Panday, Sunil; Sharma, Ashok; Thangkhenpau, G. Optimal fourth and eighth-order iterative methods for non-linear equations. (English) Zbl 07676691 J. Appl. Math. Comput. 69, No. 1, 953-971 (2023). MSC: 65H05 PDF BibTeX XML Cite \textit{S. Panday} et al., J. Appl. Math. Comput. 69, No. 1, 953--971 (2023; Zbl 07676691) Full Text: DOI OpenURL
Canela, Jordi; Evdoridou, Vasiliki; Garijo, Antonio; Jarque, Xavier On the basins of attraction of a one-dimensional family of root finding algorithms: from Newton to Traub. (English) Zbl 07653752 Math. Z. 303, No. 3, Paper No. 55, 22 p. (2023). MSC: 30D05 37F10 PDF BibTeX XML Cite \textit{J. Canela} et al., Math. Z. 303, No. 3, Paper No. 55, 22 p. (2023; Zbl 07653752) Full Text: DOI OpenURL
Ojer, Jaume; López, Álvaro G.; Used, Javier; Sanjuán, Miguel A. F. A stochastic hybrid model with a fast concentration bias for chemotactic cellular attraction. (English) Zbl 1506.92009 Chaos Solitons Fractals 156, Article ID 111792, 8 p. (2022). MSC: 92C17 35Q92 PDF BibTeX XML Cite \textit{J. Ojer} et al., Chaos Solitons Fractals 156, Article ID 111792, 8 p. (2022; Zbl 1506.92009) Full Text: DOI OpenURL
Balamurali, Ramakrishnan; Kengne, Leandre Kamdjeu; Rajagopal, Karthikeyan; Kengne, Jacques Coupled non-oscillatory Duffing oscillators: multistability, multiscroll chaos generation and circuit realization. (English) Zbl 07614923 Physica A 607, Article ID 128174, 17 p. (2022). MSC: 82-XX PDF BibTeX XML Cite \textit{R. Balamurali} et al., Physica A 607, Article ID 128174, 17 p. (2022; Zbl 07614923) Full Text: DOI OpenURL
Ćebić, Dejan; Ralević, Nebojša M. An efficient class of optimal sixteenth-order root-finding methods and their basins of attraction. (English) Zbl 1502.65024 J. Math. Chem. 60, No. 8, 1521-1541 (2022). MSC: 65H05 PDF BibTeX XML Cite \textit{D. Ćebić} and \textit{N. M. Ralević}, J. Math. Chem. 60, No. 8, 1521--1541 (2022; Zbl 1502.65024) Full Text: DOI OpenURL
Wang, Xue-She; Moore, Samuel A.; Turner, James D.; Mann, Brian P. A model-free sampling method for basins of attraction using hybrid active learning (HAL). (English) Zbl 1492.93080 Commun. Nonlinear Sci. Numer. Simul. 112, Article ID 106551, 9 p. (2022). MSC: 93C10 68T05 PDF BibTeX XML Cite \textit{X.-S. Wang} et al., Commun. Nonlinear Sci. Numer. Simul. 112, Article ID 106551, 9 p. (2022; Zbl 1492.93080) Full Text: DOI arXiv OpenURL
Varona, Juan Luis An optimal thirty-second-order iterative method for solving nonlinear equations and a conjecture. (English) Zbl 1485.65056 Qual. Theory Dyn. Syst. 21, No. 2, Paper No. 39, 21 p. (2022). MSC: 65H05 65Y20 37F10 PDF BibTeX XML Cite \textit{J. L. Varona}, Qual. Theory Dyn. Syst. 21, No. 2, Paper No. 39, 21 p. (2022; Zbl 1485.65056) Full Text: DOI OpenURL
Ramadoss, Janarthanan; Kengne, Jacques; Telem, Adélaïde Nicole Kengnou; Rajagopal, Karthikeyan Broken symmetry and dynamics of a memristive diodes bridge-based Shinriki oscillator. (English) Zbl 07483663 Physica A 588, Article ID 126562, 20 p. (2022). MSC: 82-XX PDF BibTeX XML Cite \textit{J. Ramadoss} et al., Physica A 588, Article ID 126562, 20 p. (2022; Zbl 07483663) Full Text: DOI OpenURL
Ramadoss, Janarthanan; Kengne, Jacques; Koinfo, Jean Baptiste; Rajagopal, Karthikeyan Multiple Hopf bifurcations, period-doubling reversals and coexisting attractors for a novel chaotic jerk system with Tchebytchev polynomials. (English) Zbl 07483620 Physica A 587, Article ID 126501, 21 p. (2022). MSC: 82-XX PDF BibTeX XML Cite \textit{J. Ramadoss} et al., Physica A 587, Article ID 126501, 21 p. (2022; Zbl 07483620) Full Text: DOI OpenURL
Gagandeep; Sharma, Rajni; Argyros, I. K. On the convergence of a fifth-order iterative method in Banach spaces. (English) Zbl 07633966 Bull. Math. Anal. Appl. 13, No. 1, 16-40 (2021). MSC: 47J25 49M15 65J15 PDF BibTeX XML Cite \textit{Gagandeep} et al., Bull. Math. Anal. Appl. 13, No. 1, 16--40 (2021; Zbl 07633966) Full Text: Link OpenURL
Sharma, J. R.; Arora, H. A family of fifth-order iterative methods for finding multiple roots of nonlinear equations. (Russian. English summary) Zbl 1498.65067 Sib. Zh. Vychisl. Mat. 24, No. 2, 213-227 (2021). MSC: 65H05 PDF BibTeX XML Cite \textit{J. R. Sharma} and \textit{H. Arora}, Sib. Zh. Vychisl. Mat. 24, No. 2, 213--227 (2021; Zbl 1498.65067) Full Text: DOI MNR OpenURL
Shams, Mudassir; Rafiq, Naila; Kausar, Nasreen; Agarwal, Praveen; Park, Choonkil; Mir, Nazir Ahmad On iterative techniques for estimating all roots of nonlinear equation and its system with application in differential equation. (English) Zbl 1494.65023 Adv. Difference Equ. 2021, Paper No. 480, 18 p. (2021). MSC: 65H05 65H10 65H04 PDF BibTeX XML Cite \textit{M. Shams} et al., Adv. Difference Equ. 2021, Paper No. 480, 18 p. (2021; Zbl 1494.65023) Full Text: DOI OpenURL
Guilberteau, Jules; Pouchol, Camille; Pouradier Duteil, Nastassia Monostability and bistability of biological switches. (English) Zbl 1484.34115 J. Math. Biol. 83, No. 6-7, Paper No. 65, 35 p. (2021). MSC: 34C60 34C05 34D20 92B05 PDF BibTeX XML Cite \textit{J. Guilberteau} et al., J. Math. Biol. 83, No. 6--7, Paper No. 65, 35 p. (2021; Zbl 1484.34115) Full Text: DOI arXiv OpenURL
Ćebić, Dejan; Ralević, Nebojša M. Mean-based iterative methods for finding multiple roots in nonlinear chemistry problems. (English) Zbl 1466.65036 J. Math. Chem. 59, No. 6, 1498-1519 (2021). MSC: 65H05 92-08 PDF BibTeX XML Cite \textit{D. Ćebić} and \textit{N. M. Ralević}, J. Math. Chem. 59, No. 6, 1498--1519 (2021; Zbl 1466.65036) Full Text: DOI OpenURL
Sadhu, Susmita Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. (English) Zbl 1471.37080 Discrete Contin. Dyn. Syst., Ser. B 26, No. 10, 5251-5279 (2021). MSC: 37N25 37G35 34E17 92D25 92D40 PDF BibTeX XML Cite \textit{S. Sadhu}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 10, 5251--5279 (2021; Zbl 1471.37080) Full Text: DOI arXiv OpenURL
Puy, Andreu; Daza, Alvar; Wagemakers, Alexandre; Sanjuán, Miguel A. F. A test for fractal boundaries based on the basin entropy. (English) Zbl 1457.37034 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105588, 9 p. (2021). MSC: 37C45 37A35 37C75 37D45 PDF BibTeX XML Cite \textit{A. Puy} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105588, 9 p. (2021; Zbl 1457.37034) Full Text: DOI arXiv OpenURL
Yousefpour, Amin; Jahanshahi, Hadi; Munoz-Pacheco, Jesus M.; Bekiros, Stelios; Wei, Zhouchao A fractional-order hyper-chaotic economic system with transient chaos. (English) Zbl 1489.91150 Chaos Solitons Fractals 130, Article ID 109400, 12 p. (2020). MSC: 91B55 37N40 37N35 34A08 68T07 PDF BibTeX XML Cite \textit{A. Yousefpour} et al., Chaos Solitons Fractals 130, Article ID 109400, 12 p. (2020; Zbl 1489.91150) Full Text: DOI OpenURL
Chen, Zhenyang; Chen, Fangqi Mixed mode oscillations induced by bi-stability and fractal basins in the FGP plate under slow parametric and resonant external excitations. (English) Zbl 1489.34056 Chaos Solitons Fractals 137, Article ID 109814, 14 p. (2020). MSC: 34C15 34C60 34E15 70K30 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{F. Chen}, Chaos Solitons Fractals 137, Article ID 109814, 14 p. (2020; Zbl 1489.34056) Full Text: DOI OpenURL
Helfmann, Luzie; Ribera Borrell, Enric; Schütte, Christof; Koltai, Péter Extending transition path theory: periodically driven and finite-time dynamics. (English) Zbl 1475.82013 J. Nonlinear Sci. 30, No. 6, 3321-3366 (2020). Reviewer: Piotr Garbaczewski (Opole) MSC: 82C05 82C26 60J22 60J10 PDF BibTeX XML Cite \textit{L. Helfmann} et al., J. Nonlinear Sci. 30, No. 6, 3321--3366 (2020; Zbl 1475.82013) Full Text: DOI arXiv OpenURL
Sharma, Rajni; Sharma, Janak Raj; Kalra, Nitin A modified Newton-Özban composition for solving nonlinear systems. (English) Zbl 07336579 Int. J. Comput. Methods 17, No. 8, Article ID 1950047, 17 p. (2020). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{R. Sharma} et al., Int. J. Comput. Methods 17, No. 8, Article ID 1950047, 17 p. (2020; Zbl 07336579) Full Text: DOI OpenURL
Sète, Olivier; Zur, Jan A Newton method for harmonic mappings in the plane. (English) Zbl 1464.65046 IMA J. Numer. Anal. 40, No. 4, 2777-2801 (2020). MSC: 65H05 PDF BibTeX XML Cite \textit{O. Sète} and \textit{J. Zur}, IMA J. Numer. Anal. 40, No. 4, 2777--2801 (2020; Zbl 1464.65046) Full Text: DOI arXiv OpenURL
Lucarini, Valerio; Bódai, Tamás Global stability properties of the climate: melancholia states, invariant measures, and phase transitions. (English) Zbl 1457.86007 Nonlinearity 33, No. 9, R59-R92 (2020). MSC: 86A08 35Q86 37C75 60H30 62P12 PDF BibTeX XML Cite \textit{V. Lucarini} and \textit{T. Bódai}, Nonlinearity 33, No. 9, R59--R92 (2020; Zbl 1457.86007) Full Text: DOI arXiv OpenURL
Lalehchini, M. J.; Lotfi, T.; Mahdiani, K. On developing an adaptive free-derivative Kung and Traub’s method with memory. (English) Zbl 07314272 J. Math. Ext. 14, No. 2, 171-188 (2020). MSC: 65H05 49M15 65J15 PDF BibTeX XML Cite \textit{M. J. Lalehchini} et al., J. Math. Ext. 14, No. 2, 171--188 (2020; Zbl 07314272) Full Text: Link OpenURL
Page, Frank H. jun.; Wooders, Myrna Networks and stability. (English) Zbl 1455.91058 Sotomayor, Marilda (ed.) et al., Complex social and behavioral systems. Game theory and agent-based models. New York, NY: Springer. Encycl. Complex. Syst. Sci. Ser., 609-638 (2020). MSC: 91A43 PDF BibTeX XML Cite \textit{F. H. Page jun.} and \textit{M. Wooders}, in: Complex social and behavioral systems. Game theory and agent-based models. New York, NY: Springer. 609--638 (2020; Zbl 1455.91058) Full Text: DOI OpenURL
Liu, Xijuan; Liu, Yun Codimension-two bifurcation analysis on a discrete Gierer-Meinhardt system. (English) Zbl 1460.39006 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2050251, 14 p. (2020). MSC: 39A28 39A30 37G05 37G10 PDF BibTeX XML Cite \textit{X. Liu} and \textit{Y. Liu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2050251, 14 p. (2020; Zbl 1460.39006) Full Text: DOI OpenURL
Ćebić, Dejan; Ralević, Nebojša M. Ralević; Marčeta, Marina An optimal sixteenth order family of methods for solving nonlinear equations and their basins of attraction. (English) Zbl 1453.65098 Math. Commun. 25, No. 2, 269-288 (2020). MSC: 65H05 PDF BibTeX XML Cite \textit{D. Ćebić} et al., Math. Commun. 25, No. 2, 269--288 (2020; Zbl 1453.65098) Full Text: Link OpenURL
Wagemakers, Alexandre; Daza, Alvar; Sanjuán, Miguel A. F. The saddle-straddle method to test for Wada basins. (English) Zbl 1452.37030 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105167, 8 p. (2020); corrigendum ibid. 90, Article ID 105334, 1 p. (2020). MSC: 37C75 37C70 37C45 PDF BibTeX XML Cite \textit{A. Wagemakers} et al., Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105167, 8 p. (2020; Zbl 1452.37030) Full Text: DOI arXiv OpenURL
Ataei Delshad, Parandoosh; Lotfi, Taher On the local convergence of Kung-Traub’s two-point method and its dynamics. (English) Zbl 07250668 Appl. Math., Praha 65, No. 4, 379-406 (2020). MSC: 65F10 65H04 37P40 37Fxx PDF BibTeX XML Cite \textit{P. Ataei Delshad} and \textit{T. Lotfi}, Appl. Math., Praha 65, No. 4, 379--406 (2020; Zbl 07250668) Full Text: DOI OpenURL
Behl, Ramandeep; Zafar, Fiza; Junjua, Moin-ud-din; Alshomrani, Ali Saleh A new two-point scheme for multiple roots of nonlinear equations. (English) Zbl 1443.65067 Math. Methods Appl. Sci. 43, No. 5, 2421-2443 (2020). MSC: 65H05 PDF BibTeX XML Cite \textit{R. Behl} et al., Math. Methods Appl. Sci. 43, No. 5, 2421--2443 (2020; Zbl 1443.65067) Full Text: DOI OpenURL
Ansari, Abdullah A.; Alhussain, Ziyad A. The restricted five-body problem with cyclic kite configuration. (English) Zbl 1499.70007 J. Dyn. Syst. Geom. Theor. 17, No. 1, 91-107 (2019). MSC: 70F10 70F15 PDF BibTeX XML Cite \textit{A. A. Ansari} and \textit{Z. A. Alhussain}, J. Dyn. Syst. Geom. Theor. 17, No. 1, 91--107 (2019; Zbl 1499.70007) Full Text: DOI OpenURL
Behl, Ramandeep; Kanwar, Vinay; Kim, Young Ik Higher-order families of multiple root finding methods suitable for non-convergent cases and their dynamics. (English) Zbl 07394663 Math. Model. Anal. 24, No. 3, 422-444 (2019). MSC: 65H05 PDF BibTeX XML Cite \textit{R. Behl} et al., Math. Model. Anal. 24, No. 3, 422--444 (2019; Zbl 07394663) Full Text: DOI OpenURL
Bera, Sayani Examples of non-autonomous basins of attraction-II. (English) Zbl 1447.32024 J. Ramanujan Math. Soc. 34, No. 3, 343-363 (2019). MSC: 32H02 32H50 PDF BibTeX XML Cite \textit{S. Bera}, J. Ramanujan Math. Soc. 34, No. 3, 343--363 (2019; Zbl 1447.32024) Full Text: arXiv Link OpenURL
Cang, Shijian; Li, Yue; Zhang, Ruiye; Wang, Zenghui Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points. (English) Zbl 1439.34045 Nonlinear Dyn. 95, No. 1, 381-390 (2019). MSC: 34C28 37D45 34D45 PDF BibTeX XML Cite \textit{S. Cang} et al., Nonlinear Dyn. 95, No. 1, 381--390 (2019; Zbl 1439.34045) Full Text: DOI OpenURL
Sharma, Rajni; Bahl, Ashu On developing a novel sixth order transformation method for multiple roots and its basins of attraction. (English) Zbl 1433.65091 S\(\vec{\text{e}}\)MA J. 76, No. 4, 595-613 (2019). Reviewer: Anton Iliev (Plovdiv) MSC: 65H05 65H20 PDF BibTeX XML Cite \textit{R. Sharma} and \textit{A. Bahl}, S\(\vec{\text{e}}\)MA J. 76, No. 4, 595--613 (2019; Zbl 1433.65091) Full Text: DOI OpenURL
Ansari, Abdullah A.; Ali, Ashraf; Alam, Mehtab; Kellil, Rabah Cyclic kite configuration with veriable mass of the fifth body in R5BP. (English) Zbl 1428.70024 Appl. Appl. Math. 14, No. 2, 985-1002 (2019). MSC: 70F15 85A20 70F05 PDF BibTeX XML Cite \textit{A. A. Ansari} et al., Appl. Appl. Math. 14, No. 2, 985--1002 (2019; Zbl 1428.70024) Full Text: Link OpenURL
Bahl, Ashu; Cordero, Alicia; Sharma, Rajni; R. Torregrosa, Juan A novel bi-parametric sixth order iterative scheme for solving nonlinear systems and its dynamics. (English) Zbl 1429.65103 Appl. Math. Comput. 357, 147-166 (2019). MSC: 65H10 37F10 39A30 PDF BibTeX XML Cite \textit{A. Bahl} et al., Appl. Math. Comput. 357, 147--166 (2019; Zbl 1429.65103) Full Text: DOI OpenURL
Fassoni, Artur César; Carvalho Braga, Denis Resilience analysis for competing populations. (English) Zbl 1430.92124 Bull. Math. Biol. 81, No. 10, 3864-3888 (2019). Reviewer: Syed Abbas (Mandi) MSC: 92D40 PDF BibTeX XML Cite \textit{A. C. Fassoni} and \textit{D. Carvalho Braga}, Bull. Math. Biol. 81, No. 10, 3864--3888 (2019; Zbl 1430.92124) Full Text: DOI arXiv OpenURL
Sharma, Janak Raj; Arora, Himani Efficient Ostrowski-like methods of optimal eighth and sixteenth order convergence and their dynamics. (English) Zbl 1438.65107 Afr. Mat. 30, No. 5-6, 921-941 (2019). MSC: 65H05 41A20 PDF BibTeX XML Cite \textit{J. R. Sharma} and \textit{H. Arora}, Afr. Mat. 30, No. 5--6, 921--941 (2019; Zbl 1438.65107) Full Text: DOI OpenURL
Behl, Ramandeep; Salimi, M.; Ferrara, M.; Sharifi, S.; Alharbi, Samaher Khalaf Some real-life applications of a newly constructed derivative free iterative scheme. (English) Zbl 1416.65136 Symmetry 11, No. 2, Paper No. 239, 14 p. (2019). MSC: 65H05 PDF BibTeX XML Cite \textit{R. Behl} et al., Symmetry 11, No. 2, Paper No. 239, 14 p. (2019; Zbl 1416.65136) Full Text: DOI OpenURL
Drugan, Madalina M. Estimating the number of basins of attraction of multi-objective combinatorial problems. (English) Zbl 1425.90090 J. Comb. Optim. 37, No. 4, 1367-1407 (2019). MSC: 90C27 90C29 PDF BibTeX XML Cite \textit{M. M. Drugan}, J. Comb. Optim. 37, No. 4, 1367--1407 (2019; Zbl 1425.90090) Full Text: DOI OpenURL
Ramirez-Zuniga, Ivan; Rubin, Jonathan E.; Swigon, David; Clermont, Gilles Mathematical modeling of energy consumption in the acute inflammatory response. (English) Zbl 1406.92114 J. Theor. Biol. 460, 101-114 (2019). MSC: 92C30 92C50 PDF BibTeX XML Cite \textit{I. Ramirez-Zuniga} et al., J. Theor. Biol. 460, 101--114 (2019; Zbl 1406.92114) Full Text: DOI Link OpenURL
Weisbuch, Gérard Persistence of discrimination: revisiting Axtell, Epstein and Young. (English) Zbl 07546795 Physica A 492, 39-49 (2018). MSC: 82-XX PDF BibTeX XML Cite \textit{G. Weisbuch}, Physica A 492, 39--49 (2018; Zbl 07546795) Full Text: DOI arXiv OpenURL
Belardinelli, P.; Lenci, S.; Rega, G. Seamless variation of isometric and anisometric dynamical integrity measures in basins’s erosion. (English) Zbl 07263259 Commun. Nonlinear Sci. Numer. Simul. 56, 499-507 (2018). MSC: 37M05 37M21 37C70 34A34 PDF BibTeX XML Cite \textit{P. Belardinelli} et al., Commun. Nonlinear Sci. Numer. Simul. 56, 499--507 (2018; Zbl 07263259) Full Text: DOI OpenURL
Staunton, Eoghan J.; Piiroinen, Petri T. Noise and multistability in the square root map. (English) Zbl 1415.37054 Physica D 380-381, 31-44 (2018). MSC: 37E05 37G35 37B10 PDF BibTeX XML Cite \textit{E. J. Staunton} and \textit{P. T. Piiroinen}, Physica D 380--381, 31--44 (2018; Zbl 1415.37054) Full Text: DOI OpenURL
Mittal, Amit; Arora, Monika; Suraj, Md Sanam; Aggarwal, Rajiv The basins of convergence in the planar restricted four-body problem with variable mass. (English) Zbl 1407.37116 Appl. Appl. Math. 13, No. 2, 1230-1247 (2018). MSC: 37N05 70F07 70F15 PDF BibTeX XML Cite \textit{A. Mittal} et al., Appl. Appl. Math. 13, No. 2, 1230--1247 (2018; Zbl 1407.37116) Full Text: Link OpenURL
Ansari, Abdullah A. The circular restricted four-body problem with triaxial primaries and variable infinitesimal mass. (English) Zbl 1406.70020 Appl. Appl. Math. 13, No. 2, 818-838 (2018). MSC: 70F15 85A20 70F05 PDF BibTeX XML Cite \textit{A. A. Ansari}, Appl. Appl. Math. 13, No. 2, 818--838 (2018; Zbl 1406.70020) Full Text: Link OpenURL
Shi, Jianfei; Gou, Xiangfeng; Zhu, Lingyun Bifurcation and erosion of safe basin for a spur gear system. (English) Zbl 1416.34029 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 14, Article ID 1830048, 25 p. (2018). MSC: 34C15 70B15 70K40 34D45 34C23 34C25 34D05 PDF BibTeX XML Cite \textit{J. Shi} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 14, Article ID 1830048, 25 p. (2018; Zbl 1416.34029) Full Text: DOI OpenURL
Zotos, Euaggelos E.; Suraj, Md Sanam; Mittal, Amit; Aggarwal, Rajiv Comparing the geometry of the basins of attraction, the speed and the efficiency of several numerical methods. (English) Zbl 1408.65027 Int. J. Appl. Comput. Math. 4, No. 4, Paper No. 105, 18 p. (2018). Reviewer: Nikolay Kyurkchiev (Plovdiv) MSC: 65H05 65-02 PDF BibTeX XML Cite \textit{E. E. Zotos} et al., Int. J. Appl. Comput. Math. 4, No. 4, Paper No. 105, 18 p. (2018; Zbl 1408.65027) Full Text: DOI arXiv OpenURL
Sharma, Janak Raj; Kumar, Sunil Efficient methods of optimal eighth and sixteenth order convergence for solving nonlinear equations. (English) Zbl 1398.65101 S\(\vec{\text{e}}\)MA J. 75, No. 2, 229-253 (2018). MSC: 65H05 PDF BibTeX XML Cite \textit{J. R. Sharma} and \textit{S. Kumar}, S\(\vec{\text{e}}\)MA J. 75, No. 2, 229--253 (2018; Zbl 1398.65101) Full Text: DOI OpenURL
Sharma, Rajni; Sharma, Janak Raj; Kalra, Nitin A novel family of weighted-Newton optimal eighth order methods with dynamics. (English) Zbl 1405.65071 S\(\vec{\text{e}}\)MA J. 75, No. 2, 197-213 (2018). Reviewer: Nikolay Kyurkchiev (Plovdiv) MSC: 65H05 PDF BibTeX XML Cite \textit{R. Sharma} et al., S\(\vec{\text{e}}\)MA J. 75, No. 2, 197--213 (2018; Zbl 1405.65071) Full Text: DOI OpenURL
Herceg, Djordje; Herceg, Dragoslav Eighth order family of iterative methods for nonlinear equations and their basins of attraction. (English) Zbl 1391.65138 J. Comput. Appl. Math. 343, 458-480 (2018). MSC: 65H05 PDF BibTeX XML Cite \textit{D. Herceg} and \textit{D. Herceg}, J. Comput. Appl. Math. 343, 458--480 (2018; Zbl 1391.65138) Full Text: DOI OpenURL
Zotos, Euaggelos E. Investigating the Newton-Raphson basins of attraction in the restricted three-body problem with modified Newtonian gravity. (English) Zbl 1430.70039 J. Appl. Math. Comput. 56, No. 1-2, 53-71 (2018). MSC: 70F07 37C70 37N05 PDF BibTeX XML Cite \textit{E. E. Zotos}, J. Appl. Math. Comput. 56, No. 1--2, 53--71 (2018; Zbl 1430.70039) Full Text: DOI arXiv OpenURL
Negou, A. Nguomkam; kengne, J.; Tchiotsop, D. Periodicity, chaos and multiple coexisting attractors in a generalized Moore-Spiegel system. (English) Zbl 1380.34071 Chaos Solitons Fractals 107, 275-289 (2018). MSC: 34C28 34C60 34C23 PDF BibTeX XML Cite \textit{A. N. Negou} et al., Chaos Solitons Fractals 107, 275--289 (2018; Zbl 1380.34071) Full Text: DOI OpenURL
Geum, Young Hee; Kim, Young Ik; Neta, Beny Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points. (English) Zbl 1380.65090 J. Comput. Appl. Math. 333, 131-156 (2018). MSC: 65H05 PDF BibTeX XML Cite \textit{Y. H. Geum} et al., J. Comput. Appl. Math. 333, 131--156 (2018; Zbl 1380.65090) Full Text: DOI OpenURL
Kim, Young I.; Behl, Ramandeep; Motsa, Sandile S. An optimal family of eighth-order iterative methods with an inverse interpolatory rational function error corrector for nonlinear equations. (English) Zbl 1488.65117 Math. Model. Anal. 22, No. 3, 321-336 (2017). MSC: 65H05 PDF BibTeX XML Cite \textit{Y. I. Kim} et al., Math. Model. Anal. 22, No. 3, 321--336 (2017; Zbl 1488.65117) Full Text: DOI OpenURL
Daza, Alvar; Wagemakers, Alexandre; Sanjuán, Miguel A. F. Wada property in systems with delay. (English) Zbl 1469.34085 Commun. Nonlinear Sci. Numer. Simul. 43, 220-226 (2017). MSC: 34K05 34K25 34K23 94A12 PDF BibTeX XML Cite \textit{A. Daza} et al., Commun. Nonlinear Sci. Numer. Simul. 43, 220--226 (2017; Zbl 1469.34085) Full Text: DOI arXiv OpenURL
Ansari, Abdullah A.; Alhussain, Ziyad A.; Kellil, Rabah The effect of perturbations on the circular restricted four-body problem with variable masses. (English) Zbl 1427.70030 J. Math. Comput. Sci., JMCS 17, No. 3, 365-377 (2017). MSC: 70F10 70F05 70F07 70F15 PDF BibTeX XML Cite \textit{A. A. Ansari} et al., J. Math. Comput. Sci., JMCS 17, No. 3, 365--377 (2017; Zbl 1427.70030) Full Text: DOI OpenURL
Ansari, Abdullah A. Effect of Albedo on the motion of the infinitesimal body in circular restricted three body problem with variable masses. (English) Zbl 1427.70028 Ital. J. Pure Appl. Math. 38, 581-600 (2017). MSC: 70F07 PDF BibTeX XML Cite \textit{A. A. Ansari}, Ital. J. Pure Appl. Math. 38, 581--600 (2017; Zbl 1427.70028) Full Text: Link OpenURL
Kanwar, V.; Bala, Raj; Kansal, Munish Some new weighted eighth-order variants of Steffensen-King’s type family for solving nonlinear equations and its dynamics. (English) Zbl 1382.65131 S\(\vec{\text{e}}\)MA J. 74, No. 1, 75-90 (2017). MSC: 65H05 PDF BibTeX XML Cite \textit{V. Kanwar} et al., S\(\vec{\text{e}}\)MA J. 74, No. 1, 75--90 (2017; Zbl 1382.65131) Full Text: DOI OpenURL
Falcão, M. Irene; Miranda, Fernando; Severino, Ricardo; Soares, M. Joana Basins of attraction for a quadratic coquaternionic map. (English) Zbl 1380.37109 Chaos Solitons Fractals 104, 716-724 (2017). MSC: 37G35 11R52 PDF BibTeX XML Cite \textit{M. I. Falcão} et al., Chaos Solitons Fractals 104, 716--724 (2017; Zbl 1380.37109) Full Text: DOI Link OpenURL
Zotos, Euaggelos E. Basins of convergence of equilibrium points in the generalized Hill problem. (English) Zbl 1409.37083 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 12, Article ID 1730043, 18 p. (2017). Reviewer: Alois Steindl (Wien) MSC: 37M20 65L20 65L07 PDF BibTeX XML Cite \textit{E. E. Zotos}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 12, Article ID 1730043, 18 p. (2017; Zbl 1409.37083) Full Text: DOI arXiv OpenURL
Ansari, Abdullah A. Investigation of the effect of albedo and oblateness on the circular restricted four variable body problem. (English) Zbl 1410.70015 Appl. Math. Nonlinear Sci. 2, No. 2, 529-542 (2017). MSC: 70F15 85A20 70F05 70F10 PDF BibTeX XML Cite \textit{A. A. Ansari}, Appl. Math. Nonlinear Sci. 2, No. 2, 529--542 (2017; Zbl 1410.70015) Full Text: DOI OpenURL
Xiong, Anda; Sprott, Julien C.; Lyu, Jingxuan; Wang, Xilu 3D printing – the basins of tristability in the Lorenz system. (English) Zbl 1377.34024 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 8, Article ID 1750128, 5 p. (2017). MSC: 34A34 34D45 34C28 37D45 34C05 PDF BibTeX XML Cite \textit{A. Xiong} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 8, Article ID 1750128, 5 p. (2017; Zbl 1377.34024) Full Text: DOI OpenURL
Lv, Yipin; Xiong, Tianhong; Yi, Wenjun Multistability in a simplified underwater supercavity system. (English) Zbl 1377.34063 Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 8, Article ID 1750121, 16 p. (2017). MSC: 34C60 70Q05 34D45 34D20 PDF BibTeX XML Cite \textit{Y. Lv} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 27, No. 8, Article ID 1750121, 16 p. (2017; Zbl 1377.34063) Full Text: DOI OpenURL
Shlufman, Konstantin Vladimirovich; Neverova, Galina Petrovna; Frisman, Efim Yakovlevich Dynamic modes of the Ricker model with periodic Malthusian parameter. (Russian. English summary) Zbl 1386.37048 Nelineĭn. Din. 13, No. 3, 363-380 (2017). MSC: 37G35 PDF BibTeX XML Cite \textit{K. V. Shlufman} et al., Nelineĭn. Din. 13, No. 3, 363--380 (2017; Zbl 1386.37048) Full Text: DOI MNR OpenURL
Ontañón-García, L. J.; Campos-Cantón, E. Widening of the basins of attraction of a multistable switching dynamical system with the location of symmetric equilibria. (English) Zbl 1380.37073 Nonlinear Anal., Hybrid Syst. 26, 38-47 (2017). MSC: 37D45 34A38 34C28 37D10 PDF BibTeX XML Cite \textit{L. J. Ontañón-García} and \textit{E. Campos-Cantón}, Nonlinear Anal., Hybrid Syst. 26, 38--47 (2017; Zbl 1380.37073) Full Text: DOI arXiv OpenURL
Zotos, Euaggelos E. Equilibrium points and basins of convergence in the linear restricted four-body problem with angular velocity. (English) Zbl 1373.70012 Chaos Solitons Fractals 101, 8-19 (2017). MSC: 70F10 70E50 PDF BibTeX XML Cite \textit{E. E. Zotos}, Chaos Solitons Fractals 101, 8--19 (2017; Zbl 1373.70012) Full Text: DOI arXiv OpenURL
Basto, Mário; Abreu, Teresa; Semiao, Viriato; Calheiros, Francisco L. Convergence and dynamics of structurally identical root finding methods. (English) Zbl 1370.65023 Appl. Numer. Math. 120, 257-269 (2017). MSC: 65H05 PDF BibTeX XML Cite \textit{M. Basto} et al., Appl. Numer. Math. 120, 257--269 (2017; Zbl 1370.65023) Full Text: DOI OpenURL
Behl, R.; Maroju, P.; Motsa, S. S. A family of second derivative free fourth order continuation method for solving nonlinear equations. (English) Zbl 1357.65056 J. Comput. Appl. Math. 318, 38-46 (2017). MSC: 65H05 PDF BibTeX XML Cite \textit{R. Behl} et al., J. Comput. Appl. Math. 318, 38--46 (2017; Zbl 1357.65056) Full Text: DOI OpenURL
Sharma, Janak Raj; Sharma, Rajni; Bahl, Ashu An improved Newton-Traub composition for solving systems of nonlinear equations. (English) Zbl 1410.65198 Appl. Math. Comput. 290, 98-110 (2016). MSC: 65H10 PDF BibTeX XML Cite \textit{J. R. Sharma} et al., Appl. Math. Comput. 290, 98--110 (2016; Zbl 1410.65198) Full Text: DOI OpenURL
Cordero, Alicia; Gutiérrez, José M.; Magreñán, Á. Alberto; Torregrosa, Juan R. Stability analysis of a parametric family of iterative methods for solving nonlinear models. (English) Zbl 1410.65183 Appl. Math. Comput. 285, 26-40 (2016). MSC: 65H10 PDF BibTeX XML Cite \textit{A. Cordero} et al., Appl. Math. Comput. 285, 26--40 (2016; Zbl 1410.65183) Full Text: DOI OpenURL
Sharma, Janak Raj; Arora, Himani Some novel optimal eighth order derivative-free root solvers and their basins of attraction. (English) Zbl 1410.65174 Appl. Math. Comput. 284, 149-161 (2016). MSC: 65H05 39B12 PDF BibTeX XML Cite \textit{J. R. Sharma} and \textit{H. Arora}, Appl. Math. Comput. 284, 149--161 (2016; Zbl 1410.65174) Full Text: DOI OpenURL
Geum, Young Hee; Kim, Young Ik; Neta, Beny A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. (English) Zbl 1410.65160 Appl. Math. Comput. 283, 120-140 (2016). MSC: 65H05 PDF BibTeX XML Cite \textit{Y. H. Geum} et al., Appl. Math. Comput. 283, 120--140 (2016; Zbl 1410.65160) Full Text: DOI OpenURL
Kim, Young Ik; Behl, Ramandeep; Motsa, S. S. Higher-order efficient class of Chebyshev-Halley type methods. (English) Zbl 1410.65164 Appl. Math. Comput. 273, 1148-1159 (2016). MSC: 65H05 PDF BibTeX XML Cite \textit{Y. I. Kim} et al., Appl. Math. Comput. 273, 1148--1159 (2016; Zbl 1410.65164) Full Text: DOI OpenURL
Sharma, Janak Raj; Arora, Himani A new family of optimal eighth order methods with dynamics for nonlinear equations. (English) Zbl 1410.65173 Appl. Math. Comput. 273, 924-933 (2016). MSC: 65H05 PDF BibTeX XML Cite \textit{J. R. Sharma} and \textit{H. Arora}, Appl. Math. Comput. 273, 924--933 (2016; Zbl 1410.65173) Full Text: DOI OpenURL
Belardinelli, Pierpaolo; Lenci, Stefano An efficient parallel implementation of cell mapping methods for MDOF systems. (English) Zbl 1448.65271 Nonlinear Dyn. 86, No. 4, 2279-2290 (2016). MSC: 65P99 37M05 PDF BibTeX XML Cite \textit{P. Belardinelli} and \textit{S. Lenci}, Nonlinear Dyn. 86, No. 4, 2279--2290 (2016; Zbl 1448.65271) Full Text: DOI OpenURL
Matthies, Gunar; Salimi, Mehdi; Sharifi, Somayeh; Varona, Juan Luis An optimal three-point eighth-order iterative method without memory for solving nonlinear equations with its dynamics. (English) Zbl 1365.65145 Japan J. Ind. Appl. Math. 33, No. 3, 751-766 (2016). MSC: 65H05 PDF BibTeX XML Cite \textit{G. Matthies} et al., Japan J. Ind. Appl. Math. 33, No. 3, 751--766 (2016; Zbl 1365.65145) Full Text: DOI arXiv OpenURL
Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh Hidden attractors in dynamical systems. (English) Zbl 1359.34054 Phys. Rep. 637, 1-50 (2016). MSC: 34D45 70K55 34D20 70K05 34F10 PDF BibTeX XML Cite \textit{D. Dudkowski} et al., Phys. Rep. 637, 1--50 (2016; Zbl 1359.34054) Full Text: DOI Link OpenURL
Madhu, Kalyanasundaram; Jayaraman, Jayakumar Higher order methods for nonlinear equations and their basins of attraction. (English) Zbl 1360.65142 Mathematics 4, No. 2, Paper No. 22, 20 p. (2016). MSC: 65H05 65Y20 PDF BibTeX XML Cite \textit{K. Madhu} and \textit{J. Jayaraman}, Mathematics 4, No. 2, Paper No. 22, 20 p. (2016; Zbl 1360.65142) Full Text: DOI OpenURL
Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan Crisis in amplitude control hides in multistability. (English) Zbl 1357.34106 Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 14, Article ID 1650233, 11 p. (2016). MSC: 34H20 34A34 34C28 37D45 34D08 37G35 PDF BibTeX XML Cite \textit{C. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 14, Article ID 1650233, 11 p. (2016; Zbl 1357.34106) Full Text: DOI OpenURL
Wen, Guilin; Yin, Shan; Xu, Huidong; Zhang, Sijin; Lv, Zengyao Analysis of grazing bifurcation from periodic motion to quasi-periodic motion in impact-damper systems. (English) Zbl 1355.70029 Chaos Solitons Fractals 83, 112-118 (2016). MSC: 70K50 70K42 PDF BibTeX XML Cite \textit{G. Wen} et al., Chaos Solitons Fractals 83, 112--118 (2016; Zbl 1355.70029) Full Text: DOI OpenURL
Amat, Sergio; Busquier, Sonia; Bermúdez, Concepción; Magreñán, Á. Alberto On the election of the damped parameter of a two-step relaxed Newton-type method. (English) Zbl 1354.65157 Nonlinear Dyn. 84, No. 1, 9-18 (2016). MSC: 65L20 37D45 34C28 PDF BibTeX XML Cite \textit{S. Amat} et al., Nonlinear Dyn. 84, No. 1, 9--18 (2016; Zbl 1354.65157) Full Text: DOI OpenURL
Biemond, J. J. Benjamin; Michiels, Wim Estimation of basins of attraction for controlled systems with input saturation and time-delays. (English) Zbl 1344.93053 Syst. Control Lett. 94, 84-91 (2016). MSC: 93C10 93C15 37D45 PDF BibTeX XML Cite \textit{J. J. B. Biemond} and \textit{W. Michiels}, Syst. Control Lett. 94, 84--91 (2016; Zbl 1344.93053) Full Text: DOI OpenURL
Oldham, Joshua; Weigert, Stefan Friction causing unpredictability. (English) Zbl 1398.70034 J. Phys. A, Math. Theor. 49, No. 12, Article ID 125102, 11 p. (2016). MSC: 70F40 37J99 PDF BibTeX XML Cite \textit{J. Oldham} and \textit{S. Weigert}, J. Phys. A, Math. Theor. 49, No. 12, Article ID 125102, 11 p. (2016; Zbl 1398.70034) Full Text: DOI arXiv Link OpenURL
Cavoretto, Roberto; De Rossi, Alessandra; Perracchione, Emma; Venturino, Ezio Robust approximation algorithms for the detection of attraction basins in dynamical systems. (English) Zbl 1344.65118 J. Sci. Comput. 68, No. 1, 395-415 (2016). MSC: 65P30 37M20 92D25 37G35 PDF BibTeX XML Cite \textit{R. Cavoretto} et al., J. Sci. Comput. 68, No. 1, 395--415 (2016; Zbl 1344.65118) Full Text: DOI arXiv OpenURL
Kalabušić, S.; Kulenović, M. R. S.; Mehuljić, M. Global dynamics and bifurcations of two quadratic fractional second order difference equations. (English) Zbl 1344.39009 J. Comput. Anal. Appl. 21, No. 1, 132-143 (2016). Reviewer: Oleg Anashkin (Simferopol) MSC: 39A20 39A28 39A30 PDF BibTeX XML Cite \textit{S. Kalabušić} et al., J. Comput. Anal. Appl. 21, No. 1, 132--143 (2016; Zbl 1344.39009) OpenURL
Hernández Paricio, Luis Javier Bivariate Newton-Raphson method and toroidal attraction basins. (English) Zbl 1333.65050 Numer. Algorithms 71, No. 2, 349-381 (2016). MSC: 65H04 65D18 PDF BibTeX XML Cite \textit{L. J. Hernández Paricio}, Numer. Algorithms 71, No. 2, 349--381 (2016; Zbl 1333.65050) Full Text: DOI OpenURL
Wright, James A.; Deane, Jonathan H. B.; Bartuccelli, Michele; Gentile, Guido Basins of attraction in forced systems with time-varying dissipation. (English) Zbl 1467.70005 Commun. Nonlinear Sci. Numer. Simul. 29, No. 1-3, 72-87 (2015). MSC: 70K40 PDF BibTeX XML Cite \textit{J. A. Wright} et al., Commun. Nonlinear Sci. Numer. Simul. 29, No. 1--3, 72--87 (2015; Zbl 1467.70005) Full Text: DOI arXiv Link OpenURL
Geum, Young Hee; Kim, Young Ik; Neta, Beny A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. (English) Zbl 1410.65159 Appl. Math. Comput. 270, 387-400 (2015). MSC: 65H05 65E05 PDF BibTeX XML Cite \textit{Y. H. Geum} et al., Appl. Math. Comput. 270, 387--400 (2015; Zbl 1410.65159) Full Text: DOI OpenURL
García Calcines, José M.; Gutiérrez, José M.; Hernández Paricio, Luis J.; Rivas Rodríguez, M. Teresa Graphical representations for the homogeneous bivariate Newton’s method. (English) Zbl 1410.65140 Appl. Math. Comput. 269, 988-1006 (2015). MSC: 65H04 65S05 68U05 65H05 PDF BibTeX XML Cite \textit{J. M. García Calcines} et al., Appl. Math. Comput. 269, 988--1006 (2015; Zbl 1410.65140) Full Text: DOI OpenURL
Sharma, Rajni; Bahl, Ashu A sixth order transformation method for finding multiple roots of nonlinear equations and basin attractors for various methods. (English) Zbl 1410.65175 Appl. Math. Comput. 269, 105-117 (2015). MSC: 65H05 37F99 PDF BibTeX XML Cite \textit{R. Sharma} and \textit{A. Bahl}, Appl. Math. Comput. 269, 105--117 (2015; Zbl 1410.65175) Full Text: DOI OpenURL
Khaksar Haghani, F. A generalized Steffensen’s method for matrix sign function. (English) Zbl 1410.65136 Appl. Math. Comput. 260, 249-256 (2015). MSC: 65F60 15A16 PDF BibTeX XML Cite \textit{F. Khaksar Haghani}, Appl. Math. Comput. 260, 249--256 (2015; Zbl 1410.65136) Full Text: DOI OpenURL
Kansal, Munish; Kanwar, V.; Bhatia, Saurabh On some optimal multiple root-finding methods and their dynamics. (English) Zbl 1411.65072 Appl. Appl. Math. 10, No. 1, 349-367 (2015). MSC: 65H05 PDF BibTeX XML Cite \textit{M. Kansal} et al., Appl. Appl. Math. 10, No. 1, 349--367 (2015; Zbl 1411.65072) Full Text: Link OpenURL
Cordero, Alicia; Feng, Licheng; Magreñán, Alberto; Torregrosa, Juan R. A new fourth-order family for solving nonlinear problems and its dynamics. (English) Zbl 1318.65028 J. Math. Chem. 53, No. 3, 893-910 (2015). MSC: 65H10 PDF BibTeX XML Cite \textit{A. Cordero} et al., J. Math. Chem. 53, No. 3, 893--910 (2015; Zbl 1318.65028) Full Text: DOI Link OpenURL
Sander, Evelyn; Yorke, James A. The many facets of chaos. (English) Zbl 1314.37022 Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 4, Article ID 1530011, 15 p. (2015). MSC: 37D45 34C28 37D25 37B10 PDF BibTeX XML Cite \textit{E. Sander} and \textit{J. A. Yorke}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 4, Article ID 1530011, 15 p. (2015; Zbl 1314.37022) Full Text: DOI OpenURL
Zhang, Boyu; Hofbauer, Josef Equilibrium selection via replicator dynamics in \(2 \times 2\) coordination games. (English) Zbl 1388.91007 Int. J. Game Theory 44, No. 2, 433-448 (2015). MSC: 91A05 91A22 PDF BibTeX XML Cite \textit{B. Zhang} and \textit{J. Hofbauer}, Int. J. Game Theory 44, No. 2, 433--448 (2015; Zbl 1388.91007) Full Text: DOI OpenURL
Kuznetsov, A. P.; Kuznetsov, S. P.; Mosekilde, E.; Stankevich, N. V. Co-existing hidden attractors in a radio-physical oscillator system. (English) Zbl 1316.34016 J. Phys. A, Math. Theor. 48, No. 12, Article ID 125101, 12 p. (2015). MSC: 34A34 34D45 37G35 34C23 34C45 34D05 PDF BibTeX XML Cite \textit{A. P. Kuznetsov} et al., J. Phys. A, Math. Theor. 48, No. 12, Article ID 125101, 12 p. (2015; Zbl 1316.34016) Full Text: DOI OpenURL
Magreñán, Ángel Alberto; Cordero, Alicia; Gutiérrez, José M.; Torregrosa, Juan R. Real qualitative behavior of a fourth-order family of iterative methods by using the convergence plane. (English) Zbl 07312639 Math. Comput. Simul. 105, 49-61 (2014). MSC: 37-XX 65-XX PDF BibTeX XML Cite \textit{Á. A. Magreñán} et al., Math. Comput. Simul. 105, 49--61 (2014; Zbl 07312639) Full Text: DOI Link OpenURL
Seck-Tuoh-Mora, Juan Carlos; Medina-Marin, Joselito; Martínez, Genaro J.; Hernández-Romero, Norberto Emergence of density dynamics by surface interpolation in elementary cellular automata. (English) Zbl 1457.37016 Commun. Nonlinear Sci. Numer. Simul. 19, No. 4, 941-966 (2014). MSC: 37B15 PDF BibTeX XML Cite \textit{J. C. Seck-Tuoh-Mora} et al., Commun. Nonlinear Sci. Numer. Simul. 19, No. 4, 941--966 (2014; Zbl 1457.37016) Full Text: DOI OpenURL
Magreñán, Ángel Alberto A new tool to study real dynamics: the convergence plane. (English) Zbl 1338.65277 Appl. Math. Comput. 248, 215-224 (2014). MSC: 65Q30 37F50 PDF BibTeX XML Cite \textit{Á. A. Magreñán}, Appl. Math. Comput. 248, 215--224 (2014; Zbl 1338.65277) Full Text: DOI arXiv OpenURL