×

Widening of the basins of attraction of a multistable switching dynamical system with the location of symmetric equilibria. (English) Zbl 1380.37073

Summary: A switching dynamical system by means of piecewise linear systems in \(\mathbf{R}^3\) that presents multistability is presented. The flow of the system displays multi-scroll attractors due to the unstable hyperbolic focus-saddle equilibria with stability index of type I, i.e., a negative real eigenvalue and a pair of complex conjugated eigenvalues with positive real part. This class of systems is constructed by a discrete control mode changing the equilibrium point regarding the location of their states. The scrolls appear when the stable and unstable eigenspaces of each adjacent equilibrium point generate the stretching and folding mechanisms needed in chaos, i.e., the unstable manifold in the first subsystem carries the trajectory towards the stable manifold of the immediate adjacent subsystem.
The resulting attractors are located around four focus saddle equilibria. If the equilibria are located symmetrically to one of the axes and the distance between each equilibria is properly adjusted to generate two double-scroll chaotic attractors, the system can present from bistable to multistable parallel solutions regarding the position of their initial states. In addition the resulting basin of attraction presents a significatively widening when the distance between the equilibria of the parallel attractors is displaced.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34A38 Hybrid systems of ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
37D10 Invariant manifold theory for dynamical systems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Campos-Cantón, E., Chaotic attractors based on unstable dissipative systems via third-order differential equation, Internat. J. Modern Phys. C, 27, 1, 1650008 (2016)
[2] Campos-Cantón, E.; Campos-Cantón, I.; González-Salas, J. S.; Cruz-Ordaz, F., A parameterized family of single-double-triple-scroll chaotic oscillations, Rev. Mexicana Fís., 54, 6 (2008)
[3] Ontañón-García, L. J.; Jiménez-López, E.; Campos-Cantón, E.; Basin, M., A family of hyperchaotic multi-scroll attractors in \(R^n\), Appl. Math. Comput., 233 (2014) · Zbl 1334.34140
[4] Ontañón-García, L. J.; Campos-Cantón, E., Bounded trajectories of unstable piecewise linear systems and its applications, (Advances in Mathematics Research, Vol. 20 (2015), Nova Science Publishers, Inc.), 149-172
[5] Campos-Cantón, E.; Femat & Guanrong Chen, R., Attractors generated from switching unstable dissipative systems, Chaos, 22, Article 033121 pp. (2012) · Zbl 1319.37019
[6] García-Martínez, M.; Ontañón-García, L. J.; Campos-Cantón, E.; Ĉelikovský, S., Hyperchaotic encryption based on multi-scroll piecewise linear systems, Appl. Math. Comput., 270, 413-424 (2015) · Zbl 1410.94071
[7] Lü, J.; Chen, G., Generating multiscroll chaotic attractors: theories, methods and applications, Int. J. Bifurcation Chaos, 16, 04, 775-858 (2006) · Zbl 1097.94038
[8] Suykens, J. A.K.; Vandewalle, J., Generation of n-double scrolls \((n = 1; 2; 3; 4; \ldots)\), IEEE Trans. Circuits Syst. I, 40, 11, 861-867 (1993) · Zbl 0844.58063
[9] Sakthivel, G.; Rajasekar, S.; Thamilmaran, K.; Dana, S. K., Statistical measures and diffusion dynamics in a modified Chuas circuit equation with multi-scroll attractors, Int. J. Bifurcation Chaos, 22, 1, 1-24 (2012) · Zbl 1270.34134
[10] Sánchez-López, C.; Trejo-Guerra, R.; Muñoz-Pacheco, J. M.; Tlelo-Cuautle, E., N-scroll chaotic attractors from saturated function series employing CCII+s, Nonlinear Dynam., 61, 331-341 (2010) · Zbl 1204.37033
[11] Campos-Cantón, E.; Campos-Cantón, I.; González Salas, J. S.; Cruz Ordaz, F., A parameterized family of single-double-triple-scroll chaotic oscillations, Rev. Mex. Fís., 54, 411-415 (2008)
[12] Campos-Cantón, E.; Barajas-Ramírez, J. G.; Solís-Perales, G.; Femat, R., Multiscroll attractors by switching systems, Chaos, 20, Article 013116 pp. (2010), pp. 1-6 · Zbl 1311.93045
[13] Chen, F.; Xia, L.; Guo, D.; Liu, Y., A fractional-order multi-scroll chaotic system, J. Inf. Comput. Sci., 10, 4, 1203-1211 (2013)
[14] Zhang, H.; Liu, X.; Shen, X.; Liu, J., Chaos entanglement: a new approach to generate chaos, Int. J. Bifurcation Chaos, 23, 05, 1330014 (2013) · Zbl 1270.34101
[15] Arecchi, F. T.; Badii, R.; Politi, A., Generalized multistability and noise-induced jumps in a nonlinear dynamical system, Phys. Rev. A, 32, 1, 402 (1985)
[16] Sharma, P. R.; Shrimali, M. D.; Prasad, A.; Feudel, U., Controlling bistability by linear augmentation, Phys. Lett. A, 377, 37, 2329-2332 (2013)
[17] Taborda, J. A.; Angulo, F., Computing and Controlling Basins of Attraction in Multistability Scenarios., Math. Probl. Eng. (2015), Article ID 313154 · Zbl 1394.93175
[18] Wright, J. A.; Deane, J. H.; Bartuccelli, M.; Gentile, G., Basins of attraction in forced systems with time-varying dissipation, Commun. Nonlinear Sci. Numer. Simul., 29, 1, 72-87 (2015) · Zbl 1467.70005
[19] Briggman, K. L.; Kristan, W. B., Multifunctional pattern-generating circuits, Annu. Rev. Neurosci., 31, 271-294 (2008)
[20] Kelso, J. S., Multistability and metastability: understanding dynamic coordination in the brain, Philos. Trans. R. Soc. Lond. B Biol. Sci., 367, 1591, 906-918 (2012)
[21] Canavier, C. C.; Baxter, D. A.; Clark, J. W.; Byrne, J. H., Control of multistability in ring circuits of oscillators, Biol. Cybernet., 802, 87-102 (1999) · Zbl 0918.92008
[22] Foss, J.; Moss, F.; Milton, J., Noise, multistability, and delayed recurrent loops, Phys. Rev. E, 55, 4, 4536 (1997)
[23] Hahnloser, R. H.; Sarpeshkar, R.; Mahowald, M. A.; Douglas, R. J.; Seung, H. S., Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit, Nature, 405, 6789, 947-951 (2000)
[24] Kumagai, S.; Kawamoto, S., Multistable circuits using nonlinear reactances, IRE Trans. Circuit Theory, 7, 4, 432-440 (1960)
[25] Goebel, R.; Sanfelice, R. G.; Teel, A., Hybrid dynamical systems, IEEE Control Syst., 29, 2, 28-93 (2009) · Zbl 1395.93001
[26] Haddad, W. M.; Chellaboina, V.; Nersesov, S. G., Impulsive and hybrid dynamical systems, IEEE Control Syst. Mag. (2006) · Zbl 1114.34001
[27] Pisarchik, A. N.; Feudel, U., Control of multistability, Phys. Rep., 540, 4, 167-218 (2014) · Zbl 1357.34105
[28] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J., Determining Lyapunov exponents from a time series, Physica D, 16, 285-317 (1985) · Zbl 0585.58037
[29] Shrimali, M. D.; Prasad, A.; Ramaswamy, R.; Feudel, U., The nature of attractor basins in multistable systems, Int. J. Bifurcation Chaos, 18, 06, 1675-1688 (2008)
[30] Camargo, S.; Viana, R. L.; Anteneodo, C., Intermingled basins in coupled Lorenz systems, Phys. Rev. E, 85, 3, Article 036207 pp. (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.