Shulman, Michael Comparing material and structural set theories. (English) Zbl 1412.18004 Ann. Pure Appl. Logic 170, No. 4, 465-504 (2019). Reviewer: Hirokazu Nishimura (Tsukuba) MSC: 18B25 03F65 03G30 18B05 03E70 PDF BibTeX XML Cite \textit{M. Shulman}, Ann. Pure Appl. Logic 170, No. 4, 465--504 (2019; Zbl 1412.18004) Full Text: DOI arXiv OpenURL
Mycielski, Jan On the formalization of theories. (English) Zbl 1260.03092 J. Autom. Reasoning 50, No. 2, 211-216 (2013). MSC: 03E30 PDF BibTeX XML Cite \textit{J. Mycielski}, J. Autom. Reasoning 50, No. 2, 211--216 (2013; Zbl 1260.03092) Full Text: DOI OpenURL
Kanamori, Akihiro In praise of replacement. (English) Zbl 1258.03001 Bull. Symb. Log. 18, No. 1, 46-90 (2012). Reviewer: Siegfried J. Gottwald (Leipzig) MSC: 03-03 01A55 01A60 03E30 PDF BibTeX XML Cite \textit{A. Kanamori}, Bull. Symb. Log. 18, No. 1, 46--90 (2012; Zbl 1258.03001) Full Text: DOI Euclid Link OpenURL
Barras, Bruno Sets in Coq, Coq in Sets. (English) Zbl 1211.03023 J. Formaliz. Reason. 3, No. 1, 29-48 (2010). MSC: 03B35 03E99 68T15 PDF BibTeX XML Cite \textit{B. Barras}, J. Formaliz. Reason. 3, No. 1, 29--48 (2010; Zbl 1211.03023) Full Text: Link OpenURL
Kemp, Paula Fixed point results for upper isotone functions. (English) Zbl 1190.06002 Int. J. Pure Appl. Math. 56, No. 1, 1-5 (2009). Reviewer: Egbert Harzheim (Köln) MSC: 06A06 03E20 03E30 PDF BibTeX XML Cite \textit{P. Kemp}, Int. J. Pure Appl. Math. 56, No. 1, 1--5 (2009; Zbl 1190.06002) OpenURL
Park, Wi-Gon A note on extension of ZFC set theory associated with some sets. (English) Zbl 1183.03045 Far East J. Math. Sci. (FJMS) 34, No. 1, 129-140 (2009). MSC: 03E70 03E25 03E65 PDF BibTeX XML Cite \textit{W.-G. Park}, Far East J. Math. Sci. (FJMS) 34, No. 1, 129--140 (2009; Zbl 1183.03045) Full Text: Link OpenURL
Rathjen, Michael Replacement versus collection and related topics in constructive Zermelo-Fraenkel set theory. (English) Zbl 1073.03030 Ann. Pure Appl. Logic 136, No. 1-2, 156-174 (2005). MSC: 03E70 03F15 03F35 03F50 PDF BibTeX XML Cite \textit{M. Rathjen}, Ann. Pure Appl. Logic 136, No. 1--2, 156--174 (2005; Zbl 1073.03030) Full Text: DOI OpenURL
Yashin, Alexander On Novikov’s approach to the notion of a new intuitionistic connective: Two negative examples. (English) Zbl 0873.03008 Bull. Sect. Log., Univ. Łódź, Dep. Log. 25, No. 2, 84-88 (1996). Reviewer: D.Skvortsov (Moskva) MSC: 03B20 PDF BibTeX XML Cite \textit{A. Yashin}, Bull. Sect. Log., Univ. Łódź, Dep. Log. 25, No. 2, 84--88 (1996; Zbl 0873.03008) OpenURL
Mo, Shokui The reduction of axioms of set theory and the powers of cardinals. (Chinese. English summary) Zbl 0642.03030 Chin. Ann. Math., Ser. A 8, No. 1-5, 189-194 (1987). Reviewer: Li Xiang MSC: 03E30 03E10 03E25 03E50 PDF BibTeX XML Cite \textit{S. Mo}, Chin. Ann. Math., Ser. A 8, No. 1--5, 189--194 (1987; Zbl 0642.03030) OpenURL
Quandt, Juergen Relative consistency of a set theory with hyperclasses. (English) Zbl 0635.03046 Z. Math. Logik Grundlagen Math. 33, 101-106 (1987). Reviewer: K.Gloede MSC: 03E35 03E30 03E70 PDF BibTeX XML Cite \textit{J. Quandt}, Z. Math. Logik Grundlagen Math. 33, 101--106 (1987; Zbl 0635.03046) Full Text: DOI OpenURL
Kříž, Igor A constructive proof of the Tychonoff’s theorem for locales. (English) Zbl 0661.54027 Commentat. Math. Univ. Carol. 26, 619-630 (1985). MSC: 54D30 54B10 54F05 PDF BibTeX XML Cite \textit{I. Kříž}, Commentat. Math. Univ. Carol. 26, 619--630 (1985; Zbl 0661.54027) Full Text: EuDML OpenURL
Arruda, Ayda Ignez Remarks on da Costa’s paraconsistent set theories. (English) Zbl 0614.03052 Rev. Colomb. Mat. 19, 9-24 (1985). MSC: 03E70 03B60 PDF BibTeX XML Cite \textit{A. I. Arruda}, Rev. Colomb. Mat. 19, 9--24 (1985; Zbl 0614.03052) Full Text: EuDML OpenURL
Cīrulis, Jānis On the EA-fragment of classical propositional logic. (English) Zbl 0499.03001 Bull. Sect. Logic, Pol. Acad. Sci. 10, 158-161 (1981). MSC: 03B20 PDF BibTeX XML Cite \textit{J. Cīrulis}, Bull. Sect. Logic, Pol. Acad. Sci. 10, 158--161 (1981; Zbl 0499.03001) OpenURL
Ratajczyk, Zygmunt A characterization of expandability of models for ZF to models for KM. (English) Zbl 0478.03015 Fundam. Math. 113, 9-19 (1981). MSC: 03C62 PDF BibTeX XML Cite \textit{Z. Ratajczyk}, Fundam. Math. 113, 9--19 (1981; Zbl 0478.03015) Full Text: DOI EuDML OpenURL
Wolf, Robert S. A highly efficient ”transfinite recursive definitions” axiom for set theory. (English) Zbl 0419.03034 Notre Dame J. Formal Logic 22, 63-75 (1981). MSC: 03E65 03E25 03F55 03E70 03D60 PDF BibTeX XML Cite \textit{R. S. Wolf}, Notre Dame J. Formal Logic 22, 63--75 (1981; Zbl 0419.03034) Full Text: DOI OpenURL
Abian, A. On the restriction in the formulation of the axiom scheme of replacement of ZF. (English) Zbl 0443.03023 An. Univ. Timisoara, Ser. Stiinte Mat. 16, 5-6 (1978). MSC: 03E65 PDF BibTeX XML Cite \textit{A. Abian}, An. Univ. Timișoara, Științe Mat. 16, 5--6 (1978; Zbl 0443.03023) OpenURL