×

Higher-order accurate diffuse-domain methods for partial differential equations with Dirichlet boundary conditions in complex, evolving geometries. (English) Zbl 1453.65306

Summary: The diffuse-domain, or smoothed boundary, method is an attractive approach for solving partial differential equations in complex geometries because of its simplicity and flexibility. In this method the complex geometry is embedded into a larger, regular domain. The original PDE is reformulated using a smoothed characteristic function of the complex domain and source terms are introduced to approximate the boundary conditions. The reformulated equation, which is independent of the dimension and domain geometry, can be solved by standard numerical methods and the same solver can be used for any domain geometry. A challenge is making the method higher-order accurate. For Dirichlet boundary conditions, which we focus on here, current implementations demonstrate a wide range in their accuracy but generally the methods yield at best first order accuracy in \(\epsilon\), the parameter that characterizes the width of the region over which the characteristic function is smoothed. Typically, \(\epsilon\propto h\), the grid size. Here, we analyze the diffuse-domain PDEs using matched asymptotic expansions and explain the observed behaviors. Our analysis also identifies simple modifications to the diffuse-domain PDEs that yield higher-order accuracy in \(\epsilon\), e.g., \(O(\epsilon^2)\) in the \(L^2\) norm and \(O(\epsilon^p)\) with \(1.5\leq p \leq 2\) in the \(L^\infty\) norm. Our analytic results are confirmed numerically in stationary and moving domains where the level set method is used to capture the dynamics of the domain boundary and to construct the smoothed characteristic function.

MSC:

65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
92C35 Physiological flow

Software:

AMDiS; MRAG-I2D
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Chen, L.; Wei, H.; Wen, M., An interface-fitted mesh generator and virtual element methods for elliptic interface problems, J. Comput. Phys., 334, 327-348 (2017) · Zbl 1380.65400
[2] Galenko, P.; Alexandrov, D.; Titova, E., The boundary integral theory for slow and rapid curved solid/liquid interfaces propagating into binary systems, Philos. Trans. R. Soc. A, 376, 2113, Article 20170218 pp. (2018) · Zbl 1404.82044
[3] Feischl, M.; Fuehrer, T.; Heuer, N.; Karkulik, M.; Praetorius, D., Adaptive boundary element methods a posteriori error estimators, adaptivity, convergence, and implementation, Arch. Comput. Methods Eng., 22, 3, 309-389 (2015) · Zbl 1348.65172
[4] Askham, T.; Cerfon, A. J., An adaptive fast multipole accelerated Poisson solver for complex geometries, J. Comput. Phys., 344, 1-22 (2017) · Zbl 1380.65413
[5] Glowinski, R.; Pan, T.; Periaux, J., A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Eng., 111, 3-4, 283-303 (1994) · Zbl 0845.73078
[6] Massing, A.; Larson, M. G.; Logg, A.; Rognes, M. E., A stabilized Nitsche fictitious domain method for the Stokes problem, J. Sci. Comput., 61, 3, 604-628 (2014) · Zbl 1417.76028
[7] Gallier, S.; Lemaire, E.; Lobry, L.; Peters, F., A fictitious domain approach for the simulation of dense suspensions, J. Comput. Phys., 256, 367-387 (2014) · Zbl 1349.76860
[8] Noormohammadi, N.; Boroomand, B., A fictitious domain method using equilibrated basis functions for harmonic and bi-harmonic problems in physics, J. Comput. Phys., 272, 189-217 (2014) · Zbl 1349.65653
[9] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[10] Favier, J.; Revell, A.; Pinelli, A., A Lattice Boltzmann-Immersed Boundary method to simulate the fluid interaction with moving and slender flexible objects, J. Comput. Phys., 261, 145-161 (2014) · Zbl 1349.76679
[11] Calderer, A.; Kang, S.; Sotiropoulos, F., Level set immersed boundary method for coupled simulation of air/water interaction with complex floating structures, J. Comput. Phys., 277, 201-227 (2014) · Zbl 1349.76438
[12] Stein, D. B.; Guy, R. D.; Thomases, B., Immersed Boundary Smooth Extension (IBSE): a high-order method for solving incompressible flows in arbitrary smooth domains, J. Comput. Phys., 335, 155-178 (2017) · Zbl 1375.76038
[13] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 2, 708-759 (2001) · Zbl 1047.76574
[14] Irfan, M.; Muradoglu, M., A front tracking method for direct numerical simulation of evaporation process in a multiphase system, J. Comput. Phys., 337, 132-153 (2017) · Zbl 1415.76639
[15] Shahin, H.; Mortazavi, S., Three-dimensional simulation of microdroplet formation in a co-flowing immiscible fluid system using front tracking method, J. Mol. Liq., 243, 737-749 (2017)
[16] Hirt, C.; Amsden, A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds (reprinted from the Journal of Computational Physics, vol. 14, pp. 227-253, 1974), J. Comput. Phys., 135, 2, 203-216 (1997) · Zbl 0938.76068
[17] Barlow, A. J.; Maire, P.-H.; Rider, W. J.; Rieben, R. N.; Shashkov, M. J., Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows, J. Comput. Phys., 322, 603-665 (2016) · Zbl 1351.76093
[18] Bo, W.; Shashkov, M., Adaptive reconnection-based arbitrary Lagrangian Eulerian method, J. Comput. Phys., 299, 902-939 (2015) · Zbl 1352.65602
[19] Klingenberg, C.; Schnucke, G.; Xia, Y., An arbitrary Lagrangian-Eulerian local discontinuous Galerkin method for Hamilton-Jacobi equations, J. Sci. Comput., 73, 2-3, 906-942 (2017) · Zbl 1383.65124
[20] Leveque, R.; Li, Z., The immersed interface method for elliptic-equations with discontinuous, Coefficients and Singular Sources. Coefficients and Singular Sources, SIAM J. Numer. Anal., 31, 4, 1019-1044 (1994) · Zbl 0811.65083
[21] Hu, R.; Li, Z., Error analysis of the immersed interface method for Stokes equations with an interface, Appl. Math. Lett., 83, 207-211 (2018) · Zbl 1457.65161
[22] Amat, S.; Li, Z.; Ruiz, J., On an new algorithm for function approximation with full accuracy in the presence of discontinuities based on the immersed interface method, J. Sci. Comput., 75, 3, 1500-1534 (2018) · Zbl 1391.65031
[23] Li, Z.; Lai, M.-C.; Peng, X.; Zhang, Z., A least squares augmented immersed interface method for solving Navier-Stokes and Darcy coupling equations, Comput. Fluids, 167, 384-399 (2018) · Zbl 1390.76593
[24] Li, Z.; Song, P., Adaptive mesh refinement techniques for the immersed interface method applied to flow problems, Comput. Struct., 122, 249-258 (2013)
[25] Kolahdouz, E.; Pal Singh Bhalla, A.; B. A., C.; Griffith, B., An immersed interface method for discrete surfaces, J. Comput. Phys., 400, Article 108854 pp. (2020) · Zbl 1453.76075
[26] Fedkiw, R.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 2, 457-492 (1999) · Zbl 0957.76052
[27] Lalanne, B.; Villegas, L. R.; Tanguy, S.; Risso, F., On the computation of viscous terms for incompressible two-phase flows with Level Set/Ghost Fluid Method, J. Comput. Phys., 301, 289-307 (2015) · Zbl 1349.76352
[28] Villegas, L. R.; Alis, R.; Lepilliez, M.; Tanguy, S., A ghost fluid/level set method for boiling flows and liquid evaporation: application to the Leidenfrost effect, J. Comput. Phys., 316, 789-813 (2016) · Zbl 1349.76382
[29] Ge, Z.; Loiseau, J.-C.; Tammisola, O.; Brandt, L., An efficient mass-preserving interface-correction level set/ghost fluid method for droplet suspensions under depletion forces, J. Comput. Phys., 353, 435-459 (2018) · Zbl 1380.76101
[30] Ingram, D.; Causon, D.; Mingham, C., Developments in Cartesian cut cell methods, 2nd IMACS Conference on Mathematical Modelling and Computational Methods in Mechanics, Physics, Biomechanics and Geodynamics, Plzen, Czech Republic, June 19-25, 2001. 2nd IMACS Conference on Mathematical Modelling and Computational Methods in Mechanics, Physics, Biomechanics and Geodynamics, Plzen, Czech Republic, June 19-25, 2001, Math. Comput. Simul., 61, 3-6, 561-572 (2001) · Zbl 1205.76167
[31] Gokhale, N.; Nikiforakis, N.; Klein, R., A dimensionally split Cartesian cut cell method for hyperbolic conservation laws, J. Comput. Phys., 364, 186-208 (2018) · Zbl 1395.65048
[32] Nikfarjam, F.; Cheny, Y.; Botella, O., The LS-STAG immersed boundary/cut-cell method for non-Newtonian flows in 3D extruded geometries, Comput. Phys. Commun., 226, 67-80 (2018) · Zbl 1498.76076
[33] Muralidharan, B.; Menon, S., Simulation of moving boundaries interacting with compressible reacting flows using a second-order adaptive Cartesian cut-cell method, J. Comput. Phys., 357, 230-262 (2018) · Zbl 1381.76266
[34] Saye, R. I.; Sethian, J. A., Analysis and applications of the Voronoi Implicit Interface Method, J. Comput. Phys., 231, 18, 6051-6085 (2012)
[35] Guittet, A.; Lepilliez, M.; Tanguy, S.; Gibou, F., Solving elliptic problems with discontinuities on irregular domains – the Voronoi Interface Method, J. Comput. Phys., 298, 747-765 (2015) · Zbl 1349.65579
[36] Fries, T.-P.; Belytschko, T., The extended/generalized finite element method: an overview of the method and its applications, Int. J. Numer. Methods Eng., 84, 3, 253-304 (2010) · Zbl 1202.74169
[37] Belytschko, T.; Gracie, R.; Ventura, G., A review of extended/generalized finite element methods for material modeling, Modell. Simul. Mater. Sci. Eng., 17, 4 (2009)
[38] Carlos Martinez, J.; Vanegas Useche, L. V.; Wahab, M. A., Numerical prediction of fretting fatigue crack trajectory in a railway axle using XFEM, Int. J. Fatigue, 100, 1, 32-49 (2017)
[39] Bedrossian, J.; Von Brecht, J. H.; Zhu, S.; Sifakis, E.; Teran, J. M., A second order virtual node method for elliptic problems with interfaces and irregular domains, J. Comput. Phys., 229, 18, 6405-6426 (2010) · Zbl 1197.65168
[40] Hellrung, J. L.; Wang, L.; Sifakis, E.; Teran, J. M., A second order virtual node method for elliptic problems with interfaces and irregular domains in three dimensions, J. Comput. Phys., 231, 4, 2015-2048 (2012) · Zbl 1408.65078
[41] Shirokoff, D.; Nave, J.-C., A sharp-interface active penalty method for the incompressible Navier-Stokes equations, J. Sci. Comput., 62, 1, 53-77 (2015) · Zbl 1309.76144
[42] Kockelkoren, J.; Levine, H.; Rappel, W.-J., Computational approach for modeling intra- and computational approach for modeling intra- and extracellular dynamics, Phys. Rev. E, 68, Article 037702 pp. (2003)
[43] Bueno-Orovio, A.; Perez-Garcia, V., Spectral smoothed boundary methods: the role of external boundary conditions, Numer. Methods Partial Differ. Equ., 22, 435-448 (2005) · Zbl 1089.65105
[44] Bueno-Orovio, A.; Perez-Garcia, V.; Fenton, F., Spectral methods for partial differential equations in irregular domains: the spectral smoothed boundary method, SIAM J. Sci. Comput., 28, 886-900 (2006) · Zbl 1114.65119
[45] Raetz, A.; Voigt, A., PDE’s on surfaces — a diffuse interface approach, Commun. Math. Sci., 4, 3, 575-590 (2006) · Zbl 1113.35092
[46] Li, X.; Lowengrub, J.; Raetz, A.; Voigt, A., Solving PDEs in complex geometries: a diffuse domain approach, Commun. Math. Sci., 7, 1, 81-107 (2009) · Zbl 1178.35027
[47] Teigen, K. E.; Li, X.; Lowengrub, J.; Wang, F.; Voigt, A., A diffuse-interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformable interface, Commun. Math. Sci., 7, 4, 1009-1037 (2009) · Zbl 1186.35168
[48] Yu, H.-C.; Chen, H.-Y.; Thornton, K., Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries, Model. Simul. Mater. Sci. Eng., 20, Article 075008 pp. (2012)
[49] Poulsen, S.; Voorhees, P., Smoothed boundary method for diffusion-related partial differential equations in complex geometries, Int. J. Comput. Methods, 15, 3, Article 1850014 pp. (2018) · Zbl 1404.65149
[50] Fenton, F.; Cherry, E.; Karma, A.; Rappel, W.-J., Modeling wave propagation in realistic heart geometries using the phase-field method, Chaos, 15, Article 013502 pp. (2005) · Zbl 1080.92038
[51] Aland, S.; Landsberg, C.; Mueller, R.; Stenger, F.; Bobeth, M.; Langheinrich, A.; Voigt, A., Adaptive diffuse domain approach for calculating mechanically induced deformation of trabecular bone, Comput. Methods Biomech. Biomed. Eng., 17, 1, 31-38 (2011)
[52] Camley, B.; Zhao, Y.; Li, B.; Levine, H.; Rappel, W.-J., Periodic migration in a physical model of cells on micropatterns, Phys. Rev. Lett., 111, Article 158102 pp. (2013)
[53] Chen, Y.; Lowengrub, J., Tumor growth in complex, evolving microenvironmental geometries: a diffuse domain approach, J. Theor. Biol., 361, 14-30 (2014) · Zbl 1303.92042
[54] Raetz, A.; Roeger, M., Symmetry breaking in a bulk-surface reaction-diffusion model for signaling networks, Nonlinearity, 27, 1805-1827 (2014) · Zbl 1301.92025
[55] Raetz, A., A new diffuse-interface model for step flow in epitaxial growth, IMA J. Appl. Math., 80, 3, 697-711 (2015) · Zbl 1333.35211
[56] Lowengrub, J.; Allard, J.; Aland, S., Numerical simulation of endocytosis: viscous flow driven by membranes with non-uniformly distributed curvature-inducing molecules, J. Comput. Phys., 309, 112-128 (2016) · Zbl 1351.76067
[57] Camley, B.; Zhao, Y.; Li, B.; Levine, H.; Rappel, W.-J., Crawling and turning in a minimal reaction-diffusion cell motility model: coupling cell shape and biochemistry, Phys. Rev. E, 95, Article 012401 pp. (2017)
[58] J. Lipkova, Computational modelling in neuro-oncology, Ph.D. Thesis, T.U. Munich.
[59] Teigen, K. E.; Song, P.; Lowengrub, J.; Voigt, A., A diffuse-interface method for two-phase flows with soluble surfactants, J. Comput. Phys., 230, 2, 375-393 (2011) · Zbl 1428.76210
[60] Aland, S.; Lowengrub, J.; Voigt, A., Two-phase flow in complex geometries: a diffuse domain approach, Comput. Model. Eng. Sci., 57, 1, 77-107 (2010) · Zbl 1231.76200
[61] Aland, S.; Lowengrub, J.; Voigt, A., A continuum model of colloid-stabilized interfaces, Phys. Fluids, 23, 6, Article 062103 pp. (2011) · Zbl 1308.76159
[62] Aland, S.; Lowengrub, J.; Voigt, A., Particles at fluid-fluid interfaces: a new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model, Phys. Rev. E, 86, 4, Article 046321 pp. (2012)
[63] Aland, S.; Egerer, S.; Lowengrub, J.; Voigt, A., Diffuse interface models of locally inextensible vesicles in a viscous fluid, J. Comput. Phys., 277, 32-47 (2014) · Zbl 1349.76933
[64] Yu, H.-C.; Choe, M.-J.; Amatucci, G.; Chiang, Y.-M.; Thornton, K., Smoothed boundary method for simulating bulk and grain boundary transport in complex polycrystalline microstructures, Comput. Mater. Sci., 121, 14-22 (2016)
[65] Raetz, A., Diffuse-interface approximations of osmosis free boundary problems diffuse-interface approximations of osmosis free boundary problems, SIAM J. Appl. Math., 76, 3, 910-929 (2016) · Zbl 1338.35509
[66] Hong, L.; Liang, L.; Bhattacharyya, S.; Xing, W.; Chen, L.-Q., Anisotropic Li intercalation in a LixFePO_4 nano-particle: a spectral smoothed boundary phase-field model, Phys. Chem. Chem. Phys., 18, 9537-9543 (2016)
[67] Chadwick, A.; Steward, J.; Du, R.; Thornton, K., Numerical modeling of localized corrosion using phase-field and smoothed boundary methods, J. Electrochem. Soc., 165, 10, C633-C646 (2018)
[68] Vey, S.; Voigt, A., AMDiS: adaptive multidimensional simulations, Comput. Vis. Sci., 10, 57-67 (2007)
[69] Rossinelli, D.; Hejazialhosseini, B.; van Rees, W.; Gazzola, M.; Bergdorf, M.; Koumoutsakos, P., MRAG-I2D: multi-resolution adapted grids for remeshed vortex methods on multicore architectures, J. Comput. Phys., 288, 1-18 (2015) · Zbl 1351.76026
[70] Feng, W.; Guo, Z.; Lowengrub, J.; Wise, S., A mass-conservative adaptive fas multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids, J. Comput. Phys., 352, 463-497 (2018) · Zbl 1380.65402
[71] Franz, S.; Roos, H.-G.; Gärtner, R.; Voigt, A., A note on the convergence analysis of a diffuse-domain approach, Comput. Methods Appl. Math., 12, 2, 153-167 (2012) · Zbl 1284.35068
[72] Abels, H.; Lam, K.; Stinner, B., Analysis of the diffuse domain approach for a bulk-surface coupled PDE system, SIAM J. Math. Anal., 47, 5, 3687-3725 (2015) · Zbl 1326.35112
[73] Schlottbom, M., Error analysis of a diffuse interface method for elliptic problems with Dirichlet boundary conditions, Appl. Numer. Math., 109, 109-122 (2016) · Zbl 1348.65154
[74] Burger, M.; Elvetun, O.; Schlottbom, M., Analysis of the diffuse domain method for second order elliptic boundary value problems, Found. Comput. Math., 17, 627-674 (2017) · Zbl 1371.35064
[75] Lervåg, K. Y.; Lowengrub, J., Analysis of the diffuse-domain method for solving PDEs in complex geometries, Commun. Math. Sci., 13, 6, 1473-1500 (2015) · Zbl 1328.65223
[76] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed-algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[77] Gibou, F.; Fedkiw, R.; Osher, S., A review of level-set methods and some recent applications, J. Comput. Phys., 353, 82-109 (2018) · Zbl 1380.65196
[78] Hoffman, J. D.; Frankel, S., Numerical Methods for Engineers and Scientists (2001), CRC Press · Zbl 1068.65001
[79] Bender, C. M.; Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers, I: Asymptotic Methods and Perturbation Theory (2013), Springer Science & Business Media
[80] Jiang, G.; Shu, C., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 1, 202-228 (1996) · Zbl 0877.65065
[81] Gottlieb, S.; Shu, C., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 221, 73-85 (1998) · Zbl 0897.65058
[82] Min, C., On reinitializing level set functions, J. Comput. Phys., 229, 8, 2764-2772 (2010) · Zbl 1188.65122
[83] Russo, G.; Smereka, P., A remark on computing distance functions, J. Comput. Phys., 163, 1, 51-67 (2000) · Zbl 0964.65089
[84] Peng, D.; Merriman, B.; Osher, S.; Zhao, H.; Kang, M., A PDE-based fast local level set method, J. Comput. Phys., 155, 2, 410-438 (1999) · Zbl 0964.76069
[85] Wise, S.; Kim, J.; Lowengrub, J., Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method, J. Comput. Phys., 226, 1, 414-446 (2007) · Zbl 1310.82044
[86] ICBM 152 nonlinear atlases, version 2009, bic.mni.mcgill.ca.
[87] Collins, D.; Zijdenbos, A.; Baare, W.; Evans, A., Animal+insect: improved cortical structure segmentation, (IPMI 1999. IPMI 1999, Lect. Notes Comput. Sci., vol. 1613 (1999)), 210-223
[88] Fonov, V.; Evans, A.; Botteron, K.; McKinstry, R.; Almli, C.; Collins, D., Unbiased nonlinear average age-appropriate brain templates from birth to adulthood, NeuroImage, 47, S102 (2009), Organization for Human Brain Mapping 2009 Annual Meeting
[89] Fonov, V.; Evans, A.; Botteron, K.; Almli, C.; McKinstry, R.; Collins BDCG, D., Unbiased nonlinear average age-appropriate atlases for pediatric studies, Comput. Vis. Sci., 54, 1053-8119 (2011)
[90] Lervag, K.; Lowengrub, J., Analysis of the diffuse-domain method for solving PDEs in complex geometries, Commun. Math. Sci., 6, 1473-1500 (2015) · Zbl 1328.65223
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.