Zhang, Hai-E; Xu, Gen-Qi; Han, Zhong-Jie Stability of multi-dimensional nonlinear piezoelectric beam with viscoelastic infinite memory. (English) Zbl 07560168 Z. Angew. Math. Phys. 73, No. 4, Paper No. 159, 18 p. (2022). MSC: 35B40 35L53 35R09 47D06 93D20 PDF BibTeX XML Cite \textit{H.-E Zhang} et al., Z. Angew. Math. Phys. 73, No. 4, Paper No. 159, 18 p. (2022; Zbl 07560168) Full Text: DOI OpenURL
Zerkouk, Hanene; Aichi, Chahira; Benaissa, Abbes On the stability of a degenerate wave equation under fractional feedbacks acting on the degenerate boundary. (English) Zbl 07557901 J. Dyn. Control Syst. 28, No. 3, 601-633 (2022). MSC: 35B40 35L20 35L80 35R11 74D05 93D15 PDF BibTeX XML Cite \textit{H. Zerkouk} et al., J. Dyn. Control Syst. 28, No. 3, 601--633 (2022; Zbl 07557901) Full Text: DOI OpenURL
Boudiaf, Amel; Drabla, Salah General decay result for a weakly damped thermo-viscoelastic system with second sound. (English) Zbl 07552165 J. Math. Phys. Anal. Geom. 18, No. 1, 57-74 (2022). MSC: 35B40 35G46 35K51 35L53 35R09 74D05 93D15 93D20 PDF BibTeX XML Cite \textit{A. Boudiaf} and \textit{S. Drabla}, J. Math. Phys. Anal. Geom. 18, No. 1, 57--74 (2022; Zbl 07552165) Full Text: DOI OpenURL
Hassan, Jamilu Hashim; Messaoudi, Salim A. General decay rate for an abstract weakly dissipative Moore-Gibson-Thompson equation. (English) Zbl 07543127 J. Integral Equations Appl. 34, No. 1, 75-91 (2022). MSC: 35B40 35L90 35R09 34G10 45K05 PDF BibTeX XML Cite \textit{J. H. Hassan} and \textit{S. A. Messaoudi}, J. Integral Equations Appl. 34, No. 1, 75--91 (2022; Zbl 07543127) Full Text: DOI OpenURL
Thanh, Nguyen Van; Tuan, Tran Quoc Asymptotic behavior of solutions to the three-dimensional stochastic Leray-\( \alpha\) model. (English) Zbl 07537011 Random Oper. Stoch. Equ. 30, No. 2, 137-148 (2022). MSC: 35B40 35A23 35K67 35Q35 35R60 PDF BibTeX XML Cite \textit{N. Van Thanh} and \textit{T. Q. Tuan}, Random Oper. Stoch. Equ. 30, No. 2, 137--148 (2022; Zbl 07537011) Full Text: DOI OpenURL
Tavares, Eduardo H. Gomes; Silva, Marcio A. Jorge; Ma, To Fu Unified stability analysis for a Volterra integro-differential equation under creation time perspective. (English) Zbl 07530311 Z. Angew. Math. Phys. 73, No. 3, Paper No. 118, 23 p. (2022). MSC: 35B35 35B40 35L20 35R09 74D05 PDF BibTeX XML Cite \textit{E. H. G. Tavares} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 118, 23 p. (2022; Zbl 07530311) Full Text: DOI OpenURL
Gabriel, Pierre; Martin, Hugo Periodic asymptotic dynamics of the measure solutions to an equal mitosis equation. (Comportement asymptotique périodique des solutions mesures d’une équation de mitose égale.) (English. French summary) Zbl 07524686 Ann. Henri Lebesgue 5, 275-301 (2022). Reviewer: Philippe Laurençot (Toulouse) MSC: 45K05 35B40 35F10 35R06 PDF BibTeX XML Cite \textit{P. Gabriel} and \textit{H. Martin}, Ann. Henri Lebesgue 5, 275--301 (2022; Zbl 07524686) Full Text: DOI OpenURL
Khemmoudj, Ammar; Kechiche, Naouel Polynomial decay for the Timoshenko system with dynamical boundary conditions. (English) Zbl 1487.35082 Bull. Malays. Math. Sci. Soc. (2) 45, No. 3, 1195-1212 (2022). MSC: 35B40 35L53 35P05 35R09 47D06 PDF BibTeX XML Cite \textit{A. Khemmoudj} and \textit{N. Kechiche}, Bull. Malays. Math. Sci. Soc. (2) 45, No. 3, 1195--1212 (2022; Zbl 1487.35082) Full Text: DOI OpenURL
Ladyzhenskaya, Olga A. [Seregin, Gregory A.; Kalantarov, Varga K.; Zelik, Sergey V.] Attractors for semigroups and evolution equations. With an introduction by Gregory A. Seregin, Varga K. Kalantarov and Sergey V. Zelik. Reprint of the 1991 edition with a new introduction. (English) Zbl 07516541 Cambridge Mathematical Library. Cambridge: Cambridge University Press (ISBN 978-1-00-922982-1/pbk; 978-1-00-922981-4/ebook). xxviii, 68 p. (2022). MSC: 47-02 58-02 35-02 01A75 47H20 35B40 47-03 58-03 35-03 47D06 PDF BibTeX XML Cite \textit{O. A. Ladyzhenskaya}, Attractors for semigroups and evolution equations. With an introduction by Gregory A. Seregin, Varga K. Kalantarov and Sergey V. Zelik. Reprint of the 1991 edition with a new introduction. Cambridge: Cambridge University Press (2022; Zbl 07516541) Full Text: DOI OpenURL
Liu, Yan; Qin, Xulong; Zhang, Shuanghu Global existence and estimates for Blackstock’s model of thermoviscous flow with second sound phenomena. (English) Zbl 07514715 J. Differ. Equations 324, 76-101 (2022). MSC: 35Qxx 35G25 35G10 35B40 35B25 35A01 PDF BibTeX XML Cite \textit{Y. Liu} et al., J. Differ. Equations 324, 76--101 (2022; Zbl 07514715) Full Text: DOI OpenURL
Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Guesmia, A.; Sepúlveda, M. Well-posedness and stability for Schrödinger equations with infinite memory. (English) Zbl 07513955 Appl. Math. Optim. 85, No. 2, Paper No. 20, 31 p. (2022). MSC: 35Q41 35B40 35B45 35A01 35A02 35B35 35R09 45J05 74D05 PDF BibTeX XML Cite \textit{M. M. Cavalcanti} et al., Appl. Math. Optim. 85, No. 2, Paper No. 20, 31 p. (2022; Zbl 07513955) Full Text: DOI OpenURL
Yahiaoui, Ahlem; Guesmia, Senoussi; Sengouga, Abdelmouhcene Anisotropic non-local problems: asymptotic behaviour and existence results. (English) Zbl 1487.35038 Complex Var. Elliptic Equ. 67, No. 5, 1121-1153 (2022). MSC: 35B25 35B40 35J25 35R09 45K05 47A75 PDF BibTeX XML Cite \textit{A. Yahiaoui} et al., Complex Var. Elliptic Equ. 67, No. 5, 1121--1153 (2022; Zbl 1487.35038) Full Text: DOI OpenURL
Calsavara, B. M. R.; Gomes Tavares, E. H.; Jorge Silva, M. A. Exponential stability for a thermo-viscoelastic Timoshenko system with fading memory. (English) Zbl 07503672 J. Math. Anal. Appl. 512, No. 2, Article ID 126147, 17 p. (2022). Reviewer: Igor Bock (Bratislava) MSC: 35B40 35G46 35R09 74F05 PDF BibTeX XML Cite \textit{B. M. R. Calsavara} et al., J. Math. Anal. Appl. 512, No. 2, Article ID 126147, 17 p. (2022; Zbl 07503672) Full Text: DOI OpenURL
Boulaaras, Salah; Choucha, Abdelbaki; Scapellato, Andrea General decay of the Moore-Gibson-Thompson equation with viscoelastic memory of type II. (English) Zbl 1486.35046 J. Funct. Spaces 2022, Article ID 9015775, 12 p. (2022). MSC: 35B40 35G10 35R09 PDF BibTeX XML Cite \textit{S. Boulaaras} et al., J. Funct. Spaces 2022, Article ID 9015775, 12 p. (2022; Zbl 1486.35046) Full Text: DOI OpenURL
Broucke, Frederik; Oparnica, Ljubica Micro-local and qualitative analysis of the fractional Zener wave equation. (English) Zbl 1486.35415 J. Differ. Equations 321, 217-257 (2022). MSC: 35R11 35A18 35A27 35B65 41A60 74J05 74D05 PDF BibTeX XML Cite \textit{F. Broucke} and \textit{L. Oparnica}, J. Differ. Equations 321, 217--257 (2022; Zbl 1486.35415) Full Text: DOI OpenURL
Choucha, Abdelbaki; Boulaaras, Salah; Ouchenane, Djamel; Alharbi, Asma; Abdalla, Mohamed Global existence of Timoshenko system with respect to fractional memory operator, spatial fractional thermal effect and distributed delay. (English) Zbl 1485.35049 Fractals 30, No. 1, Article ID 2240006, 13 p. (2022). MSC: 35B40 35L53 35R11 47D06 PDF BibTeX XML Cite \textit{A. Choucha} et al., Fractals 30, No. 1, Article ID 2240006, 13 p. (2022; Zbl 1485.35049) Full Text: DOI OpenURL
Conti, Monica; Dell’Oro, Filippo; Pata, Vittorino Some unexplored questions arising in linear viscoelasticity. (English) Zbl 1485.35050 J. Funct. Anal. 282, No. 10, Article ID 109422, 43 p. (2022). MSC: 35B40 35L90 35R09 35P05 45K05 45M10 47D06 74D05 PDF BibTeX XML Cite \textit{M. Conti} et al., J. Funct. Anal. 282, No. 10, Article ID 109422, 43 p. (2022; Zbl 1485.35050) Full Text: DOI OpenURL
Al-Gharabli, Mohammad M.; Al-Mahdi, Adel M.; Messaoudi, Salim A. Decay results for a viscoelastic problem with nonlinear boundary feedback and logarithmic source term. (English) Zbl 1481.35042 J. Dyn. Control Syst. 28, No. 1, 71-89 (2022). MSC: 35B40 35L20 35L71 35R09 74D05 74D10 93D20 PDF BibTeX XML Cite \textit{M. M. Al-Gharabli} et al., J. Dyn. Control Syst. 28, No. 1, 71--89 (2022; Zbl 1481.35042) Full Text: DOI OpenURL
Yan, Qishu; Yu, Huaiqiang Exponential stabilization on infinite dimensional system with impulse controls. (English) Zbl 1480.35052 J. Differ. Equations 309, 231-264 (2022). MSC: 35B40 35K51 35K90 35R12 47D06 93B05 93C20 PDF BibTeX XML Cite \textit{Q. Yan} and \textit{H. Yu}, J. Differ. Equations 309, 231--264 (2022; Zbl 1480.35052) Full Text: DOI arXiv OpenURL
Djellali, F.; Labidi, S.; Taallah, F. Existence and energy decay of a Bresse system with thermoelasticity of type III. (English) Zbl 1478.35034 Z. Angew. Math. Phys. 73, No. 1, Paper No. 3, 25 p. (2022). MSC: 35B40 35L53 35R09 74B05 74F05 93D05 93D20 PDF BibTeX XML Cite \textit{F. Djellali} et al., Z. Angew. Math. Phys. 73, No. 1, Paper No. 3, 25 p. (2022; Zbl 1478.35034) Full Text: DOI OpenURL
Moumen, Abdelkader; Ouchenane, Djamel; Choucha, Abdelbaki; Zennir, Khaled; Zubair, Sulima A. Exponential stability of Timoshenko system in thermoelasticity of second sound with a memory and distributed delay term. (English) Zbl 1487.35090 Open Math. 19, 1636-1647 (2021). MSC: 35B40 35G46 35K51 35L53 35R09 93D15 93D20 PDF BibTeX XML Cite \textit{A. Moumen} et al., Open Math. 19, 1636--1647 (2021; Zbl 1487.35090) Full Text: DOI OpenURL
Benaissa, Abbes; Gaouar, Soumia Stability result of the Lamé system with a delay term in the internal fractional feedback. (English) Zbl 1484.35045 Acta Univ. Sapientiae, Math. 13, No. 2, 336-355 (2021). MSC: 35B40 35L53 35R11 47D03 74D05 PDF BibTeX XML Cite \textit{A. Benaissa} and \textit{S. Gaouar}, Acta Univ. Sapientiae, Math. 13, No. 2, 336--355 (2021; Zbl 1484.35045) Full Text: DOI OpenURL
Al-Gharabli, Mohammad M.; Al-Mahdi, Adel M. Asymptotic analysis for a nonlinear viscoelastic problem with infinite history under a wider class of relaxation functions. (English) Zbl 1484.35042 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 5, 309-328 (2021). MSC: 35B40 35L20 35L71 35R09 74D05 93D15 93D20 PDF BibTeX XML Cite \textit{M. M. Al-Gharabli} and \textit{A. M. Al-Mahdi}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 5, 309--328 (2021; Zbl 1484.35042) Full Text: Link OpenURL
Nicaise, Serge; Bounadja, Hizia Well-posedness and long time behavior for a general class of Moore-Gibson-Thompson equations with a memory. (English) Zbl 1484.35061 Port. Math. (N.S.) 78, No. 3-4, 391-422 (2021). MSC: 35B40 35G16 35R09 74D05 93D15 93D20 PDF BibTeX XML Cite \textit{S. Nicaise} and \textit{H. Bounadja}, Port. Math. (N.S.) 78, No. 3--4, 391--422 (2021; Zbl 1484.35061) Full Text: DOI OpenURL
Dolbeault, Jean Functional inequalities: nonlinear flows and entropy methods as a tool for obtaining sharp and constructive results. (English) Zbl 1481.35006 Milan J. Math. 89, No. 2, 355-386 (2021). MSC: 35-02 35A23 26D10 35B06 35J60 35K55 46B70 46E35 49J40 49K20 49K30 53C21 PDF BibTeX XML Cite \textit{J. Dolbeault}, Milan J. Math. 89, No. 2, 355--386 (2021; Zbl 1481.35006) Full Text: DOI arXiv OpenURL
Feng, Z.; Gurski, K. F.; Prosper, O.; Teboh-Ewungkem, M. I.; Grogan, M. A mosquito-borne disease model with non-exponentially distributed infection and treatment stages. (English) Zbl 1482.34123 J. Dyn. Differ. Equations 33, No. 4, 1679-1709 (2021). MSC: 34C60 92D30 34C05 34D20 34D05 35Q92 45F99 PDF BibTeX XML Cite \textit{Z. Feng} et al., J. Dyn. Differ. Equations 33, No. 4, 1679--1709 (2021; Zbl 1482.34123) Full Text: DOI OpenURL
Nikolić, Vanja; Said-Houari, Belkacem Asymptotic behavior of nonlinear sound waves in inviscid media with thermal and molecular relaxation. (English) Zbl 1478.35041 Nonlinear Anal., Real World Appl. 62, Article ID 103384, 38 p. (2021). MSC: 35B40 35L30 35L76 35Q35 35R09 74D05 76Q05 PDF BibTeX XML Cite \textit{V. Nikolić} and \textit{B. Said-Houari}, Nonlinear Anal., Real World Appl. 62, Article ID 103384, 38 p. (2021; Zbl 1478.35041) Full Text: DOI arXiv OpenURL
Bezerra, Flank D. M.; Figueroa-López, Rodiak N.; Nascimento, Marcelo J. D. Fractional oscillon equations; solvability and connection with classical oscillon equations. (English) Zbl 1483.35024 Commun. Pure Appl. Anal. 20, No. 6, 2257-2277 (2021). MSC: 35B40 35B41 34A08 35L20 35L71 35R11 47D06 PDF BibTeX XML Cite \textit{F. D. M. Bezerra} et al., Commun. Pure Appl. Anal. 20, No. 6, 2257--2277 (2021; Zbl 1483.35024) Full Text: DOI arXiv OpenURL
Kafini, Mohammad On the decay of a nonlinear wave equation with delay. (English) Zbl 1477.35029 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 67, No. 2, 309-325 (2021). MSC: 35B40 35L20 35L71 35R09 47D06 PDF BibTeX XML Cite \textit{M. Kafini}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 67, No. 2, 309--325 (2021; Zbl 1477.35029) Full Text: DOI OpenURL
Khochemane, Houssem Eddine; Bouzettouta, Lamine; Guerouah, Amin Exponential decay and well-posedness for a one-dimensional porous-elastic system with distributed delay. (English) Zbl 1476.35047 Appl. Anal. 100, No. 14, 2950-2964 (2021). MSC: 35B40 35L53 35R09 47D06 93D20 PDF BibTeX XML Cite \textit{H. E. Khochemane} et al., Appl. Anal. 100, No. 14, 2950--2964 (2021; Zbl 1476.35047) Full Text: DOI OpenURL
Bounadja, Hizia; Messaoudi, Salim A general stability result for a viscoelastic Moore-Gibson-Thompson equation in the whole space. (English) Zbl 1476.35037 Appl. Math. Optim. 84, Suppl. 1, S509-S521 (2021). MSC: 35B40 35L30 35R09 74D05 93D15 93D20 PDF BibTeX XML Cite \textit{H. Bounadja} and \textit{S. Messaoudi}, Appl. Math. Optim. 84, S509--S521 (2021; Zbl 1476.35037) Full Text: DOI OpenURL
Jin, Kun-Peng; Liang, Jin; Xiao, Ti-Jun Asymptotic stability of energy for a weak viscoelastic plate equation with complementary frictional damping. (English) Zbl 1475.35046 Appl. Math. Optim. 84, No. 3, 3025-3044 (2021). MSC: 35B40 35L35 35L71 35Q93 35R09 74D05 74K20 PDF BibTeX XML Cite \textit{K.-P. Jin} et al., Appl. Math. Optim. 84, No. 3, 3025--3044 (2021; Zbl 1475.35046) Full Text: DOI OpenURL
Cañizo, José A.; Gabriel, Pierre; Yoldaş, Havva Spectral gap for the growth-fragmentation equation via Harris’s theorem. (English) Zbl 1476.35038 SIAM J. Math. Anal. 53, No. 5, 5185-5214 (2021). Reviewer: Philippe Laurençot (Toulouse) MSC: 35B40 47D06 45K05 92D25 PDF BibTeX XML Cite \textit{J. A. Cañizo} et al., SIAM J. Math. Anal. 53, No. 5, 5185--5214 (2021; Zbl 1476.35038) Full Text: DOI arXiv OpenURL
Bounadja, Hizia; Houari, Belkacem Said Decay rates for the Moore-Gibson-Thompson equation with memory. (English) Zbl 1473.35367 Evol. Equ. Control Theory 10, No. 3, 431-460 (2021). MSC: 35L80 35B40 74D05 49K20 93D30 93D20 PDF BibTeX XML Cite \textit{H. Bounadja} and \textit{B. S. Houari}, Evol. Equ. Control Theory 10, No. 3, 431--460 (2021; Zbl 1473.35367) Full Text: DOI OpenURL
Almeida Júnior, D. S.; Feng, B.; Afilal, M.; Soufyane, A. The optimal decay rates for viscoelastic Timoshenko type system in the light of the second spectrum of frequency. (English) Zbl 1470.35052 Z. Angew. Math. Phys. 72, No. 4, Paper No. 147, 34 p. (2021). MSC: 35B40 35G46 35R09 74D05 93D20 PDF BibTeX XML Cite \textit{D. S. Almeida Júnior} et al., Z. Angew. Math. Phys. 72, No. 4, Paper No. 147, 34 p. (2021; Zbl 1470.35052) Full Text: DOI OpenURL
Hayashi, Nakao; Naumkin, Pavel I. Modified scattering for the higher-order anisotropic nonlinear Schrödinger equation in two space dimensions. (English) Zbl 1469.81076 J. Math. Phys. 62, No. 7, 071502, 23 p. (2021). MSC: 81U05 81Q05 35Q55 35G25 35B40 47A60 35P25 35S05 PDF BibTeX XML Cite \textit{N. Hayashi} and \textit{P. I. Naumkin}, J. Math. Phys. 62, No. 7, 071502, 23 p. (2021; Zbl 1469.81076) Full Text: DOI OpenURL
Chellaoua, Houria; Boukhatem, Yamna Optimal decay for second-order abstract viscoelastic equation in Hilbert spaces with infinite memory and time delay. (English) Zbl 1470.35054 Math. Methods Appl. Sci. 44, No. 2, 2071-2095 (2021). MSC: 35B40 35L90 45K05 34G10 PDF BibTeX XML Cite \textit{H. Chellaoua} and \textit{Y. Boukhatem}, Math. Methods Appl. Sci. 44, No. 2, 2071--2095 (2021; Zbl 1470.35054) Full Text: DOI OpenURL
Hao, Jianghao; Du, Fangqing Decay rate for viscoelastic wave equation of variable coefficients with delay and dynamic boundary conditions. (English) Zbl 1469.35034 Math. Methods Appl. Sci. 44, No. 1, 284-302 (2021). MSC: 35B40 35L53 35L71 35R09 74D05 93D15 PDF BibTeX XML Cite \textit{J. Hao} and \textit{F. Du}, Math. Methods Appl. Sci. 44, No. 1, 284--302 (2021; Zbl 1469.35034) Full Text: DOI OpenURL
Alaeddine, Draifia Decay rates for the energy of a singular nonlocal viscoelastic system. (English) Zbl 1469.35029 Math. Methods Appl. Sci. 44, No. 1, 196-219 (2021). MSC: 35B40 35L53 35L71 35R09 74D05 PDF BibTeX XML Cite \textit{D. Alaeddine}, Math. Methods Appl. Sci. 44, No. 1, 196--219 (2021; Zbl 1469.35029) Full Text: DOI OpenURL
Cantrell, Robert Stephen; Lam, King-Yeung Competitive exclusion in phytoplankton communities in a eutrophic water column. (English) Zbl 1466.35240 Discrete Contin. Dyn. Syst., Ser. B 26, No. 4, 1783-1795 (2021). MSC: 35K51 35K57 35B40 35R09 47H07 92D25 PDF BibTeX XML Cite \textit{R. S. Cantrell} and \textit{K.-Y. Lam}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 4, 1783--1795 (2021; Zbl 1466.35240) Full Text: DOI OpenURL
Xie, Peng; Zhu, Yi Wave packets in the fractional nonlinear Schrödinger equation with a honeycomb potential. (English) Zbl 1470.35299 Multiscale Model. Simul. 19, No. 2, 951-979 (2021). MSC: 35Q41 35Q60 35C20 35R11 35P05 PDF BibTeX XML Cite \textit{P. Xie} and \textit{Y. Zhu}, Multiscale Model. Simul. 19, No. 2, 951--979 (2021; Zbl 1470.35299) Full Text: DOI arXiv OpenURL
Ouchenane, Djamel; Khalili, Zineb; Yazid, Fares; Abdalla, Mohamed; Cherif, Bahri Belkacem; Mekawy, Ibrahim A new result of stability for thermoelastic-Bresse system of second sound related with forcing, delay, and past history terms. (English) Zbl 1465.35302 J. Funct. Spaces 2021, Article ID 9962569, 15 p. (2021). MSC: 35L53 35B40 35R09 47D06 74F05 PDF BibTeX XML Cite \textit{D. Ouchenane} et al., J. Funct. Spaces 2021, Article ID 9962569, 15 p. (2021; Zbl 1465.35302) Full Text: DOI OpenURL
Zhang, Hui On long-time behavior of Moore-Gibson-Thompson equation with localized and degenerate memory effect. (English) Zbl 1464.35039 Z. Angew. Math. Phys. 72, No. 2, Paper No. 76, 23 p. (2021). MSC: 35B40 35G16 35R09 45D05 PDF BibTeX XML Cite \textit{H. Zhang}, Z. Angew. Math. Phys. 72, No. 2, Paper No. 76, 23 p. (2021; Zbl 1464.35039) Full Text: DOI OpenURL
Al-Mahdi, Adel M.; Al-Gharabli, Mohammad M.; Guesmia, Aissa; Messaoudi, Salim A. New decay results for a viscoelastic-type Timoshenko system with infinite memory. (English) Zbl 1464.35023 Z. Angew. Math. Phys. 72, No. 1, Paper No. 22, 24 p. (2021). MSC: 35B40 35L53 35R09 74D05 93D15 93D20 PDF BibTeX XML Cite \textit{A. M. Al-Mahdi} et al., Z. Angew. Math. Phys. 72, No. 1, Paper No. 22, 24 p. (2021; Zbl 1464.35023) Full Text: DOI OpenURL
Dridi, Hanni; Djebabla, Abdelhak Timoshenko system with fractional operator in the memory and spatial fractional thermal effect. (English) Zbl 1462.35075 Rend. Circ. Mat. Palermo (2) 70, No. 1, 593-621 (2021). MSC: 35B40 35L53 35R09 45K05 47D06 74D05 PDF BibTeX XML Cite \textit{H. Dridi} and \textit{A. Djebabla}, Rend. Circ. Mat. Palermo (2) 70, No. 1, 593--621 (2021; Zbl 1462.35075) Full Text: DOI OpenURL
Dell’Oro, Filippo On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction. (English) Zbl 1459.35036 J. Differ. Equations 281, 148-198 (2021). MSC: 35B40 45K05 47D03 74D05 74F05 35B35 35L05 PDF BibTeX XML Cite \textit{F. Dell'Oro}, J. Differ. Equations 281, 148--198 (2021; Zbl 1459.35036) Full Text: DOI arXiv OpenURL
Nunes, Ruikson S. O. Exact boundary controllability and energy decay for a system of wave equations linearly coupled. (English) Zbl 07302523 Mediterr. J. Math. 18, No. 1, Paper No. 30, 12 p. (2021). MSC: 35L52 35L53 35B40 35B45 93B05 49J20 PDF BibTeX XML Cite \textit{R. S. O. Nunes}, Mediterr. J. Math. 18, No. 1, Paper No. 30, 12 p. (2021; Zbl 07302523) Full Text: DOI OpenURL
Jorge Silva, M. A.; Racke, R. Effects of history and heat models on the stability of thermoelastic Timoshenko systems. (English) Zbl 1467.35052 J. Differ. Equations 275, 167-203 (2021). Reviewer: Giuliano Lazzaroni (Firenze) MSC: 35B40 35Q79 74F05 74H40 35R09 35G46 PDF BibTeX XML Cite \textit{M. A. Jorge Silva} and \textit{R. Racke}, J. Differ. Equations 275, 167--203 (2021; Zbl 1467.35052) Full Text: DOI Link OpenURL
Conti, Monica; Dell’Oro, Filippo; Pata, Vittorino Exponential decay of a first order linear Volterra equation. (English) Zbl 1487.35074 Math. Eng. (Springfield) 2, No. 3, 459-471 (2020). MSC: 35B40 34G10 35K05 35R09 PDF BibTeX XML Cite \textit{M. Conti} et al., Math. Eng. (Springfield) 2, No. 3, 459--471 (2020; Zbl 1487.35074) Full Text: DOI OpenURL
Feng, Baowei; Li, Haiyan Decay rates for a coupled viscoelastic Lamé system with strong damping. (English) Zbl 1479.35091 Math. Model. Anal. 25, No. 2, 226-240 (2020). MSC: 35B40 35L53 35R09 74D05 93D20 PDF BibTeX XML Cite \textit{B. Feng} and \textit{H. Li}, Math. Model. Anal. 25, No. 2, 226--240 (2020; Zbl 1479.35091) Full Text: DOI OpenURL
Gorodetskiy, V. V.; Kolisnyk, R. S.; Shevchuk, N. M. On one evolution equation of parabolic type with fractional differentiation operator in \(S\) spaces. (English) Zbl 1464.35408 Int. J. Differ. Equ. 2020, Article ID 1673741, 11 p. (2020). MSC: 35S10 35B40 35R11 35K15 35K90 46F05 PDF BibTeX XML Cite \textit{V. V. Gorodetskiy} et al., Int. J. Differ. Equ. 2020, Article ID 1673741, 11 p. (2020; Zbl 1464.35408) Full Text: DOI OpenURL
Damak, Hanen; Hammami, Mohamed Ali Asymptotic stability of a perturbed abstract differential equations in Banach spaces. (English) Zbl 1467.93259 Oper. Matrices 14, No. 1, 129-138 (2020). MSC: 93D20 93C25 93C15 34D10 34D20 34G20 35R20 PDF BibTeX XML Cite \textit{H. Damak} and \textit{M. A. Hammami}, Oper. Matrices 14, No. 1, 129--138 (2020; Zbl 1467.93259) Full Text: DOI OpenURL
Lastra, A.; Malek, S. On singularly perturbed linear initial value problems with mixed irregular and Fuchsian time singularities. (English) Zbl 1461.35022 J. Geom. Anal. 30, No. 4, 3872-3922 (2020). MSC: 35B25 35G25 35R09 35C10 35C15 35C20 PDF BibTeX XML Cite \textit{A. Lastra} and \textit{S. Malek}, J. Geom. Anal. 30, No. 4, 3872--3922 (2020; Zbl 1461.35022) Full Text: DOI arXiv OpenURL
Wang, Qingfang; Yang, Hua Solutions of nonlocal problem with critical exponent. (English) Zbl 1460.35382 Commun. Pure Appl. Anal. 19, No. 12, 5591-5608 (2020). MSC: 35R11 35B33 35B65 35J57 35J61 PDF BibTeX XML Cite \textit{Q. Wang} and \textit{H. Yang}, Commun. Pure Appl. Anal. 19, No. 12, 5591--5608 (2020; Zbl 1460.35382) Full Text: DOI OpenURL
Aili, Mohammed; Khemmoudj, Ammar General decay of energy for a viscoelastic wave equation with a distributed delay term in the nonlinear internal dambing. (English) Zbl 1459.35032 Rend. Circ. Mat. Palermo (2) 69, No. 3, 861-881 (2020). MSC: 35B40 35L20 35L72 35R09 74D05 74F05 93D15 26A51 PDF BibTeX XML Cite \textit{M. Aili} and \textit{A. Khemmoudj}, Rend. Circ. Mat. Palermo (2) 69, No. 3, 861--881 (2020; Zbl 1459.35032) Full Text: DOI OpenURL
Mezouar, Nadia; Boulaaras, Salah Global existence of solutions to a viscoelastic non-degenerate Kirchhoff equation. (English) Zbl 1458.35255 Appl. Anal. 99, No. 10, 1724-1748 (2020). MSC: 35L35 35L90 35L77 35R09 35B40 26A51 74D05 PDF BibTeX XML Cite \textit{N. Mezouar} and \textit{S. Boulaaras}, Appl. Anal. 99, No. 10, 1724--1748 (2020; Zbl 1458.35255) Full Text: DOI OpenURL
Doudi, Nadjat; Boulaaras, Salah Mahmoud; Alghamdi, Ahmad Mohammed; Cherif, Bahri Polynomial decay rate for a coupled Lamé system with viscoelastic damping and distributed delay terms. (English) Zbl 1456.35132 J. Funct. Spaces 2020, Article ID 8879366, 14 p. (2020). MSC: 35L53 35R09 35B40 74D05 PDF BibTeX XML Cite \textit{N. Doudi} et al., J. Funct. Spaces 2020, Article ID 8879366, 14 p. (2020; Zbl 1456.35132) Full Text: DOI OpenURL
Boulaaras, Salah; Mezouar, Nadia Global existence and decay of solutions of a singular nonlocal viscoelastic system with a nonlinear source term, nonlocal boundary condition, and localized damping term. (English) Zbl 1452.35094 Math. Methods Appl. Sci. 43, No. 10, 6140-6164 (2020). MSC: 35L53 35L71 35L81 35B40 35R09 74D05 PDF BibTeX XML Cite \textit{S. Boulaaras} and \textit{N. Mezouar}, Math. Methods Appl. Sci. 43, No. 10, 6140--6164 (2020; Zbl 1452.35094) Full Text: DOI OpenURL
Liu, Wenjun; Chen, Zhijing; Chen, Dongqin New general decay results for a Moore-Gibson-Thompson equation with memory. (English) Zbl 1450.35065 Appl. Anal. 99, No. 15, 2622-2640 (2020). MSC: 35B40 35G10 35R09 35Q70 45D05 PDF BibTeX XML Cite \textit{W. Liu} et al., Appl. Anal. 99, No. 15, 2622--2640 (2020; Zbl 1450.35065) Full Text: DOI OpenURL
Hao, Jianghao; Lv, Mengxian Energy decay for variable coefficient viscoelastic wave equation with acoustic boundary conditions in domains with nonlocally reacting boundary. (English) Zbl 1450.35062 Electron. J. Differ. Equ. 2020, Paper No. 95, 13 p. (2020). MSC: 35B40 35L71 35L20 35R09 74D05 PDF BibTeX XML Cite \textit{J. Hao} and \textit{M. Lv}, Electron. J. Differ. Equ. 2020, Paper No. 95, 13 p. (2020; Zbl 1450.35062) Full Text: Link OpenURL
Nguyen Huu Tri; Bui Xuan Dieu; Vu Trong Luong; Nguyen Van Minh Almost periodic solutions of periodic second order linear evolution equations. (English) Zbl 1466.34057 Korean J. Math. 28, No. 2, 223-240 (2020). Reviewer: Hristo S. Kiskinov (Plovdiv) MSC: 34G10 34C27 PDF BibTeX XML Cite \textit{Nguyen Huu Tri} et al., Korean J. Math. 28, No. 2, 223--240 (2020; Zbl 1466.34057) Full Text: DOI OpenURL
Nunes, Ruikson S. O.; Bastos, Waldemar D.; Pitot, João Manoel S. Energy decay and control for a system of strings elastically connected in parallel. (English) Zbl 1445.35072 Math. Methods Appl. Sci. 43, No. 3, 1230-1242 (2020). MSC: 35B40 35L52 35L53 93B05 49J20 74K05 PDF BibTeX XML Cite \textit{R. S. O. Nunes} et al., Math. Methods Appl. Sci. 43, No. 3, 1230--1242 (2020; Zbl 1445.35072) Full Text: DOI OpenURL
Narciso, Vando On a Kirchhoff wave model with nonlocal nonlinear damping. (English) Zbl 1442.35269 Evol. Equ. Control Theory 9, No. 2, 487-508 (2020). MSC: 35L72 35B40 35B41 35L20 35R09 74K10 93D20 PDF BibTeX XML Cite \textit{V. Narciso}, Evol. Equ. Control Theory 9, No. 2, 487--508 (2020; Zbl 1442.35269) Full Text: DOI OpenURL
Laouar, Lakhdar Kassah; Zennir, Khaled; Boulaaras, Salah The sharp decay rate of thermoelastic transmission system with infinite memories. (English) Zbl 1444.35115 Rend. Circ. Mat. Palermo (2) 69, No. 2, 403-423 (2020). MSC: 35L53 35B40 35R11 93D20 74F05 47D06 PDF BibTeX XML Cite \textit{L. K. Laouar} et al., Rend. Circ. Mat. Palermo (2) 69, No. 2, 403--423 (2020; Zbl 1444.35115) Full Text: DOI OpenURL
Lods, B.; Mokhtar-Kharroubi, M.; Rudnicki, R. Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators. (English) Zbl 1439.82037 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 877-923 (2020). MSC: 82C40 35F15 47D06 35B40 35R06 35R60 35Q49 PDF BibTeX XML Cite \textit{B. Lods} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 877--923 (2020; Zbl 1439.82037) Full Text: DOI arXiv OpenURL
Bernard, Étienne; Gabriel, Pierre Asynchronous exponential growth of the growth-fragmentation equation with unbounded fragmentation rate. (English) Zbl 1452.35029 J. Evol. Equ. 20, No. 2, 375-401 (2020). Reviewer: Philippe Laurençot (Toulouse) MSC: 35B40 35P05 35R09 47D06 47A55 35F16 PDF BibTeX XML Cite \textit{É. Bernard} and \textit{P. Gabriel}, J. Evol. Equ. 20, No. 2, 375--401 (2020; Zbl 1452.35029) Full Text: DOI arXiv OpenURL
Wei, Zhaoying; Wei, Guangsheng Uniqueness of solution to inverse Dirac spectral problems associated with incomplete spectral data. (English) Zbl 1439.81043 J. Math. Phys. 61, No. 3, 033505, 14 p. (2020). MSC: 81Q05 81R20 35R30 35P05 PDF BibTeX XML Cite \textit{Z. Wei} and \textit{G. Wei}, J. Math. Phys. 61, No. 3, 033505, 14 p. (2020; Zbl 1439.81043) Full Text: DOI OpenURL
Li, Qian; He, Luofei General decay of solutions to a viscoelastic wave equation with linear damping, nonlinear damping and source term. (English) Zbl 1439.35066 Appl. Anal. 99, No. 7, 1248-1259 (2020). MSC: 35B40 35L71 35L20 35R09 74D05 PDF BibTeX XML Cite \textit{Q. Li} and \textit{L. He}, Appl. Anal. 99, No. 7, 1248--1259 (2020; Zbl 1439.35066) Full Text: DOI OpenURL
Horsin, Thierry; Jendoubi, Mohamed Ali An extension of a Lyapunov approach to the stabilization of second order coupled systems. (English) Zbl 1441.35052 ESAIM, Control Optim. Calc. Var. 26, Paper No. 19, 16 p. (2020). Reviewer: Kaïs Ammari (Monastir) MSC: 35B40 35L90 35L53 49J15 49J20 PDF BibTeX XML Cite \textit{T. Horsin} and \textit{M. A. Jendoubi}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 19, 16 p. (2020; Zbl 1441.35052) Full Text: DOI arXiv OpenURL
Creo, Simone; Lancia, Maria Rosaria; Vernole, Paola Convergence of fractional diffusion processes in extension domains. (English) Zbl 1436.35314 J. Evol. Equ. 20, No. 1, 109-139 (2020). MSC: 35R11 35B40 35K57 47D06 28A80 58J65 PDF BibTeX XML Cite \textit{S. Creo} et al., J. Evol. Equ. 20, No. 1, 109--139 (2020; Zbl 1436.35314) Full Text: DOI OpenURL
Del Pezzo, Leandro M.; Quaas, Alexander Spectrum of the fractional \(p\)-Laplacian in \(\mathbb{R}^N\) and decay estimate for positive solutions of a Schrödinger equation. (English) Zbl 1439.35525 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 193, Article ID 111479, 24 p. (2020). MSC: 35R11 35B40 35P05 46E35 47A10 35J92 PDF BibTeX XML Cite \textit{L. M. Del Pezzo} and \textit{A. Quaas}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 193, Article ID 111479, 24 p. (2020; Zbl 1439.35525) Full Text: DOI arXiv OpenURL
Bonacini, Marco; Niethammer, Barbara; Velázquez, Juan J. L. Solutions with peaks for a coagulation-fragmentation equation. I: Stability of the tails. (English) Zbl 1441.35044 Commun. Partial Differ. Equations 45, No. 5, 351-391 (2020). Reviewer: Philippe Laurençot (Toulouse) MSC: 35B40 45K05 45M05 47D06 PDF BibTeX XML Cite \textit{M. Bonacini} et al., Commun. Partial Differ. Equations 45, No. 5, 351--391 (2020; Zbl 1441.35044) Full Text: DOI arXiv OpenURL
Cavalli, Benedetta On a family of critical growth-fragmentation semigroups and refracted Lévy processes. (English) Zbl 1439.35487 Acta Appl. Math. 166, 161-186 (2020). MSC: 35Q92 47D06 47G20 45K05 60G51 60J99 92D25 35B40 35Q49 92C37 PDF BibTeX XML Cite \textit{B. Cavalli}, Acta Appl. Math. 166, 161--186 (2020; Zbl 1439.35487) Full Text: DOI arXiv OpenURL
Dłotko, Tomasz W.; Wang, Yejuan Critical parabolic-type problems. (English) Zbl 1445.35004 De Gruyter Series in Nonlinear Analysis and Applications 34. Berlin: De Gruyter (ISBN 978-3-11-059755-4/hbk; 978-3-11-059983-1/ebook). xii, 288 p. (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35-02 35K55 35K90 35R11 35B40 35B41 47D06 PDF BibTeX XML Cite \textit{T. W. Dłotko} and \textit{Y. Wang}, Critical parabolic-type problems. Berlin: De Gruyter (2020; Zbl 1445.35004) Full Text: DOI OpenURL
Sun, Jian-Wen Sharp profiles for periodic logistic equation with nonlocal dispersal. (English) Zbl 1432.35010 Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 46, 19 p. (2020). MSC: 35B10 35B40 35K57 35P05 35B09 35R09 PDF BibTeX XML Cite \textit{J.-W. Sun}, Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 46, 19 p. (2020; Zbl 1432.35010) Full Text: DOI OpenURL
Conti, Monica; Pata, Vittorino General decay properties of abstract linear viscoelasticity. (English) Zbl 1430.35030 Z. Angew. Math. Phys. 71, No. 1, Paper No. 6, 21 p. (2020). MSC: 35B40 45K05 45M05 35L90 35R09 74D05 PDF BibTeX XML Cite \textit{M. Conti} and \textit{V. Pata}, Z. Angew. Math. Phys. 71, No. 1, Paper No. 6, 21 p. (2020; Zbl 1430.35030) Full Text: DOI OpenURL
Lafleche, Laurent Fractional Fokker-Planck equation with general confinement force. (English) Zbl 1435.35386 SIAM J. Math. Anal. 52, No. 1, 164-196 (2020). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q84 82C31 35B40 45M05 35P15 45C05 35R11 35R09 45K05 47G20 47D06 34G10 34K30 PDF BibTeX XML Cite \textit{L. Lafleche}, SIAM J. Math. Anal. 52, No. 1, 164--196 (2020; Zbl 1435.35386) Full Text: DOI arXiv OpenURL
Feng, Baowei; Yang, Xinguang; Su, Keqin Well-posedness and stability for a viscoelastic wave equation with density and time-varying delay in \(\mathbb{R}^n\). (English) Zbl 1439.35058 J. Integral Equations Appl. 31, No. 4, 465-493 (2019). MSC: 35B40 35L15 35R09 74D05 93D15 93D20 PDF BibTeX XML Cite \textit{B. Feng} et al., J. Integral Equations Appl. 31, No. 4, 465--493 (2019; Zbl 1439.35058) Full Text: DOI Euclid OpenURL
Jiménez-Casas, Ángela Asymptotic behaviour of a closed-loop thermosyphon with linear friction and viscoelastic binary fluid. (English) Zbl 1434.35100 Math. Methods Appl. Sci. 42, No. 18, 6791-6809 (2019). MSC: 35Q35 35B40 58J99 74D05 76A10 76T20 35R09 35A01 35A02 PDF BibTeX XML Cite \textit{Á. Jiménez-Casas}, Math. Methods Appl. Sci. 42, No. 18, 6791--6809 (2019; Zbl 1434.35100) Full Text: DOI OpenURL
Zhang, Qifeng; Li, Tingyue Asymptotic stability of compact and linear \(\theta \)-methods for space fractional delay generalized diffusion equation. (English) Zbl 1433.65172 J. Sci. Comput. 81, No. 3, 2413-2446 (2019). MSC: 65M06 65M15 65M12 35B40 35R11 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{T. Li}, J. Sci. Comput. 81, No. 3, 2413--2446 (2019; Zbl 1433.65172) Full Text: DOI OpenURL
Jendoubi, Chiraz Stable manifolds for some partial neutral functional differential equations with non-dense domain. (English) Zbl 1429.35190 J. Integral Equations Appl. 31, No. 3, 343-377 (2019). MSC: 35R10 34D35 34G20 34K40 35B40 37D10 47D06 PDF BibTeX XML Cite \textit{C. Jendoubi}, J. Integral Equations Appl. 31, No. 3, 343--377 (2019; Zbl 1429.35190) Full Text: DOI Euclid OpenURL
Boussaïd, Nabile; Comech, Andrew Nonlinear Dirac equation. Spectral stability of solitary waves. (English) Zbl 1442.35001 Mathematical Surveys and Monographs 244. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4395-5/hbk; 978-1-4704-5422-7/ebook). vi, 297 p. (2019). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 35-02 35B32 35B35 35C08 35P05 35Q41 81Q05 PDF BibTeX XML Cite \textit{N. Boussaïd} and \textit{A. Comech}, Nonlinear Dirac equation. Spectral stability of solitary waves. Providence, RI: American Mathematical Society (AMS) (2019; Zbl 1442.35001) Full Text: DOI OpenURL
Zakora, D. A. Asymptotics of solutions in the problem about small motions of a compressible Maxwell fluid. (English. Russian original) Zbl 1433.35310 Differ. Equ. 55, No. 9, 1150-1163 (2019); translation from Differ. Uravn. 55, No. 9, 1195-1208 (2019). MSC: 35Q35 76A10 76N10 35R09 35B35 35B40 74D05 74B05 35Q74 45R05 PDF BibTeX XML Cite \textit{D. A. Zakora}, Differ. Equ. 55, No. 9, 1150--1163 (2019; Zbl 1433.35310); translation from Differ. Uravn. 55, No. 9, 1195--1208 (2019) Full Text: DOI OpenURL
Al-Mahdi, Adel M.; Al-Gharabli, Mohammad M.; Kafini, Mohammad A new general decay result for abstract evolution equation with time-dependent nonlinear dissipation. (English) Zbl 1429.35029 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 65, No. 2, 201-230 (2019). MSC: 35B40 93D15 93D20 35R09 74D05 PDF BibTeX XML Cite \textit{A. M. Al-Mahdi} et al., Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 65, No. 2, 201--230 (2019; Zbl 1429.35029) Full Text: DOI OpenURL
Ramos, M. P. Machado; Ribeiro, C.; Soares, A. J. A kinetic model of \(T\) cell autoreactivity in autoimmune diseases. (English) Zbl 1427.35296 J. Math. Biol. 79, No. 6-7, 2005-2031 (2019). MSC: 35Q92 92D25 92C50 35R09 34A34 65D30 65M06 92-08 82C40 92C37 35B40 PDF BibTeX XML Cite \textit{M. P. M. Ramos} et al., J. Math. Biol. 79, No. 6--7, 2005--2031 (2019; Zbl 1427.35296) Full Text: DOI OpenURL
Feng, Baowei; Kang, Yong Han Decay rates for a viscoelastic wave equation with Balakrishnan-Taylor and frictional dampings. (English) Zbl 1437.35071 Topol. Methods Nonlinear Anal. 54, No. 1, 321-343 (2019). MSC: 35B40 35L20 35L72 35R09 74D05 93D20 PDF BibTeX XML Cite \textit{B. Feng} and \textit{Y. H. Kang}, Topol. Methods Nonlinear Anal. 54, No. 1, 321--343 (2019; Zbl 1437.35071) Full Text: DOI Euclid OpenURL
Meneses, Rodrigo; Orellana, Oscar Correction to: “Solving a nonlinear variation of the heat equation: self-similar solutions of the second kind and other results”. (English) Zbl 1482.65201 J. Evol. Equ. 19, No. 3, 931 (2019). MSC: 65M99 65H05 35K60 35B40 35C06 33C15 PDF BibTeX XML Cite \textit{R. Meneses} and \textit{O. Orellana}, J. Evol. Equ. 19, No. 3, 931 (2019; Zbl 1482.65201) Full Text: DOI OpenURL
Meneses, Rodrigo; Orellana, Oscar Solving a nonlinear variation of the heat equation: self-similar solutions of the second kind and other results. (English) Zbl 1428.65056 J. Evol. Equ. 19, No. 3, 915-929 (2019); correction ibid. 19, No. 3, 931 (2019). MSC: 65M99 65H05 35K60 35B40 35C06 33C15 PDF BibTeX XML Cite \textit{R. Meneses} and \textit{O. Orellana}, J. Evol. Equ. 19, No. 3, 915--929 (2019; Zbl 1428.65056) Full Text: DOI OpenURL
Banasiak, J.; Joel, L. O.; Shindin, S. Discrete growth-decay-fragmentation equation: well-posedness and long-term dynamics. (English) Zbl 1474.34399 J. Evol. Equ. 19, No. 3, 771-802 (2019). MSC: 34G10 35B40 35P05 47D06 45K05 80A30 PDF BibTeX XML Cite \textit{J. Banasiak} et al., J. Evol. Equ. 19, No. 3, 771--802 (2019; Zbl 1474.34399) Full Text: DOI OpenURL
Chentouf, Boumediène; Guesmia, Aissa Well posedness and asymptotic behavior of a wave equation with distributed time-delay and Neumann boundary conditions. (English) Zbl 1423.35385 Math. Methods Appl. Sci. 42, No. 13, 4584-4605 (2019). MSC: 35R10 35L20 35B30 35B40 35R09 70J25 93D15 PDF BibTeX XML Cite \textit{B. Chentouf} and \textit{A. Guesmia}, Math. Methods Appl. Sci. 42, No. 13, 4584--4605 (2019; Zbl 1423.35385) Full Text: DOI OpenURL
Oquendo, Higidio Portillo; Astudillo, María Optimal decay for plates with rotational inertia and memory. (English) Zbl 1428.35044 Math. Nachr. 292, No. 8, 1800-1810 (2019). MSC: 35B40 35Q74 47D03 74K20 35L35 35R09 35R11 PDF BibTeX XML Cite \textit{H. P. Oquendo} and \textit{M. Astudillo}, Math. Nachr. 292, No. 8, 1800--1810 (2019; Zbl 1428.35044) Full Text: DOI OpenURL
Al-Gharabli, Mohammad M.; Al-Mahdi, Adel M.; Messaoudi, Salim A. General and optimal decay result for a viscoelastic problem with nonlinear boundary feedback. (English) Zbl 1437.35061 J. Dyn. Control Syst. 25, No. 4, 551-572 (2019). MSC: 35B40 35L20 74D05 74D10 93D20 35R09 PDF BibTeX XML Cite \textit{M. M. Al-Gharabli} et al., J. Dyn. Control Syst. 25, No. 4, 551--572 (2019; Zbl 1437.35061) Full Text: DOI OpenURL
Gabriel, Pierre; Martin, Hugo Steady distribution of the incremental model for bacteria proliferation. (English) Zbl 1428.35623 Netw. Heterog. Media 14, No. 1, 149-171 (2019). MSC: 35Q92 35P05 45K05 45P05 92D25 35A22 35B40 35B65 PDF BibTeX XML Cite \textit{P. Gabriel} and \textit{H. Martin}, Netw. Heterog. Media 14, No. 1, 149--171 (2019; Zbl 1428.35623) Full Text: DOI arXiv OpenURL
Bertoin, Jean On a Feynman-Kac approach to growth-fragmentation semigroups and their asymptotic behaviors. (English) Zbl 1433.35414 J. Funct. Anal. 277, No. 11, Article ID 108270, 29 p. (2019). Reviewer: Zhen Chao (Milwaukee) MSC: 35Q92 37A30 47D06 60G46 60J25 92D25 35R09 35B40 PDF BibTeX XML Cite \textit{J. Bertoin}, J. Funct. Anal. 277, No. 11, Article ID 108270, 29 p. (2019; Zbl 1433.35414) Full Text: DOI arXiv Link OpenURL
Ferreira, Lucas C. F.; Ferreira, Vanderley A. jun. On the eventual local positivity for polyharmonic heat equations. (English) Zbl 1428.35154 Proc. Am. Math. Soc. 147, No. 10, 4329-4341 (2019). Reviewer: Philippe Laurençot (Toulouse) MSC: 35K25 35R11 35B05 35B40 PDF BibTeX XML Cite \textit{L. C. F. Ferreira} and \textit{V. A. Ferreira jun.}, Proc. Am. Math. Soc. 147, No. 10, 4329--4341 (2019; Zbl 1428.35154) Full Text: DOI OpenURL
Gregosiewicz, Adam Asymptotics of the Lebowitz-Rubinow-Rotenberg model of population development. (English) Zbl 1421.35382 Discrete Contin. Dyn. Syst., Ser. B 24, No. 6, 2443-2472 (2019). MSC: 35Q92 47D06 92D25 35B40 47D03 PDF BibTeX XML Cite \textit{A. Gregosiewicz}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 6, 2443--2472 (2019; Zbl 1421.35382) Full Text: DOI OpenURL
Khomrutai, Sujin Nonlocal equations with regular varying decay solutions. (English) Zbl 1447.35340 J. Differ. Equations 267, No. 8, 4807-4840 (2019). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 35R09 35B40 45A05 45M05 PDF BibTeX XML Cite \textit{S. Khomrutai}, J. Differ. Equations 267, No. 8, 4807--4840 (2019; Zbl 1447.35340) Full Text: DOI arXiv OpenURL
Clavero, C.; Jorge, J. C. An efficient numerical method for singularly perturbed time dependent parabolic 2D convection-diffusion systems. (English) Zbl 1419.65014 J. Comput. Appl. Math. 354, 431-444 (2019). MSC: 65M06 65M12 35B25 35K15 35R11 35B40 65F05 PDF BibTeX XML Cite \textit{C. Clavero} and \textit{J. C. Jorge}, J. Comput. Appl. Math. 354, 431--444 (2019; Zbl 1419.65014) Full Text: DOI OpenURL
Lastra, Alberto; Malek, Stephane Parametric Borel summability for linear singularly perturbed Cauchy problems with linear fractional transforms. (English) Zbl 1412.35358 Electron. J. Differ. Equ. 2019, Paper No. 55, 75 p. (2019). MSC: 35R10 35C10 35C15 35C20 PDF BibTeX XML Cite \textit{A. Lastra} and \textit{S. Malek}, Electron. J. Differ. Equ. 2019, Paper No. 55, 75 p. (2019; Zbl 1412.35358) Full Text: Link OpenURL
Xavier, M.; Novotny, A. A.; Sokołowski, J. Crack growth control based on the topological derivative of the Rice’s integral. (English) Zbl 1412.74011 J. Elasticity 134, No. 2, 175-191 (2019). MSC: 74B05 74R10 49Q12 49J20 35C20 35A15 PDF BibTeX XML Cite \textit{M. Xavier} et al., J. Elasticity 134, No. 2, 175--191 (2019; Zbl 1412.74011) Full Text: DOI OpenURL