Bamberg, John; Li, Cai Heng; Swartz, Eric A classification of finite locally 2-transitive generalized quadrangles. (English) Zbl 07313190 Trans. Am. Math. Soc. 374, No. 3, 1535-1578 (2021). MSC: 51E12 20B05 20B15 20B25 PDF BibTeX XML Cite \textit{J. Bamberg} et al., Trans. Am. Math. Soc. 374, No. 3, 1535--1578 (2021; Zbl 07313190) Full Text: DOI
Taniguchi, Hiroaki Distance regular graphs arising from dimensional dual hyperovals. (English) Zbl 07313139 Finite Fields Appl. 69, Article ID 101776, 15 p. (2021). MSC: 51E20 11T71 20B25 05E18 05E30 PDF BibTeX XML Cite \textit{H. Taniguchi}, Finite Fields Appl. 69, Article ID 101776, 15 p. (2021; Zbl 07313139) Full Text: DOI
Lia, Stefano; Timpanella, Marco Bound on the order of the decomposition groups of an algebraic curve in positive characteristic. (English) Zbl 07313135 Finite Fields Appl. 69, Article ID 101771, 15 p. (2021). MSC: 14H37 14H05 PDF BibTeX XML Cite \textit{S. Lia} and \textit{M. Timpanella}, Finite Fields Appl. 69, Article ID 101771, 15 p. (2021; Zbl 07313135) Full Text: DOI
Winter, Martin Geometry and topology of symmetric point arrangements. (English) Zbl 07312030 Linear Algebra Appl. 611, 1-25 (2021). MSC: 20B25 52C25 PDF BibTeX XML Cite \textit{M. Winter}, Linear Algebra Appl. 611, 1--25 (2021; Zbl 07312030) Full Text: DOI
Andrica, Dorin; Rădulescu, Sorin; Ţurcaş, George C. On the automorphism group of direct products of groups with finite exponent. (English) Zbl 07310957 Am. Math. Mon. 128, No. 2, 168-173 (2021). MSC: 20F28 20E36 PDF BibTeX XML Cite \textit{D. Andrica} et al., Am. Math. Mon. 128, No. 2, 168--173 (2021; Zbl 07310957) Full Text: DOI
Feng, Tao; Li, Weicong The point regular automorphism groups of the Payne derived quadrangle of \(W(q)\). (English) Zbl 07304868 J. Comb. Theory, Ser. A 179, Article ID 105384, 54 p. (2021). MSC: 51E12 05B25 20B25 PDF BibTeX XML Cite \textit{T. Feng} and \textit{W. Li}, J. Comb. Theory, Ser. A 179, Article ID 105384, 54 p. (2021; Zbl 07304868) Full Text: DOI
Jin, Wei; Praeger, Cheryl E. Normal quotients of diameter at most two of finite three-geodesic-transitive graphs. (English) Zbl 07304656 J. Comb. Theory, Ser. A 178, Article ID 105349, 35 p. (2021). MSC: 05C25 05C12 05E30 PDF BibTeX XML Cite \textit{W. Jin} and \textit{C. E. Praeger}, J. Comb. Theory, Ser. A 178, Article ID 105349, 35 p. (2021; Zbl 07304656) Full Text: DOI
Miklavič, Štefko; Šparl, Primož; Wilson, Stephen E. Generalized Gardiner-Praeger graphs and their symmetries. (English) Zbl 07302681 Discrete Math. 344, No. 3, Article ID 112263, 22 p. (2021). MSC: 05C25 20B25 PDF BibTeX XML Cite \textit{Š. Miklavič} et al., Discrete Math. 344, No. 3, Article ID 112263, 22 p. (2021; Zbl 07302681) Full Text: DOI
Chen, Jianfu; Zhou, Shenglin Induced designs and fixed points. (English) Zbl 07302669 Discrete Math. 344, No. 3, Article ID 112242, 8 p. (2021). MSC: 05B05 05B30 20B25 PDF BibTeX XML Cite \textit{J. Chen} and \textit{S. Zhou}, Discrete Math. 344, No. 3, Article ID 112242, 8 p. (2021; Zbl 07302669) Full Text: DOI
Dvořák, Pavel; Valla, Tomáš Automorphisms of the cube \(n^d\). (English) Zbl 07302661 Discrete Math. 344, No. 3, Article ID 112234, 14 p. (2021). MSC: 05C65 05C60 05A05 05E18 20F05 PDF BibTeX XML Cite \textit{P. Dvořák} and \textit{T. Valla}, Discrete Math. 344, No. 3, Article ID 112234, 14 p. (2021; Zbl 07302661) Full Text: DOI
Carter, Max; Willis, George A. Decomposition theorems for automorphism groups of trees. (English) Zbl 07302541 Bull. Aust. Math. Soc. 103, No. 1, 104-112 (2021). MSC: 20E08 22D05 PDF BibTeX XML Cite \textit{M. Carter} and \textit{G. A. Willis}, Bull. Aust. Math. Soc. 103, No. 1, 104--112 (2021; Zbl 07302541) Full Text: DOI
AL-Tarimshawy, Ali Sltan Ali; Siemons, J. Singular graphs with dihedral group action. (English) Zbl 07299409 Discrete Math. 344, No. 1, Article ID 112119, 6 p. (2021). MSC: 05C50 20B25 PDF BibTeX XML Cite \textit{A. S. A. AL-Tarimshawy} and \textit{J. Siemons}, Discrete Math. 344, No. 1, Article ID 112119, 6 p. (2021; Zbl 07299409) Full Text: DOI
Dai, Shaojun; Li, Shangzhao Flag-transitive \(3-(v,k,3)\) designs and \(\operatorname{PSL}(2,q)\) groups. (English) Zbl 07299355 Algebra Colloq. 28, No. 1, 33-38 (2021). Reviewer: Charles J. Colbourn (Tempe) MSC: 05B05 20B25 PDF BibTeX XML Cite \textit{S. Dai} and \textit{S. Li}, Algebra Colloq. 28, No. 1, 33--38 (2021; Zbl 07299355) Full Text: DOI
Meng, H.; Ballester-Bolinches, A.; Esteban-Romero, R.; Fuster-Corral, N. On finite involutive Yang-Baxter groups. (English) Zbl 07299119 Proc. Am. Math. Soc. 149, No. 2, 793-804 (2021). MSC: 16T25 20F29 20B35 20F16 20C05 16S34 PDF BibTeX XML Cite \textit{H. Meng} et al., Proc. Am. Math. Soc. 149, No. 2, 793--804 (2021; Zbl 07299119) Full Text: DOI
Singh, Anoop On the moduli space of \(\lambda\)-connections. (English) Zbl 07299092 Proc. Am. Math. Soc. 149, No. 2, 459-470 (2021). MSC: 14D20 14C22 14E05 14J50 14H60 PDF BibTeX XML Cite \textit{A. Singh}, Proc. Am. Math. Soc. 149, No. 2, 459--470 (2021; Zbl 07299092) Full Text: DOI
Conder, Marston D. E.; Feng, Yan-Quan; Hou, Dong-Dong Two infinite families of chiral polytopes of type 4,4,4 with solvable automorphism groups. (English) Zbl 07286501 J. Algebra 569, 713-722 (2021). MSC: 52B15 20B25 PDF BibTeX XML Cite \textit{M. D. E. Conder} et al., J. Algebra 569, 713--722 (2021; Zbl 07286501) Full Text: DOI
Conder, Marston D. E. The smallest symmetric cubic graphs with given type. (English) Zbl 07286498 J. Algebra 569, 643-657 (2021). MSC: 05E18 20B25 PDF BibTeX XML Cite \textit{M. D. E. Conder}, J. Algebra 569, 643--657 (2021; Zbl 07286498) Full Text: DOI
Shoji, Toshiaki; Zhou, Zhiping Diagram automorphisms and canonical bases for quantum affine algebras. (English) Zbl 07286477 J. Algebra 569, 67-110 (2021). MSC: 17B37 PDF BibTeX XML Cite \textit{T. Shoji} and \textit{Z. Zhou}, J. Algebra 569, 67--110 (2021; Zbl 07286477) Full Text: DOI
Furutani, Kenro; Markina, Irina Automorphism groups of pseudo \(H\)-type algebras. (English) Zbl 07285332 J. Algebra 568, 91-138 (2021). MSC: 17B60 17B30 17B70 22E15 PDF BibTeX XML Cite \textit{K. Furutani} and \textit{I. Markina}, J. Algebra 568, 91--138 (2021; Zbl 07285332) Full Text: DOI
Korchmáros, Gábor; Lia, Stefano; Timpanella, Marco Curves with more than one inner Galois point. (English) Zbl 07268498 J. Algebra 566, 374-404 (2021). MSC: 14H37 14H05 PDF BibTeX XML Cite \textit{G. Korchmáros} et al., J. Algebra 566, 374--404 (2021; Zbl 07268498) Full Text: DOI
Carvacho, Mariela; Paulhus, Jennifer; Tucker, Thomas; Wootton, Aaron Non-abelian simple groups act with almost all signatures. (English) Zbl 1451.14100 J. Pure Appl. Algebra 225, No. 4, Article ID 106552, 11 p. (2021). Reviewer: José Javier Etayo (Madrid) MSC: 14H37 20D05 20D15 30F10 30F20 PDF BibTeX XML Cite \textit{M. Carvacho} et al., J. Pure Appl. Algebra 225, No. 4, Article ID 106552, 11 p. (2021; Zbl 1451.14100) Full Text: DOI
Mednykh, Alexander; Mednykh, Ilya Two Moore’s theorems for graphs. (English) Zbl 07312839 Rend. Ist. Mat. Univ. Trieste 52, 469-476 (2020). MSC: 05C25 39A12 30F10 PDF BibTeX XML Cite \textit{A. Mednykh} and \textit{I. Mednykh}, Rend. Ist. Mat. Univ. Trieste 52, 469--476 (2020; Zbl 07312839) Full Text: DOI
Zhan, Xiaoqin; Li, Rongrong Three dimensional projective special linear groups on 2-designs. (English) Zbl 07312705 Finite Fields Appl. 67, Article ID 101724, 9 p. (2020). MSC: 05B05 20B25 PDF BibTeX XML Cite \textit{X. Zhan} and \textit{R. Li}, Finite Fields Appl. 67, Article ID 101724, 9 p. (2020; Zbl 07312705) Full Text: DOI
Arezoomand, Majid; Ghasemi, Mohsen Normality of one-matching semi-Cayley graphs over finite abelian groups with maximum degree 3. (English) Zbl 07309082 Contrib. Discrete Math. 15, No. 3, 75-87 (2020). MSC: 05C25 20B25 PDF BibTeX XML Cite \textit{M. Arezoomand} and \textit{M. Ghasemi}, Contrib. Discrete Math. 15, No. 3, 75--87 (2020; Zbl 07309082) Full Text: DOI
Lee, Jong Bum; Lee, Sang Rae Automorphisms of uniform lattices of nilpotent Lie groups up to dimension four. (English) Zbl 07308182 Commun. Korean Math. Soc. 35, No. 2, 653-666 (2020). MSC: 22E25 22E40 PDF BibTeX XML Cite \textit{J. B. Lee} and \textit{S. R. Lee}, Commun. Korean Math. Soc. 35, No. 2, 653--666 (2020; Zbl 07308182) Full Text: DOI
Handel, Michael; Mosher, Lee Virtually abelian subgroups of \(\mathrm{IA}_n(\mathbb{Z}/3)\) are abelian. (English) Zbl 07306307 Mich. Math. J. 69, Issue 3, 465-485 (2020). MSC: 20F65 20F28 57M07 PDF BibTeX XML Cite \textit{M. Handel} and \textit{L. Mosher}, Mich. Math. J. 69, Issue 3, 465--485 (2020; Zbl 07306307) Full Text: DOI Euclid
Jin, Wei; Wu, Ci Xuan; Zhou, Jin Xin Two-distance-primitive graphs. (English) Zbl 07303519 Electron. J. Comb. 27, No. 4, Research Paper P4.53, 15 p. (2020). MSC: 05C12 05E18 20B25 PDF BibTeX XML Cite \textit{W. Jin} et al., Electron. J. Comb. 27, No. 4, Research Paper P4.53, 15 p. (2020; Zbl 07303519) Full Text: DOI
Jiang, Jun; Mishra, Satyendra Kumar; Sheng, Yunhe Hom-Lie algebras and Hom-Lie groups, integration and differentiation. (English) Zbl 07302822 SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 137, 22 p. (2020). MSC: 17B40 17B61 22E60 58A32 PDF BibTeX XML Cite \textit{J. Jiang} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 16, Paper 137, 22 p. (2020; Zbl 07302822) Full Text: DOI
Horvat, Eva Constructing biquandles. (English) Zbl 07301041 Fundam. Math. 251, No. 2, 203-218 (2020). MSC: 20N99 PDF BibTeX XML Cite \textit{E. Horvat}, Fundam. Math. 251, No. 2, 203--218 (2020; Zbl 07301041) Full Text: DOI
Allcock, Daniel; Dolgachev, Igor The tetrahedron and automorphisms of Enriques and coble surfaces of Hessian type. (Le tétraèdre, et lesautomorphismes des surfaces deenriques et de coble de type Hessiennes.) (English. French summary) Zbl 07300115 Ann. Henri Lebesgue 3, 1133-1159 (2020). MSC: 14J50 20F65 20F67 PDF BibTeX XML Cite \textit{D. Allcock} and \textit{I. Dolgachev}, Ann. Henri Lebesgue 3, 1133--1159 (2020; Zbl 07300115) Full Text: DOI
Dutta, Parama; Nath, Rajat Kanti Some bounds for relative autocommutativity degree. (English) Zbl 07299989 Proyecciones 39, No. 3, 679-691 (2020). MSC: 20P05 20D60 20D45 20F28 PDF BibTeX XML Cite \textit{P. Dutta} and \textit{R. K. Nath}, Proyecciones 39, No. 3, 679--691 (2020; Zbl 07299989) Full Text: DOI
Alberts, Brandon Cohen-Lenstra moments for some nonabelian groups. (English. French summary) Zbl 07299129 J. Théor. Nombres Bordx. 32, No. 3, 631-664 (2020). MSC: 11N56 11R45 20F28 PDF BibTeX XML Cite \textit{B. Alberts}, J. Théor. Nombres Bordx. 32, No. 3, 631--664 (2020; Zbl 07299129) Full Text: DOI
Dixon, Martyn R.; Kurdachenko, Leonid A.; Subbotin, Igor Ya. On certain groups with \(G\)-contrainvariant subspaces. (English) Zbl 07297910 Rocky Mt. J. Math. 50, No. 6, 2023-2034 (2020). MSC: 20H25 20E34 20F29 PDF BibTeX XML Cite \textit{M. R. Dixon} et al., Rocky Mt. J. Math. 50, No. 6, 2023--2034 (2020; Zbl 07297910) Full Text: DOI Euclid
Wang, Li; Wang, Zixuan; Li, Yuan Cubic bi-Cayley graphs over a group of order \(3p\). (Chinese. English summary) Zbl 07295933 J. Yunnan Univ., Nat. Sci. 42, No. 4, 617-622 (2020). MSC: 05C25 PDF BibTeX XML Cite \textit{L. Wang} et al., J. Yunnan Univ., Nat. Sci. 42, No. 4, 617--622 (2020; Zbl 07295933) Full Text: DOI
Li, Zhixiu The capable 3-group. (Chinese. English summary) Zbl 07295157 J. Anhui Univ., Nat. Sci. 44, No. 3, 22-24 (2020). MSC: 20D15 20D45 PDF BibTeX XML Cite \textit{Z. Li}, J. Anhui Univ., Nat. Sci. 44, No. 3, 22--24 (2020; Zbl 07295157) Full Text: DOI
Hai, Jinke; Lv, Ruizhen Projective limits of Coleman automorphism groups. (Chinese. English summary) Zbl 07294930 Acta Math. Sin., Chin. Ser. 63, No. 3, 281-288 (2020). MSC: 20E18 20D45 PDF BibTeX XML Cite \textit{J. Hai} and \textit{R. Lv}, Acta Math. Sin., Chin. Ser. 63, No. 3, 281--288 (2020; Zbl 07294930)
Makhnev, Aleksandr Alekseevich; Bitkina, Viktoriya Vasil’evna; Gutnova, Alina Kazbekovna Automorphisms of a distance regular graph with intersection array \(\{48,35,9;1,7,40\}\). (Russian. English summary) Zbl 07293478 Vladikavkaz. Mat. Zh. 22, No. 2, 24-33 (2020). MSC: 05C25 PDF BibTeX XML Cite \textit{A. A. Makhnev} et al., Vladikavkaz. Mat. Zh. 22, No. 2, 24--33 (2020; Zbl 07293478) Full Text: DOI MNR
Chang, Wonjun; Kim, Byung Chun; Song, Yongjin An infinite family of braid group representations in automorphism groups of free groups. (English) Zbl 07291640 J. Knot Theory Ramifications 29, No. 10, Article ID 2042007, 14 p. (2020). MSC: 57M07 57M12 57M50 20F36 57K20 PDF BibTeX XML Cite \textit{W. Chang} et al., J. Knot Theory Ramifications 29, No. 10, Article ID 2042007, 14 p. (2020; Zbl 07291640) Full Text: DOI
Bestvina, Mladen; Horbez, Camille; Wade, Richard D. On the topological dimension of the Gromov boundaries of some hyperbolic \(\mathrm{Out}(F_N)\)-graphs. (English) Zbl 07291145 Pac. J. Math. 308, No. 1, 1-40 (2020). MSC: 20F28 20F65 PDF BibTeX XML Cite \textit{M. Bestvina} et al., Pac. J. Math. 308, No. 1, 1--40 (2020; Zbl 07291145) Full Text: DOI
Shimakura, Hiroki Automorphism groups of the holomorphic vertex operator algebras associated with Niemeier lattices and the \(-1\)-isometries. (English) Zbl 07290143 J. Math. Soc. Japan 72, No. 4, 1119-1143 (2020). MSC: 17B69 20B25 PDF BibTeX XML Cite \textit{H. Shimakura}, J. Math. Soc. Japan 72, No. 4, 1119--1143 (2020; Zbl 07290143) Full Text: DOI Euclid
Morita, Shigeyuki Characteristic classes of moduli spaces – Riemann surface, graph, homology cobordism. (English. Japanese original) Zbl 07288753 Sugaku Expo. 33, No. 2, 197-222 (2020); translation from Sūgaku 69, No. 2, 113-136 (2017). MSC: 55R40 20J06 17B56 17B65 32G15 PDF BibTeX XML Full Text: DOI
Bayer-Fluckiger, Eva; Taelman, Lenny Automorphisms of even unimodular lattices and equivariant Witt groups. (English) Zbl 07286837 J. Eur. Math. Soc. (JEMS) 22, No. 11, 3467-3490 (2020). Reviewer: Adam Chapman (Tel Hai) MSC: 11H56 11E81 PDF BibTeX XML Cite \textit{E. Bayer-Fluckiger} and \textit{L. Taelman}, J. Eur. Math. Soc. (JEMS) 22, No. 11, 3467--3490 (2020; Zbl 07286837) Full Text: DOI
Hallbäck, Andreas Automorphism groups of universal diversities. (English) Zbl 07286623 Topology Appl. 285, Article ID 107381, 19 p. (2020). MSC: 54E35 54H05 20B27 PDF BibTeX XML Cite \textit{A. Hallbäck}, Topology Appl. 285, Article ID 107381, 19 p. (2020; Zbl 07286623) Full Text: DOI
Hai, Jinke Coleman automorphisms of finite groups with a self-centralizing normal subgroup. (English) Zbl 07285991 Czech. Math. J. 70, No. 4, 1197-1204 (2020). MSC: 20C05 16S34 20C10 PDF BibTeX XML Cite \textit{J. Hai}, Czech. Math. J. 70, No. 4, 1197--1204 (2020; Zbl 07285991) Full Text: DOI
Xu, Tao; Liu, Heguo On groups of automorphisms of nilpotent \(p\)-groups of finite rank. (English) Zbl 07285987 Czech. Math. J. 70, No. 4, 1161-1165 (2020). MSC: 20F18 20F28 PDF BibTeX XML Cite \textit{T. Xu} and \textit{H. Liu}, Czech. Math. J. 70, No. 4, 1161--1165 (2020; Zbl 07285987) Full Text: DOI
Zhang, Zhilin; Yuan, Pingzhi; Zhou, Shenglin Flag-transitive point-primitive symmetric \((v,k,\lambda)\) designs with bounded \(k\). (English) Zbl 07284871 Electron. J. Comb. 27, No. 4, Research Paper P4.40, 20 p. (2020). Reviewer: Dean Crnković (Rijeka) MSC: 05B05 05B25 20B25 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Electron. J. Comb. 27, No. 4, Research Paper P4.40, 20 p. (2020; Zbl 07284871) Full Text: DOI
Makhnev, A. A.; Paduchikh, D. V. The largest Moore graph and a distance-regular graph with intersection array \(\{55, 54, 2; 1, 1, 54\}\). (English. Russian original) Zbl 07281981 Algebra Logic 59, No. 4, 322-327 (2020); translation from Algebra Logika 59, No. 4, 471-479 (2020). MSC: 05C12 05C25 PDF BibTeX XML Cite \textit{A. A. Makhnev} and \textit{D. V. Paduchikh}, Algebra Logic 59, No. 4, 322--327 (2020; Zbl 07281981); translation from Algebra Logika 59, No. 4, 471--479 (2020) Full Text: DOI
Dimitrov, R. D.; Harizanov, V.; Morozov, A. S. Turing degrees and automorphism groups of substructure lattices. (English. Russian original) Zbl 07281953 Algebra Logic 59, No. 1, 18-32 (2020); translation from Algebra Logika 59, No. 1, 27-47 (2020). MSC: 03 20 PDF BibTeX XML Cite \textit{R. D. Dimitrov} et al., Algebra Logic 59, No. 1, 18--32 (2020; Zbl 07281953); translation from Algebra Logika 59, No. 1, 27--47 (2020) Full Text: DOI
Kravchenko, Anna; Feshchenko, Bohdan Automorphisms of Kronrod-Reeb graphs of Morse functions on 2-torus. (English) Zbl 07277753 Methods Funct. Anal. Topol. 26, No. 1, 88-96 (2020). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 57S05 57R45 37C05 PDF BibTeX XML Cite \textit{A. Kravchenko} and \textit{B. Feshchenko}, Methods Funct. Anal. Topol. 26, No. 1, 88--96 (2020; Zbl 07277753) Full Text: Link
Bezushchak, O. O. Derivations and automorphisms of locally matrix algebras and groups. (English) Zbl 07277689 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2020, No. 9, 19-23 (2020). MSC: 20H20 20G15 PDF BibTeX XML Cite \textit{O. O. Bezushchak}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2020, No. 9, 19--23 (2020; Zbl 07277689) Full Text: DOI
Polikanova, Irina Viktorovna Measuring the arcs of the orbit of a one-parameter transformation group. (English) Zbl 1452.51010 Sib. Èlektron. Mat. Izv. 17, 1823-1848 (2020). MSC: 51M25 51M05 20B25 PDF BibTeX XML Cite \textit{I. V. Polikanova}, Sib. Èlektron. Mat. Izv. 17, 1823--1848 (2020; Zbl 1452.51010) Full Text: DOI
Lucchini, Andrea; Moscatiello, Mariapia; Palcoux, Sebastien; Spiga, Pablo Boolean lattices in finite alternating and symmetric groups. (English) Zbl 07276291 Forum Math. Sigma 8, Paper No. e55, 35 p. (2020). MSC: 20B25 PDF BibTeX XML Cite \textit{A. Lucchini} et al., Forum Math. Sigma 8, Paper No. e55, 35 p. (2020; Zbl 07276291) Full Text: DOI
Taheri, Hamid; Moghaddam, Mohammd Reza R.; Rostamyari, Mohammad Amin Some properties on \(\mathrm{IA}_{\mathrm{Z}}\)-automorphisms of groups. (English) Zbl 07274811 Arab. J. Math. 9, No. 3, 691-695 (2020). Reviewer: Balasubramanian Sury (Bangalore) MSC: 20F28 20D45 20F14 PDF BibTeX XML Cite \textit{H. Taheri} et al., Arab. J. Math. 9, No. 3, 691--695 (2020; Zbl 07274811) Full Text: DOI
Li, Shangzhao; Dar, Shaojun; Han, Guangguo \(2\)-\((v,k,1)\) designs admitting automorphism groups with socle \(^2F_4(q)\). (English) Zbl 1452.05011 Util. Math. 114, 137-146 (2020). MSC: 05B05 20B25 PDF BibTeX XML Cite \textit{S. Li} et al., Util. Math. 114, 137--146 (2020; Zbl 1452.05011)
Kutzschebauch, Frank Manifolds with infinite dimensional group of holomorphic automorphisms and the linearization problem. (English) Zbl 07274143 Ji, Lizhen (ed.) et al., Handbook of group actions V. Somerville, MA: International Press; Bejing: Higher Education Press (ISBN 978-1-57146-390-6/pbk). Advanced Lectures in Mathematics (ALM) 48, 257-300 (2020). MSC: 32M05 14R20 14R10 14L30 32M25 32Q56 PDF BibTeX XML Cite \textit{F. Kutzschebauch}, in: Handbook of group actions V. Somerville, MA: International Press; Bejing: Higher Education Press. 257--300 (2020; Zbl 07274143)
Leder, Nils Jonas Automorphism groups of graph products and Serre’s property FA. (English) Zbl 1446.20004 Münster: Univ. Münster, Mathematisch-Naturwissenschaftliche Fakultät, Fachbereich Mathematik und Informatik (Diss.). 140 p. (2020). MSC: 20-02 20F28 20F65 PDF BibTeX XML Cite \textit{N. J. Leder}, Automorphism groups of graph products and Serre's property FA. Münster: Univ. Münster, Mathematisch-Naturwissenschaftliche Fakultät, Fachbereich Mathematik und Informatik (Diss.) (2020; Zbl 1446.20004)
Zhang, Yongli; Zhang, Zhilin; Zhou, Shenglin Reduction for primitive flag-transitive nonsymmetric \(2\)-\((v,k,4)\) designs. (English) Zbl 1451.05025 J. Algebra Appl. 19, No. 12, Article ID 2050240, 10 p. (2020). MSC: 05B05 05B25 20B25 PDF BibTeX XML Cite \textit{Y. Zhang} et al., J. Algebra Appl. 19, No. 12, Article ID 2050240, 10 p. (2020; Zbl 1451.05025) Full Text: DOI
Chen, H. Y.; Han, H.; Lu, Z. P. Some semisymmetric graphs arising from finite vector spaces. (English) Zbl 1451.05103 J. Algebra Appl. 19, No. 11, Article ID 2050216, 16 p. (2020). MSC: 05C25 20B25 PDF BibTeX XML Cite \textit{H. Y. Chen} et al., J. Algebra Appl. 19, No. 11, Article ID 2050216, 16 p. (2020; Zbl 1451.05103) Full Text: DOI
Malykh, V. D.; Sevastianov, L. A. On calculation of the group of automorphisms of hyperelliptic curves. (English. Russian original) Zbl 1451.14166 J. Math. Sci., New York 251, No. 3, 395-404 (2020); translation from Zap. Nauchn. Semin. POMI 485, 140-154 (2019). Reviewer: David Joyner (Annapolis) MSC: 14Q05 14H37 14H30 14-04 PDF BibTeX XML Cite \textit{V. D. Malykh} and \textit{L. A. Sevastianov}, J. Math. Sci., New York 251, No. 3, 395--404 (2020; Zbl 1451.14166); translation from Zap. Nauchn. Semin. POMI 485, 140--154 (2019) Full Text: DOI
Rokicki, Tomas Thirty years of computer cubing: the search for God’s number. (English) Zbl 1451.00017 Plambeck, Thane (ed.) et al., Barrycades and Septoku. Papers in honor of Martin Gardner and Tom Rodgers. Providence, RI: MAA Press. AMS/MAA Spectr. 100, 79-98 (2020). MSC: 00A08 20B25 PDF BibTeX XML Cite \textit{T. Rokicki}, AMS/MAA Spectr. 100, 79--98 (2020; Zbl 1451.00017)
Shabani-Attar, Mehdi Some finite \(p\)-groups with central automorphism group of minimal order. (English) Zbl 07272262 J. Algebra Appl. 19, No. 9, Article ID 2050167, 13 p. (2020). MSC: 20D45 20D15 PDF BibTeX XML Cite \textit{M. Shabani-Attar}, J. Algebra Appl. 19, No. 9, Article ID 2050167, 13 p. (2020; Zbl 07272262) Full Text: DOI
Wang, Long; Fang, Xianwen; Tian, Fenglei Automorphisms of the total graph over upper triangular matrices. (English) Zbl 1451.05114 J. Algebra Appl. 19, No. 8, Article ID 2050161, 9 p. (2020). MSC: 05C25 05C35 05C50 15A15 20H20 PDF BibTeX XML Cite \textit{L. Wang} et al., J. Algebra Appl. 19, No. 8, Article ID 2050161, 9 p. (2020; Zbl 1451.05114) Full Text: DOI
Yang, Nanying; Lytkina, Daria Victorovna; Mazurov, Victor Danilovich; Zhurtov, Archil Khazeshovich Infinite Frobenius groups generated by elements of order 3. (English) Zbl 07272175 Algebra Colloq. 27, No. 4, 741-748 (2020). MSC: 20F50 20H20 PDF BibTeX XML Cite \textit{N. Yang} et al., Algebra Colloq. 27, No. 4, 741--748 (2020; Zbl 07272175) Full Text: DOI
Chenevier, Gaëtan The characteristic masses of Niemeier lattices. (English. French summary) Zbl 07272152 J. Théor. Nombres Bordx. 32, No. 2, 545-583 (2020). MSC: 11F 11F55 11H55 11H56 11H71 20D08 22C05 PDF BibTeX XML Cite \textit{G. Chenevier}, J. Théor. Nombres Bordx. 32, No. 2, 545--583 (2020; Zbl 07272152) Full Text: DOI
Montanucci, Maria; Speziali, Pietro Large automorphism groups of ordinary curves of even genus in odd characteristic. (English) Zbl 07271651 Commun. Algebra 48, No. 9, 3690-3706 (2020). MSC: 14H37 14H05 PDF BibTeX XML Cite \textit{M. Montanucci} and \textit{P. Speziali}, Commun. Algebra 48, No. 9, 3690--3706 (2020; Zbl 07271651) Full Text: DOI
Mirafzal, S. Morteza On the automorphism groups of connected bipartite irreducible graphs. (English) Zbl 1451.05109 Proc. Indian Acad. Sci., Math. Sci. 130, No. 1, Paper No. 57, 14 p. (2020). MSC: 05C25 PDF BibTeX XML Cite \textit{S. M. Mirafzal}, Proc. Indian Acad. Sci., Math. Sci. 130, No. 1, Paper No. 57, 14 p. (2020; Zbl 1451.05109) Full Text: DOI
Suciu, Alexander I.; Wang, He Taylor expansions of groups and filtered-formality. (English) Zbl 07270595 Eur. J. Math. 6, No. 3, 1073-1096 (2020). MSC: 20F40 16T05 16W70 17B70 20F14 20J05 55P62 PDF BibTeX XML Cite \textit{A. I. Suciu} and \textit{H. Wang}, Eur. J. Math. 6, No. 3, 1073--1096 (2020; Zbl 07270595) Full Text: DOI
Kruglikov, Boris; Winther, Henrik Submaximally symmetric quaternion Hermitian structures. (English) Zbl 07268570 Int. J. Math. 31, No. 11, Article ID 2050084, 25 p. (2020). Reviewer: Daniel Thung (Hamburg) MSC: 53C26 22E46 53B20 58D19 PDF BibTeX XML Cite \textit{B. Kruglikov} and \textit{H. Winther}, Int. J. Math. 31, No. 11, Article ID 2050084, 25 p. (2020; Zbl 07268570) Full Text: DOI
Dixon, M. R.; Kurdachenko, L. A.; Semko, N. N.; Subbotin, I. Ya. On some topics in the theory of infinite dimensional linear groups. (English) Zbl 07268062 Algebra Discrete Math. 29, No. 1, 1-32 (2020). MSC: 20H25 20F29 20E34 PDF BibTeX XML Cite \textit{M. R. Dixon} et al., Algebra Discrete Math. 29, No. 1, 1--32 (2020; Zbl 07268062) Full Text: Link
Jia, Songfang; Chen, Yanheng; Jiang, Youyi The simplified proof for order components characterization of the automorphism of Ree group \({^2G_2} (q)\). (Chinese. English summary) Zbl 07267091 J. Sichuan Norm. Univ., Nat. Sci. 43, No. 3, 333-336 (2020). MSC: 20D05 20D20 20D45 PDF BibTeX XML Cite \textit{S. Jia} et al., J. Sichuan Norm. Univ., Nat. Sci. 43, No. 3, 333--336 (2020; Zbl 07267091) Full Text: DOI
Dong, Shenjuan; Li, Zhengxing On \(p\)-central automorphisms of critical groups and applications. (Chinese. English summary) Zbl 07266995 J. Shandong Univ., Nat. Sci. 55, No. 2, 68-72 (2020). MSC: 20D15 20D45 PDF BibTeX XML Cite \textit{S. Dong} and \textit{Z. Li}, J. Shandong Univ., Nat. Sci. 55, No. 2, 68--72 (2020; Zbl 07266995) Full Text: DOI
Yang, Yan The order of the automorphism groups of metacyclic 2-group and its mechanical calculation. (Chinese. English summary) Zbl 07266824 J. Hubei Univ., Nat. Sci. 42, No. 2, 128-135 (2020). MSC: 20F28 20F65 68T15 PDF BibTeX XML Cite \textit{Y. Yang}, J. Hubei Univ., Nat. Sci. 42, No. 2, 128--135 (2020; Zbl 07266824) Full Text: DOI
Alavi, Seyed Hassan; Daneshkhah, Ashraf; Praeger, Cheryl E. Symmetries of biplanes. (English) Zbl 07263376 Des. Codes Cryptography 88, No. 11, 2337-2359 (2020). MSC: 05B05 05B25 20B25 PDF BibTeX XML Cite \textit{S. H. Alavi} et al., Des. Codes Cryptography 88, No. 11, 2337--2359 (2020; Zbl 07263376) Full Text: DOI
Algom-Kfir, Yael; Hadari, Asaf Linear representations of \(\text{Aut}(F_r)\) on the homology of representation varieties. (English) Zbl 07263222 Geom. Dedicata 209, 199-206 (2020). MSC: 20C99 57M07 PDF BibTeX XML Cite \textit{Y. Algom-Kfir} and \textit{A. Hadari}, Geom. Dedicata 209, 199--206 (2020; Zbl 07263222) Full Text: DOI
Katsura, Toshiyuki; Kondo, Shigeyuki; Martin, Gebhard Classification of Enriques surfaces with finite automorphism group in characteristic 2. (English) Zbl 1452.14038 Algebr. Geom. 7, No. 4, 390-459 (2020). Reviewer: Giacomo Mezzedimi (Hannover) MSC: 14J28 14J50 14G17 PDF BibTeX XML Cite \textit{T. Katsura} et al., Algebr. Geom. 7, No. 4, 390--459 (2020; Zbl 1452.14038) Full Text: DOI
Lederle, Waltraud Topological full groups and t.d.l.c. Completions of Thompson’s \(V\). (English) Zbl 07262926 Math. Ann. 378, No. 3-4, 1415-1434 (2020). MSC: 20B27 20E25 20F38 22D05 PDF BibTeX XML Cite \textit{W. Lederle}, Math. Ann. 378, No. 3--4, 1415--1434 (2020; Zbl 07262926) Full Text: DOI
Kahkeshani, Reza On some designs constructed from the groups \(PSL_2(q), q=53, 61, 64\). (English) Zbl 07260084 Algebr. Struct. Appl. 7, No. 1, 59-67 (2020). MSC: 05E15 05E20 05B05 20D05 PDF BibTeX XML Cite \textit{R. Kahkeshani}, Algebr. Struct. Appl. 7, No. 1, 59--67 (2020; Zbl 07260084) Full Text: DOI
Alavi, Seyed Hassan; Bayat, Mohsen; Daneshkhah, Ashraf Flag-transitive block designs and unitary groups. (English) Zbl 07259084 Monatsh. Math. 193, No. 3, 535-553 (2020). MSC: 05B05 05E18 20D05 PDF BibTeX XML Cite \textit{S. H. Alavi} et al., Monatsh. Math. 193, No. 3, 535--553 (2020; Zbl 07259084) Full Text: DOI
Khazaei, Soghra; Sharifi, Hesam On connected tetravalent normal edge-transitive Cayley graphs of non-abelian groups of order \(5p^2\). (English) Zbl 07257399 Turk. J. Math. 44, No. 2, 524-537 (2020). MSC: 05C25 20D60 PDF BibTeX XML Cite \textit{S. Khazaei} and \textit{H. Sharifi}, Turk. J. Math. 44, No. 2, 524--537 (2020; Zbl 07257399) Full Text: DOI
Tolstykh, Vladimir A. Maximal normal subgroups of the automorphism groups of free nilpotent groups. (English) Zbl 07254828 Publ. Math. 96, No. 3-4, 475-486 (2020). MSC: 20F28 20E05 20F18 PDF BibTeX XML Cite \textit{V. A. Tolstykh}, Publ. Math. 96, No. 3--4, 475--486 (2020; Zbl 07254828) Full Text: DOI
Wang, Lei On the automorphism groups of Frobenius groups. (English) Zbl 07253623 Commun. Algebra 48, No. 12, 5330-5342 (2020). Reviewer: Alla Detinko (Hull) MSC: 20F28 20C15 20E22 PDF BibTeX XML Cite \textit{L. Wang}, Commun. Algebra 48, No. 12, 5330--5342 (2020; Zbl 07253623) Full Text: DOI
Kofinas, C. E. IA-automorphisms of relatively free nilpotent torsion-free groups and Lie algebras. (English) Zbl 07253614 Commun. Algebra 48, No. 12, 5224-5235 (2020). MSC: 20F18 20F28 17B01 17B30 17B40 20E10 PDF BibTeX XML Cite \textit{C. E. Kofinas}, Commun. Algebra 48, No. 12, 5224--5235 (2020; Zbl 07253614) Full Text: DOI
Kofinas, C. E. On certain subgroups of the McCool group. (English) Zbl 07252759 Int. J. Algebra Comput. 30, No. 5, 1081-1096 (2020). MSC: 20F28 20F40 20F05 PDF BibTeX XML Cite \textit{C. E. Kofinas}, Int. J. Algebra Comput. 30, No. 5, 1081--1096 (2020; Zbl 07252759) Full Text: DOI
Ercan, Gülin; Güloğlu, İsmail Ş. Frobenius action on Carter subgroups. (English) Zbl 07252758 Int. J. Algebra Comput. 30, No. 5, 1073-1080 (2020). MSC: 20D10 20D15 20D45 PDF BibTeX XML Cite \textit{G. Ercan} and \textit{İ. Ş. Güloğlu}, Int. J. Algebra Comput. 30, No. 5, 1073--1080 (2020; Zbl 07252758) Full Text: DOI
Paolini, Gianluca; Shelah, Saharon Some results on Polish groups. (English) Zbl 07250408 Rep. Math. Logic 55, 61-71 (2020). MSC: 03E15 20K30 20B27 PDF BibTeX XML Cite \textit{G. Paolini} and \textit{S. Shelah}, Rep. Math. Logic 55, 61--71 (2020; Zbl 07250408) Full Text: DOI
Puglisi, Orazio; Traustason, Gunnar Some remarks on unipotent automorphisms. (English) Zbl 1443.20061 Int. J. Group Theory 9, No. 4, 293-300 (2020). MSC: 20F28 20F45 20F16 20E36 PDF BibTeX XML Cite \textit{O. Puglisi} and \textit{G. Traustason}, Int. J. Group Theory 9, No. 4, 293--300 (2020; Zbl 1443.20061) Full Text: DOI
Feng, Yan-Quan; Kovács, István; Wang, Jie; Yang, Da-Wei Existence of non-Cayley Haar graphs. (English) Zbl 1447.05102 Eur. J. Comb. 89, Article ID 103146, 11 p. (2020). MSC: 05C25 20B25 PDF BibTeX XML Cite \textit{Y.-Q. Feng} et al., Eur. J. Comb. 89, Article ID 103146, 11 p. (2020; Zbl 1447.05102) Full Text: DOI
Crnković, Dean; Maksimović, Marija Strongly regular graphs with parameters \((37, 18, 8, 9)\) having nontrivial automorphisms. (English) Zbl 1441.05245 Art Discrete Appl. Math. 3, No. 2, Paper No. P2.10, 8 p. (2020). MSC: 05E30 20B25 PDF BibTeX XML Cite \textit{D. Crnković} and \textit{M. Maksimović}, Art Discrete Appl. Math. 3, No. 2, Paper No. P2.10, 8 p. (2020; Zbl 1441.05245) Full Text: DOI
Potočnik, Primož; Wilson, Stephen E. Recipes for edge-transitive tetravalent graphs. (English) Zbl 1441.05109 Art Discrete Appl. Math. 3, No. 1, Paper No. P1.08, 33 p. (2020). MSC: 05C25 05C10 20B25 PDF BibTeX XML Cite \textit{P. Potočnik} and \textit{S. E. Wilson}, Art Discrete Appl. Math. 3, No. 1, Paper No. P1.08, 33 p. (2020; Zbl 1441.05109) Full Text: DOI
Hu, Kan; Kwon, Young Soo Reflexible complete regular dessins and antibalanced skew morphisms of cyclic groups. (English) Zbl 07247236 Art Discrete Appl. Math. 3, No. 1, Paper No. P1.07, 16 p. (2020). MSC: 20B25 05C10 14H57 PDF BibTeX XML Cite \textit{K. Hu} and \textit{Y. S. Kwon}, Art Discrete Appl. Math. 3, No. 1, Paper No. P1.07, 16 p. (2020; Zbl 07247236) Full Text: DOI
Jones, Gareth Aneurin Automorphism groups of maps, hypermaps and dessins. (English) Zbl 1441.20003 Art Discrete Appl. Math. 3, No. 1, Paper No. P1.06, 14 p. (2020). MSC: 20B25 20B27 05C10 14H57 52B15 57M10 PDF BibTeX XML Cite \textit{G. A. Jones}, Art Discrete Appl. Math. 3, No. 1, Paper No. P1.06, 14 p. (2020; Zbl 1441.20003) Full Text: DOI
Jasenčáková, Katarína; Jajcay, Robert; Pisanski, Tomaž A new generalization of generalized Petersen graphs. (English) Zbl 1441.05103 Art Discrete Appl. Math. 3, No. 1, Paper No. P1.04, 20 p. (2020). MSC: 05C25 PDF BibTeX XML Cite \textit{K. Jasenčáková} et al., Art Discrete Appl. Math. 3, No. 1, Paper No. P1.04, 20 p. (2020; Zbl 1441.05103) Full Text: DOI
Morgan, Luke; Morris, Joy; Verret, Gabriel Digraphs with small automorphism groups that are Cayley on two nonisomorphic groups. (English) Zbl 1441.05105 Art Discrete Appl. Math. 3, No. 1, Paper No. P1.01, 11 p. (2020). MSC: 05C25 20B25 05C20 PDF BibTeX XML Cite \textit{L. Morgan} et al., Art Discrete Appl. Math. 3, No. 1, Paper No. P1.01, 11 p. (2020; Zbl 1441.05105) Full Text: DOI
Knibbeler, Vincent; Lombardo, Sara; Sanders, Jan A. Hereditary automorphic Lie algebras. (English) Zbl 07245911 Commun. Contemp. Math. 22, No. 8, Article ID 1950076, 32 p. (2020). MSC: 17B05 13A50 17B65 17B80 20B25 PDF BibTeX XML Cite \textit{V. Knibbeler} et al., Commun. Contemp. Math. 22, No. 8, Article ID 1950076, 32 p. (2020; Zbl 07245911) Full Text: DOI
Junk, Luca; Schmidt, Simon; Weber, Moritz Almost all trees have quantum symmetry. (English) Zbl 1451.05041 Arch. Math. 115, No. 4, 367-378 (2020). MSC: 05C05 20B25 46L89 20G42 46L67 46L65 PDF BibTeX XML Cite \textit{L. Junk} et al., Arch. Math. 115, No. 4, 367--378 (2020; Zbl 1451.05041) Full Text: DOI
Bustos, Álvaro Extended symmetry groups of multidimensional subshifts with hierarchical structure. (English) Zbl 1450.37010 Discrete Contin. Dyn. Syst. 40, No. 10, 5869-5895 (2020). MSC: 37B10 37B51 37B52 20B27 52C23 PDF BibTeX XML Cite \textit{Á. Bustos}, Discrete Contin. Dyn. Syst. 40, No. 10, 5869--5895 (2020; Zbl 1450.37010) Full Text: DOI
Feng, Yan-Quan; Kovács, István; Yang, Da-Wei On groups all of whose Haar graphs are Cayley graphs. (English) Zbl 1447.05103 J. Algebr. Comb. 52, No. 1, 59-76 (2020). MSC: 05C25 05E18 20B25 05C85 05C12 05C60 05C38 PDF BibTeX XML Cite \textit{Y.-Q. Feng} et al., J. Algebr. Comb. 52, No. 1, 59--76 (2020; Zbl 1447.05103) Full Text: DOI
Monson, Barry; Schulte, Egon The assembly problem for alternating semiregular polytopes. (English) Zbl 1447.51022 Discrete Comput. Geom. 64, No. 2, 453-482 (2020). Reviewer: Victor V. Pambuccian (Glendale) MSC: 51M20 52B15 05B45 20B25 05C99 PDF BibTeX XML Cite \textit{B. Monson} and \textit{E. Schulte}, Discrete Comput. Geom. 64, No. 2, 453--482 (2020; Zbl 1447.51022) Full Text: DOI
Hou, Dong-Dong; Feng, Yan-Quan; Leemans, Dimitri On regular polytopes of 2-power order. (English) Zbl 07242480 Discrete Comput. Geom. 64, No. 2, 339-346 (2020). MSC: 20B25 20D15 52B15 20D60 20-04 PDF BibTeX XML Cite \textit{D.-D. Hou} et al., Discrete Comput. Geom. 64, No. 2, 339--346 (2020; Zbl 07242480) Full Text: DOI
García-Delgado, R.; Salgado, G.; Sánchez-Valenzuela, O. A. Corrigendum to: “On 3-dimensional complex Hom-Lie algebras”. (English) Zbl 07242350 J. Algebra 562, 286-289 (2020). MSC: 17A30 17A36 17B60 PDF BibTeX XML Cite \textit{R. García-Delgado} et al., J. Algebra 562, 286--289 (2020; Zbl 07242350) Full Text: DOI