML Cite \textit{M. Bakherad} et al., J. Inequal. Appl. 2017, Paper No. 209, 10 p. (2017; Zbl 1370.47018) Full Text: DOI arXiv
Hwang, Jinmi; Kim, Sejong Lie-Trotter means of positive definite operators. (English) Zbl 1492.47027 Linear Algebra Appl. 531, 268-280 (2017). MSC: 47A64 PDF BibTeX XML Cite \textit{J. Hwang} and \textit{S. Kim}, Linear Algebra Appl. 531, 268--280 (2017; Zbl 1492.47027) Full Text: DOI
Ding, Qing; Zhao, Tiehong Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean. (English) Zbl 1360.26025 J. Inequal. Appl. 2017, Paper No. 102, 12 p. (2017). MSC: 26E60 PDF BibTeX XML Cite \textit{Q. Ding} and \textit{T. Zhao}, J. Inequal. Appl. 2017, Paper No. 102, 12 p. (2017; Zbl 1360.26025) Full Text: DOI
Ando, Tsuyoshi Square inequality and strong order relation. (English) Zbl 1353.47028 Adv. Oper. Theory 1, No. 1, 1-7 (2016). MSC: 47A63 47A64 PDF BibTeX XML Cite \textit{T. Ando}, Adv. Oper. Theory 1, No. 1, 1--7 (2016; Zbl 1353.47028) Full Text: DOI
Zhao, Xianhe; Li, Le; Zuo, Hongliang Operator iteration on the Young inequality. (English) Zbl 1353.47014 J. Inequal. Appl. 2016, Paper No. 302, 8 p. (2016). MSC: 47A30 47A63 PDF BibTeX XML Cite \textit{X. Zhao} et al., J. Inequal. Appl. 2016, Paper No. 302, 8 p. (2016; Zbl 1353.47014) Full Text: DOI
Burić, Tomislav Asymptotic analysis of the iterative power means. (English) Zbl 1329.26052 J. Math. Anal. Appl. 433, No. 1, 701-705 (2016). MSC: 26E60 40A25 PDF BibTeX XML Cite \textit{T. Burić}, J. Math. Anal. Appl. 433, No. 1, 701--705 (2016; Zbl 1329.26052) Full Text: DOI
Burić, Tomislav Asymptotic behavior of the iterative Pythagorean means. (English) Zbl 1332.26060 Rad Hrvat. Akad. Znan. Umjet. 523, Mat. Znan. 19, 117-127 (2015). MSC: 26E60 41A60 PDF BibTeX XML Cite \textit{T. Burić}, Rad Hrvat. Akad. Znan. Umjet., Mat. Znan. 523(19), 117--127 (2015; Zbl 1332.26060)
Burić, Tomislav; Elezović, Neven Asymptotic expansion of the arithmetic-geometric mean and related inequalities. (English) Zbl 1333.26034 J. Math. Inequal. 9, No. 4, 1181-1190 (2015). Reviewer: V. Lokesha (Bangalore) MSC: 26E60 41A60 PDF BibTeX XML Cite \textit{T. Burić} and \textit{N. Elezović}, J. Math. Inequal. 9, No. 4, 1181--1190 (2015; Zbl 1333.26034) Full Text: DOI
Leng, Tuo; Qin, Xiaolin The sharp upper bound for the ratio between the arithmetic and the geometric mean. (English) Zbl 1320.26032 Math. Inequal. Appl. 18, No. 3, 975-980 (2015). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{T. Leng} and \textit{X. Qin}, Math. Inequal. Appl. 18, No. 3, 975--980 (2015; Zbl 1320.26032) Full Text: DOI
Gao, Peng On a discrete weighted mixed arithmetic-geometric mean inequality. (English) Zbl 1320.26030 Math. Inequal. Appl. 18, No. 3, 941-947 (2015). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{P. Gao}, Math. Inequal. Appl. 18, No. 3, 941--947 (2015; Zbl 1320.26030) Full Text: DOI
Zou, Limin; Jiang, Youyi Improved arithmetic-geometric mean inequality and its application. (English) Zbl 1327.47011 J. Math. Inequal. 9, No. 1, 107-111 (2015). Reviewer: Ali Morassaei (Zanjan) MSC: 47A63 26D07 26D15 PDF BibTeX XML Cite \textit{L. Zou} and \textit{Y. Jiang}, J. Math. Inequal. 9, No. 1, 107--111 (2015; Zbl 1327.47011) Full Text: DOI Link
Zuo, Hongliang; Cheng, Nan Improved reverse arithmetic-geometric means inequalities for positive operators on Hilbert space. (English) Zbl 1322.47020 Math. Inequal. Appl. 18, No. 1, 51-60 (2015). Reviewer: Mohammad Sal Moslehian (Karlstad) MSC: 47A30 47A63 PDF BibTeX XML Cite \textit{H. Zuo} and \textit{N. Cheng}, Math. Inequal. Appl. 18, No. 1, 51--60 (2015; Zbl 1322.47020) Full Text: DOI
Dehghani, Mehdi; Modarres Mosadegh, S. M. S. Operator arithmetic-harmonic mean inequality on Krein spaces. (English) Zbl 1328.47018 J. Math. Ext. 8, No. 1, 59-68 (2014). Reviewer: Takeaki Yamazaki (Kawagoe) MSC: 47A64 46C20 47A63 PDF BibTeX XML Cite \textit{M. Dehghani} and \textit{S. M. S. Modarres Mosadegh}, J. Math. Ext. 8, No. 1, 59--68 (2014; Zbl 1328.47018)
Yang, Zhen-Hang; Song, Ying-Qing; Chu, Yu-Ming Sharp bounds for the arithmetic-geometric mean. (English) Zbl 1308.26058 J. Inequal. Appl. 2014, Paper No. 192, 13 p. (2014). MSC: 26E60 26D07 33E05 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., J. Inequal. Appl. 2014, Paper No. 192, 13 p. (2014; Zbl 1308.26058) Full Text: DOI
Ben-Ari, Iddo; Conrad, Keith Maclaurin’s inequality and a generalized Bernoulli inequality. (English) Zbl 1298.26088 Math. Mag. 87, No. 1, 14-24 (2014). MSC: 26D20 26E60 PDF BibTeX XML Cite \textit{I. Ben-Ari} and \textit{K. Conrad}, Math. Mag. 87, No. 1, 14--24 (2014; Zbl 1298.26088) Full Text: DOI
Qi, Feng; Zhang, Xiao-Jing; Li, Wen-Hui Lévy-Khintchine representation of the geometric mean of many positive numbers and applications. (English) Zbl 1296.26114 Math. Inequal. Appl. 17, No. 2, 719-729 (2014). MSC: 26E60 26A48 30E20 44A10 44A20 PDF BibTeX XML Cite \textit{F. Qi} et al., Math. Inequal. Appl. 17, No. 2, 719--729 (2014; Zbl 1296.26114) Full Text: DOI arXiv
Zuo, Hongliang; Fujii, Masatoshi; Fujii, Jun Ichi; Seo, Yuki Upper bound for spectra of Jensen operator and its application to reverse arithmetic-geometric means. (English) Zbl 1321.47019 Math. Inequal. Appl. 17, No. 2, 641-648 (2014). Reviewer: Mohammad Sal Moslehian (Karlstad) MSC: 47A30 47A63 PDF BibTeX XML Cite \textit{H. Zuo} et al., Math. Inequal. Appl. 17, No. 2, 641--648 (2014; Zbl 1321.47019) Full Text: DOI Link
Qi, Feng; Zhang, Xiao Jing; Li, Wen Hui An integral representation for the weighted geometric mean and its applications. (English) Zbl 1290.26041 Acta Math. Sin., Engl. Ser. 30, No. 1, 61-68 (2014). MSC: 26E60 30E20 44A20 PDF BibTeX XML Cite \textit{F. Qi} et al., Acta Math. Sin., Engl. Ser. 30, No. 1, 61--68 (2014; Zbl 1290.26041) Full Text: DOI
Shen, Xu-Hui; Gong, Wei-Ming; Chu, Yu-Ming Optimal Lehmer mean bounds for the combinations of identric and logarithmic means. (English) Zbl 1298.26097 Chin. J. Math. (New York) 2013, Article ID 852516, 7 p. (2013). MSC: 26E60 PDF BibTeX XML Cite \textit{X.-H. Shen} et al., Chin. J. Math. (New York) 2013, Article ID 852516, 7 p. (2013; Zbl 1298.26097) Full Text: DOI
González Llorente, José Extraordinary architectures, heroes, billiards and problems of maxima and minima. (Spanish) Zbl 1301.51025 Gac. R. Soc. Mat. Esp. 16, No. 2, 241-269 (2013). Reviewer: Robert W. van der Waall (Huizen) MSC: 51M16 00A66 01A20 52A40 01A85 01A60 51-03 PDF BibTeX XML Cite \textit{J. González Llorente}, Gac. R. Soc. Mat. Esp. 16, No. 2, 241--269 (2013; Zbl 1301.51025)
Mahlburg, Karl; Smyth, Clifford Symmetric polynomials and symmetric mean inequalities. (English) Zbl 1295.05262 Electron. J. Comb. 20, No. 3, Research Paper P34, 14 p. (2013). MSC: 05E05 26E60 60C05 PDF BibTeX XML Cite \textit{K. Mahlburg} and \textit{C. Smyth}, Electron. J. Comb. 20, No. 3, Research Paper P34, 14 p. (2013; Zbl 1295.05262) Full Text: Link
Hassani, Mehdi On the arithmetic-geometric mean inequality. (English) Zbl 1290.26040 Tamkang J. Math. 44, No. 4, 453-456 (2013). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{M. Hassani}, Tamkang J. Math. 44, No. 4, 453--456 (2013; Zbl 1290.26040) Full Text: DOI Link
Tian, Chang-An; Shi, Guanghua; Zuo, Fei Comparison of differences between power means. (English) Zbl 1463.47055 Int. J. Math. Anal., Ruse 7, No. 9-12, 511-515 (2013). MSC: 47A64 PDF BibTeX XML Cite \textit{C.-A. Tian} et al., Int. J. Math. Anal., Ruse 7, No. 9--12, 511--515 (2013; Zbl 1463.47055) Full Text: DOI Link Link
Si, Lin; Zhao, Suyun Mixed-mean inequality for submatrix. (English) Zbl 1324.26049 Math. Slovaca 63, No. 5, 1001-1006 (2013). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{L. Si} and \textit{S. Zhao}, Math. Slovaca 63, No. 5, 1001--1006 (2013; Zbl 1324.26049) Full Text: DOI arXiv
Chu, Yu-Ming; Wang, Miao-Kun; Qiu, Ye-Fang; Ma, Xiao-Yan Sharp two parameter bounds for the logarithmic mean and the arithmetic-geometric mean of Gauss. (English) Zbl 1280.26050 J. Math. Inequal. 7, No. 3, 349-355 (2013). MSC: 26E60 26E20 PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., J. Math. Inequal. 7, No. 3, 349--355 (2013; Zbl 1280.26050) Full Text: DOI Link
Besenyei, Ádám; Petz, Dénes Successive iterations and logarithmic means. (English) Zbl 1266.15029 Oper. Matrices 7, No. 1, 205-218 (2013). MSC: 15A42 47A64 PDF BibTeX XML Cite \textit{Á. Besenyei} and \textit{D. Petz}, Oper. Matrices 7, No. 1, 205--218 (2013; Zbl 1266.15029) Full Text: DOI Link
Nakamura, Noboru Order relations among some interpolating families of means. (English) Zbl 1292.26078 Toyama Math. J. 35, 35-48 (2012). MSC: 26E60 26D07 47A63 47A64 PDF BibTeX XML Cite \textit{N. Nakamura}, Toyama Math. J. 35, 35--48 (2012; Zbl 1292.26078)
Zhao, Chang-Jian; Cheung, Wing-Sum; Bencze, Mihály Some sharp integral inequalities involving partial derivatives. (English) Zbl 1277.26053 J. Inequal. Appl. 2012, Paper No. 109, 8 p. (2012). MSC: 26D15 PDF BibTeX XML Cite \textit{C.-J. Zhao} et al., J. Inequal. Appl. 2012, Paper No. 109, 8 p. (2012; Zbl 1277.26053) Full Text: DOI
Seo, Yuki The arithmetic-geometric mean inequality in an external formula. (English) Zbl 1284.47017 Sci. Math. Jpn. 75, No. 3, 299-306 (2012). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 47A63 47A64 PDF BibTeX XML Cite \textit{Y. Seo}, Sci. Math. Jpn. 75, No. 3, 299--306 (2012; Zbl 1284.47017) Full Text: Link
Spandaw, Jeroen; van Straten, Duco Hyperelliptic integrals and generalized arithmetic-geometric mean. (English) Zbl 1260.14053 Ramanujan J. 28, No. 1, 61-78 (2012). Reviewer: G. K. Sankaran (Bath) MSC: 14K25 11B83 11F27 14H40 PDF BibTeX XML Cite \textit{J. Spandaw} and \textit{D. van Straten}, Ramanujan J. 28, No. 1, 61--78 (2012; Zbl 1260.14053) Full Text: DOI
Wang, Miao-Kun; Chu, Yu-Ming; Wang, Gen-Di A sharp double inequality between the Lehmer and arithmetic-geometric means. (English) Zbl 1272.26031 Pac. J. Appl. Math. 3, No. 4, 281-286 (2011). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{M.-K. Wang} et al., Pac. J. Appl. Math. 3, No. 4, 281--286 (2011; Zbl 1272.26031)
Fu, Li-Li; Xi, Bo-Yan; Srivastava, H. M. Schur-convexity of the generalized Heronian means involving two positive numbers. (English) Zbl 1247.05259 Taiwanese J. Math. 15, No. 6, 2721-2731 (2011). MSC: 05E05 26B25 PDF BibTeX XML Cite \textit{L.-L. Fu} et al., Taiwanese J. Math. 15, No. 6, 2721--2731 (2011; Zbl 1247.05259) Full Text: DOI Link
Aldaz, J. M. Comparison of differences between arithmetic and geometric means. (English) Zbl 1244.26035 Tamkang J. Math. 42, No. 4, 453-462 (2011). MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{J. M. Aldaz}, Tamkang J. Math. 42, No. 4, 453--462 (2011; Zbl 1244.26035) Full Text: DOI arXiv Link
Le, Tuan On the lower bounds of a symmetric inequality involving roots. (English) Zbl 1238.26022 Math. Sci. 36, No. 1, 10-18 (2011). MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{T. Le}, Math. Sci. 36, No. 1, 10--18 (2011; Zbl 1238.26022)
Bayat, M.; Teimoori, H. Arithmetic-geometric mean determinantal identity. (English) Zbl 1232.15005 Linear Algebra Appl. 435, No. 11, 2936-2941 (2011). Reviewer: Nicholas Karampetakis (Thessaloniki) MSC: 15A15 15A24 11C20 26E60 15B05 PDF BibTeX XML Cite \textit{M. Bayat} and \textit{H. Teimoori}, Linear Algebra Appl. 435, No. 11, 2936--2941 (2011; Zbl 1232.15005) Full Text: DOI
Fechner, W. On some functional inequalities related to the logarithmic mean. (English) Zbl 1224.39040 Acta Math. Hung. 128, No. 1-2, 36-45 (2010). Reviewer: Mihály Bessenyei (Debrecen) MSC: 39B62 26D07 26E60 PDF BibTeX XML Cite \textit{W. Fechner}, Acta Math. Hung. 128, No. 1--2, 36--45 (2010; Zbl 1224.39040) Full Text: DOI
Solak, Süleyman; Aytekin, Mine A note on the Euclidean norms of matrices with arithmetic-geometric-harmonic means. (English) Zbl 1208.15020 Appl. Math. Sci., Ruse 4, No. 29-32, 1553-1561 (2010). Reviewer: Tin Yau Tam (Auburn) MSC: 15A60 15A45 26E60 15A09 PDF BibTeX XML Cite \textit{S. Solak} and \textit{M. Aytekin}, Appl. Math. Sci., Ruse 4, No. 29--32, 1553--1561 (2010; Zbl 1208.15020) Full Text: Link
Izumino, Saichi; Nakamura, Noboru Weighted geometric means of positive operators. (English) Zbl 1214.47016 Kyungpook Math. J. 50, No. 2, 213-228 (2010). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 47A64 47A63 PDF BibTeX XML Cite \textit{S. Izumino} and \textit{N. Nakamura}, Kyungpook Math. J. 50, No. 2, 213--228 (2010; Zbl 1214.47016) Full Text: DOI
Barnard, Roger W.; Richards, Kendall C.; Tiedeman, Hilari C. A survey of some bounds for Gauss’ hypergeometric function and related bivariate means. (English) Zbl 1186.33006 J. Math. Inequal. 4, No. 1, Article ID 06, 45-52 (2010). MSC: 33C05 26E60 33-02 PDF BibTeX XML Cite \textit{R. W. Barnard} et al., J. Math. Inequal. 4, No. 1, Article ID 06, 45--52 (2010; Zbl 1186.33006) Full Text: Link
Qi, Feng; Sofo, Anthony An alternative and united proof of a double inequality for bounding the arithmetic-geometric mean. (English) Zbl 1299.26068 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 71, No. 3, 69-76 (2009). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{F. Qi} and \textit{A. Sofo}, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 71, No. 3, 69--76 (2009; Zbl 1299.26068) Full Text: arXiv
Wen, Jiajin; Cheng, Sui Sun; Gao, Chaobang Optimal sublinear inequalities involving geometric and power means. (English) Zbl 1212.26079 Math. Bohem. 134, No. 2, 133-149 (2009). MSC: 26E60 26D15 PDF BibTeX XML Cite \textit{J. Wen} et al., Math. Bohem. 134, No. 2, 133--149 (2009; Zbl 1212.26079) Full Text: EuDML
Raïssouli, Mustapha; Leazizi, Fatima; Chergui, Mohamed Arithmetic-geometric-harmonic mean of three positive operators. (English) Zbl 1185.65092 JIPAM, J. Inequal. Pure Appl. Math. 10, No. 4, Paper No. 117, 11 p. (2009). Reviewer: Constantin Popa (Constanţa) MSC: 65J10 47A64 PDF BibTeX XML Cite \textit{M. Raïssouli} et al., JIPAM, J. Inequal. Pure Appl. Math. 10, No. 4, Paper No. 117, 11 p. (2009; Zbl 1185.65092) Full Text: EuDML EMIS
Nakamura, Noboru Geometric means of positive operators. (English) Zbl 1182.47021 Kyungpook Math. J. 49, No. 1, 167-181 (2009). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 47A64 47A63 PDF BibTeX XML Cite \textit{N. Nakamura}, Kyungpook Math. J. 49, No. 1, 167--181 (2009; Zbl 1182.47021) Full Text: DOI
Wu, Shanhe On extension and refinement of Wilker’s inequality. (English) Zbl 1172.26008 Rocky Mt. J. Math. 39, No. 2, 683-687 (2009). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26D15 PDF BibTeX XML Cite \textit{S. Wu}, Rocky Mt. J. Math. 39, No. 2, 683--687 (2009; Zbl 1172.26008) Full Text: DOI
Wu, Shanhe Note on a conjecture of R. A. Satnoianu. (English) Zbl 1177.26054 Math. Inequal. Appl. 12, No. 1, 147-151 (2009). MSC: 26D15 26D20 52A40 PDF BibTeX XML Cite \textit{S. Wu}, Math. Inequal. Appl. 12, No. 1, 147--151 (2009; Zbl 1177.26054) Full Text: DOI
Izumino, Saichi; Nakamura, Noboru Geometric means of positive operators. II. (English) Zbl 1182.47020 Sci. Math. Jpn. 69, No. 1, 35-44 (2009). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 47A64 47A63 PDF BibTeX XML Cite \textit{S. Izumino} and \textit{N. Nakamura}, Sci. Math. Jpn. 69, No. 1, 35--44 (2009; Zbl 1182.47020) Full Text: Link
Jarvis, Frazer Higher genus arithmetic-geometric means. (English) Zbl 1229.14035 Ramanujan J. 17, No. 1, 1-17 (2008). Reviewer: Herbert Lange (Erlangen) MSC: 14K25 11B83 11F27 14H42 PDF BibTeX XML Cite \textit{F. Jarvis}, Ramanujan J. 17, No. 1, 1--17 (2008; Zbl 1229.14035) Full Text: DOI
Rassias, Th. M.; Kim, Y. H. On certain mean value theorems. (English) Zbl 1154.26028 Math. Inequal. Appl. 11, No. 3, 431-441 (2008). Reviewer: Peter S. Bullen (Vancouver) MSC: 26E60 34A34 39B22 PDF BibTeX XML Cite \textit{Th. M. Rassias} and \textit{Y. H. Kim}, Math. Inequal. Appl. 11, No. 3, 431--441 (2008; Zbl 1154.26028) Full Text: DOI
Mićić, Jadranka; Pečarić, Josip; Šimić, Vidosava Inequalities involving the arithmetic and geometric operator means. (English) Zbl 1154.47013 Math. Inequal. Appl. 11, No. 3, 415-430 (2008). Reviewer: Takeaki Yamazaki (Yokohama) MSC: 47A63 47A64 PDF BibTeX XML Cite \textit{J. Mićić} et al., Math. Inequal. Appl. 11, No. 3, 415--430 (2008; Zbl 1154.47013) Full Text: DOI
Vernescu, Andrei About the use of a result of Professor Alexandru Lupaş to obtain some properties in the theory of the number \(e\). (English) Zbl 1164.26332 Gen. Math. 15, No. 1, 75-80 (2007). MSC: 26D07 26D15 PDF BibTeX XML Cite \textit{A. Vernescu}, Gen. Math. 15, No. 1, 75--80 (2007; Zbl 1164.26332) Full Text: EuDML
Walden, Byron L.; Ward, Lesley A. A harmonic measure interpretation of the arithmetic-geometric mean. (English) Zbl 1156.31002 Am. Math. Mon. 114, No. 7, 610-622 (2007). Reviewer: Dimitrios Betsakos (Thessaloniki) MSC: 31A15 30C85 30C20 33C45 26E60 PDF BibTeX XML Cite \textit{B. L. Walden} and \textit{L. A. Ward}, Am. Math. Mon. 114, No. 7, 610--622 (2007; Zbl 1156.31002) Full Text: DOI
Barnard, Roger W.; Richards, Kendall C. On inequalities for hypergeometric analogues of the arithmetic-geometric mean. (English) Zbl 1197.26024 JIPAM, J. Inequal. Pure Appl. Math. 8, No. 3, Paper No. 65, 5 p. (2007). MSC: 26D15 26E60 33C05 PDF BibTeX XML Cite \textit{R. W. Barnard} and \textit{K. C. Richards}, JIPAM, J. Inequal. Pure Appl. Math. 8, No. 3, Paper No. 65, 5 p. (2007; Zbl 1197.26024) Full Text: EuDML EMIS
Kim, Sejong; Lim, Yongdo A converse inequality of higher order weighted arithmetic and geometric means of positive definite operators. (English) Zbl 1129.47017 Linear Algebra Appl. 426, No. 2-3, 490-496 (2007). Reviewer: Takeaki Yamazaki (Yokohama) MSC: 47A63 47A64 47A30 PDF BibTeX XML Cite \textit{S. Kim} and \textit{Y. Lim}, Linear Algebra Appl. 426, No. 2--3, 490--496 (2007; Zbl 1129.47017) Full Text: DOI
Yamazaki, Takeaki An extension of Kantorovich inequality to \(n\)-operators via the geometric mean by Ando–Li–Mathias. (English) Zbl 1126.47016 Linear Algebra Appl. 416, No. 2-3, 688-695 (2006). Reviewer: Khristo N. Boyadzhiev (Ada) MSC: 47A63 47A64 47A30 PDF BibTeX XML Cite \textit{T. Yamazaki}, Linear Algebra Appl. 416, No. 2--3, 688--695 (2006; Zbl 1126.47016) Full Text: DOI
Krause, Ulrich Arithmetic-geometric discrete systems. (English) Zbl 1093.39005 J. Difference Equ. Appl. 12, No. 2, 229-231 (2006). Reviewer: Wei Nian Li (Binzhou) MSC: 39A11 26E60 39A10 PDF BibTeX XML Cite \textit{U. Krause}, J. Difference Equ. Appl. 12, No. 2, 229--231 (2006; Zbl 1093.39005) Full Text: DOI
Bencze, Mihály About some new means. (English) Zbl 1212.26039 Creat. Math. Inform. 14, 7-10 (2005). MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{M. Bencze}, Creat. Math. Inform. 14, 7--10 (2005; Zbl 1212.26039)
Wu, Shanhe Some results on extending and sharpening the Weierstrass product inequalities. (English) Zbl 1068.26024 J. Math. Anal. Appl. 308, No. 2, 689-702 (2005). MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{S. Wu}, J. Math. Anal. Appl. 308, No. 2, 689--702 (2005; Zbl 1068.26024) Full Text: DOI
Wu, Shanhe; Shi, Huannan Generalizations of a class of inequalities for products. (English) Zbl 1063.26022 JIPAM, J. Inequal. Pure Appl. Math. 5, No. 3, Paper No. 77, 7 p. (2004). Reviewer: Peter S. Bullen (Vancouver) MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{S. Wu} and \textit{H. Shi}, JIPAM, J. Inequal. Pure Appl. Math. 5, No. 3, Paper No. 77, 7 p. (2004; Zbl 1063.26022) Full Text: EuDML
Roy, Dilip Characterization of a bivariate Weibull distribution based on arithmetic, geometric and harmonic means of failure rates. (English) Zbl 1065.62100 J. Appl. Stat. Sci. 12, No. 3, 191-199 (2003). MSC: 62H05 62N05 62E10 PDF BibTeX XML Cite \textit{D. Roy}, J. Appl. Stat. Sci. 12, No. 3, 191--199 (2003; Zbl 1065.62100)
Rooin, Jamal AGM inequality with binomial expansion. (English) Zbl 1055.26020 Elem. Math. 58, No. 3, 115-117 (2003). Reviewer: Peter S. Bullen (Vancouver) MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{J. Rooin}, Elem. Math. 58, No. 3, 115--117 (2003; Zbl 1055.26020) Full Text: DOI
Čižmešija, Aleksandra; Pečarić, Josip; Persson, Lars-Erik On strengthened weighted Carleman’s inequality. (English) Zbl 1049.26008 Bull. Aust. Math. Soc. 68, No. 3, 481-490 (2003). Reviewer: Bicheng Yang (Guangdong) MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{A. Čižmešija} et al., Bull. Aust. Math. Soc. 68, No. 3, 481--490 (2003; Zbl 1049.26008) Full Text: DOI
Ma, Tongyi; Zhu, Fuguo Refinement of the mean inequality resulting from a mixed difference function of power means. (Chinese. English summary) Zbl 1055.26018 J. Northwest Norm. Univ., Nat. Sci. 39, No. 3, 25-30 (2003). MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{T. Ma} and \textit{F. Zhu}, J. Northwest Norm. Univ., Nat. Sci. 39, No. 3, 25--30 (2003; Zbl 1055.26018)
Ma, Tongyi; Yang, Chengfu A generalization of Holland’s conjecture. (Chinese. English summary) Zbl 1043.26014 J. Tianjin Norm. Univ., Nat. Sci. Ed. 23, No. 1, 34-36, 39 (2003). Reviewer: Bicheng Yang (Guangdong) MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{T. Ma} and \textit{C. Yang}, J. Tianjin Norm. Univ., Nat. Sci. Ed. 23, No. 1, 34--36, 39 (2003; Zbl 1043.26014)
Hao, Zhichuan; Ge, Jianjun; Jing, Yaping; Wang, Xiaoqiong The application of Euler’s inequality in the information and safety. (English) Zbl 1095.26510 J. Guizhou Norm. Univ., Nat. Sci. 21, No. 1, 28-31 (2003). MSC: 26D15 51M16 26E60 94A60 PDF BibTeX XML Cite \textit{Z. Hao} et al., J. Guizhou Norm. Univ., Nat. Sci. 21, No. 1, 28--31 (2003; Zbl 1095.26510)
El Biari, Aouatef; Ellaia, Rachid; Raïssouli, Mustapha Stability of geometric and harmonic functional means. (English) Zbl 1092.49026 J. Convex Anal. 10, No. 1, 199-210 (2003). MSC: 49N15 47A63 52A41 90C25 PDF BibTeX XML Cite \textit{A. El Biari} et al., J. Convex Anal. 10, No. 1, 199--210 (2003; Zbl 1092.49026) Full Text: Link
Knockaert, Luc Best upper bounds based on the arithmetic-geometric mean inequality. (English) Zbl 1032.26017 Arch. Inequal. Appl. 1, No. 1, 85-90 (2003). Reviewer: Peter S.Bullen (Vancouver) MSC: 26D15 15A42 26E60 60E15 PDF BibTeX XML Cite \textit{L. Knockaert}, Arch. Inequal. Appl. 1, No. 1, 85--90 (2003; Zbl 1032.26017)
Yu, Li-We; Tseng, Kuei-Lin; Wang, Chung-Shin Some generalizations of the inequalities about mean. (English) Zbl 1031.26020 Tamsui Oxf. J. Math. Sci. 18, No. 2, 147-159 (2002). Reviewer: Peter S.Bullen (Vancouver) MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{L.-W. Yu} et al., Tamsui Oxf. J. Math. Sci. 18, No. 2, 147--159 (2002; Zbl 1031.26020)
Liu, Zheng Inequalities for some means. (English) Zbl 1015.26024 J. Nanjing Univ., Math. Biq. 19, No. 1, 37-42 (2002). MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{Z. Liu}, J. Nanjing Univ., Math. Biq. 19, No. 1, 37--42 (2002; Zbl 1015.26024)
Toader, Silvia Derivatives of generalized means. (English) Zbl 1004.26019 Math. Inequal. Appl. 5, No. 3, 517-523 (2002). Reviewer: Peter S.Bullen (Vancouver) MSC: 26E60 PDF BibTeX XML Cite \textit{S. Toader}, Math. Inequal. Appl. 5, No. 3, 517--523 (2002; Zbl 1004.26019) Full Text: DOI
Toader, Gheorghe Integral generalized means. (English) Zbl 1004.26018 Math. Inequal. Appl. 5, No. 3, 511-516 (2002). Reviewer: Peter S.Bullen (Vancouver) MSC: 26E60 PDF BibTeX XML Cite \textit{G. Toader}, Math. Inequal. Appl. 5, No. 3, 511--516 (2002; Zbl 1004.26018) Full Text: DOI
Kim, Y. H.; Rassias, T. M. Properties of some mean values and functional equations. (English) Zbl 1004.39015 Panam. Math. J. 12, No. 1, 65-74 (2002). Reviewer: Prasanna Sahoo (Louisville) MSC: 39B22 26E60 PDF BibTeX XML Cite \textit{Y. H. Kim} and \textit{T. M. Rassias}, Panam. Math. J. 12, No. 1, 65--74 (2002; Zbl 1004.39015)
Yang, Hansheng; Yang, Heng The arithmetic-geometric mean inequality and the constant \(e\). (English) Zbl 1034.26024 Math. Mag. 74, No. 4, 321-323 (2001). Reviewer: József Sándor (Cluj-Napoca) MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{H. Yang} and \textit{H. Yang}, Math. Mag. 74, No. 4, 321--323 (2001; Zbl 1034.26024) Full Text: DOI
Ekárt, Anikó; Németh, S. Z. A noncontinuous generalization of the arithmetic-geometric mean. (English) Zbl 1054.26024 Appl. Math. Comput. 124, No. 2, 261-279 (2001). MSC: 26E60 40A05 PDF BibTeX XML Cite \textit{A. Ekárt} and \textit{S. Z. Németh}, Appl. Math. Comput. 124, No. 2, 261--279 (2001; Zbl 1054.26024) Full Text: DOI
Dobbs, David E. A proof of the arithmetic-geometric mean inequality using non-Euclidean geometry. (English) Zbl 1005.26011 Int. J. Math. Educ. Sci. Technol. 32, No. 5, 778-782 (2001). MSC: 26D15 51M10 26E60 PDF BibTeX XML Cite \textit{D. E. Dobbs}, Int. J. Math. Educ. Sci. Technol. 32, No. 5, 778--782 (2001; Zbl 1005.26011) Full Text: DOI
Liu, Zheng On new generalizations of certain mean values by H. Haruki and Th. M. Rassias. (English) Zbl 1008.39012 Math. Sci. Res. Hot-Line 5, No. 5, 15-23 (2001). Reviewer: Stefan Czerwik MSC: 39B22 26E60 33C10 PDF BibTeX XML Cite \textit{Z. Liu}, Math. Sci. Res. Hot-Line 5, No. 5, 15--23 (2001; Zbl 1008.39012)
Yuan, Baoquan Refinements of Carleman’s inequality. (English) Zbl 0993.26008 JIPAM, J. Inequal. Pure Appl. Math. 2, No. 2, Paper No. 21, 4 p. (2001). Reviewer: Bicheng Yang (Guangdong) MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{B. Yuan}, JIPAM, J. Inequal. Pure Appl. Math. 2, No. 2, Paper No. 21, 4 p. (2001; Zbl 0993.26008) Full Text: EuDML
Yu, Jie A refinement of the Hardy-Carleman’s inequality. (Chinese. English summary) Zbl 0997.26016 J. Anhui Norm. Univ., Nat. Sci. 24, No. 1, 9-10 (2001). MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{J. Yu}, J. Anhui Norm. Univ., Nat. Sci. 24, No. 1, 9--10 (2001; Zbl 0997.26016)