×

An improved belief entropy and its application in decision-making. (English) Zbl 1367.93332

Summary: Uncertainty measure in data fusion applications is a hot topic; quite a few methods have been proposed to measure the degree of uncertainty in Dempster-Shafer framework. However, the existing methods pay little attention to the scale of the Frame Of Discernment (FOD), which means a loss of information. Due to this reason, the existing methods cannot measure the difference of uncertain degree among different FODs. In this paper, an improved belief entropy is proposed in Dempster-Shafer framework. The proposed belief entropy takes into consideration more available information in the Body Of Evidence (BOE), including the uncertain information modeled by the mass function, the cardinality of the proposition, and the scale of the FOD. The improved belief entropy is a new method for uncertainty measure in Dempster-Shafer framework. Based on the new belief entropy, a decision-making approach is designed. The validity of the new belief entropy is verified according to some numerical examples and the proposed decision-making approach.

MSC:

93C41 Control/observation systems with incomplete information
93A30 Mathematical modelling of systems (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Šiožinyte, E.; Antuchevičiene, J.; Kutut, V., Upgrading the old vernacular building to contemporary norms: multiple criteria approach, Journal of Civil Engineering & Management, 20, 2, 291-298 (2014) · doi:10.3846/13923730.2014.904814
[2] Antucheviciene, J.; Kala, Z.; Marzouk, M.; Vaidogas, E. R., Solving civil engineering problems by means of fuzzy and stochastic mcdm methods: current state and future research, Mathematical Problems in Engineering, 2015 (2015) · doi:10.1155/2015/362579
[3] Zavadskas, E. K.; Antucheviciene, J.; Razavi Hajiagha, S. H.; Hashemi, S. S., The interval-valued intuitionistic fuzzy MULTIMOORA method for group decision making in engineering, Mathematical Problems in Engineering, 2015 (2015) · doi:10.1155/2015/560690
[4] Sodenkamp, M. A.; Tavana, M.; Di Caprio, D., Modeling synergies in multi-criteria supplier selection and order allocation: an application to commodity trading, European Journal of Operational Research, 254, 3, 859-874 (2016) · Zbl 1346.90178 · doi:10.1016/j.ejor.2016.04.015
[5] Ghorabaee, M. K.; Zavadskas, E. K.; Amiri, M.; Antucheviciene, J., A new method of assessment based on fuzzy ranking and aggregated weights (AFRAW) for MCDM problems under type-2 fuzzy environment, Economic Computation & Economic Cybernetics Studies & Research, 50, 39-68 (2016)
[6] Aven, T., Supplementing quantitative risk assessments with a stage addressing the risk understanding of the decision maker, Reliability Engineering and System Safety, 152, 51-57 (2016) · doi:10.1016/j.ress.2016.03.003
[7] Aven, T.; Zio, E., Some considerations on the treatment of uncertainties in risk assessment for practical decision making, Reliability Engineering and System Safety, 96, 1, 64-74 (2011) · doi:10.1016/j.ress.2010.06.001
[8] Ahmadi, H.; Nilashi, M.; Ibrahim, O., Organizational decision to adopt hospital information system: an empirical investigation in the case of Malaysian public hospitals, International Journal of Medical Informatics, 84, 3, 166-188 (2015) · doi:10.1016/j.ijmedinf.2014.12.004
[9] Nilashi, M.; Ahmadi, H.; Ahani, A.; Ravangard, R.; Ibrahim, O. B., Determining the importance of hospital information system adoption factors using fuzzy Analytic Network Process (ANP), Technological Forecasting & Social Change, 111, 244-264 (2016) · doi:10.1016/j.techfore.2016.07.008
[10] North, M. J.; Macal, C. M.; Aubin, J. St.; Thimmapuram, P.; Bragen, M.; Hahn, J.; Karr, J.; Brigham, N.; Lacy, M. E.; Hampton, D., Multiscale agent-based consumer market modeling, Complexity, 15, 5, 37-47 (2010) · doi:10.1002/cplx.20304
[11] Zavadskas, E. K.; Baušys, R.; Stanujkic, D.; Magdalinovic-Kalinovic, M., Selection of lead-zinc flotation circuit design by applying WASPAS method with single-valued neutrosophic set, Acta Montanistica Slovaca, 21, 2, 85-92 (2016)
[12] Zavadskas, E. K.; Baušys, R.; Lazauskas, M., Sustainable assessment of alternative sites for the construction of a waste incineration plant by applying WASPAS method with single-valued neutrosophic set, Sustainability, 7, 12, 15923-15936 (2015) · doi:10.3390/su71215792
[13] Feller, W., An Introduction to Probability Theory and Its Applications (1957), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0138.10207
[14] Chen, Z.-S.; Chin, K.-S.; Li, Y.-L.; Yang, Y., Proportional hesitant fuzzy linguistic term set for multiple criteria group decision making, Information Sciences, 357, 61-87 (2016) · Zbl 1427.68310 · doi:10.1016/j.ins.2016.04.006
[15] Zadeh, L. A., Fuzzy sets, Information and Control, 8, 3, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[16] Khalili-Damghani, K.; Tavana, M.; Amirkhan, M., A fuzzy bi-objective mixed-integer programming method for solving supply chain network design problems under ambiguous and vague conditions, International Journal of Advanced Manufacturing Technology, 73, 9-12, 1567-1595 (2014) · doi:10.1007/s00170-014-5891-7
[17] Sabahi, F.; Akbarzadeh-T, M.-R., Introducing validity in fuzzy probability for judicial decision-making, International Journal of Approximate Reasoning, 55, 6, 1383-1403 (2014) · Zbl 1433.91060 · doi:10.1016/j.ijar.2013.12.003
[18] Wang, X.; Zhu, J.; Song, Y.; Lei, L., Combination of unreliable evidence sources in intuitionistic fuzzy MCDM framework, Knowledge-Based Systems, 97, 24-39 (2016) · doi:10.1016/j.knosys.2016.01.023
[19] Dempster, A. P., Upper and lower probabilities induced by a multivalued mapping, Annals of Mathematical Statistics, 38, 325-339 (1967) · Zbl 0168.17501 · doi:10.1214/aoms/1177698950
[20] Shafer, G., A Mathematical Theory of Evidence (1976), Princeton, NJ, USA: Princeton University Press, Princeton, NJ, USA · Zbl 0359.62002
[21] Yager, R. R., Decision making using minimization of regret, International Journal of Approximate Reasoning, 36, 2, 109-128 (2004) · doi:10.1016/j.ijar.2003.10.003
[22] Fu, C.; Yang, J.-B.; Yang, S.-L., A group evidential reasoning approach based on expert reliability, European Journal of Operational Research, 246, 3, 886-893 (2015) · Zbl 1346.91045 · doi:10.1016/j.ejor.2015.05.042
[23] Pawlak, Z., Rough sets, International Journal of Computer & Information Sciences, 11, 5, 341-356 (1982) · Zbl 0501.68053 · doi:10.1007/BF01001956
[24] Sun, B.; Ma, W.; Zhao, H., An approach to emergency decision making based on decision-theoretic rough set over two universes, Soft Computing, 20, 9, 3617-3628 (2016) · doi:10.1007/s00500-015-1721-6
[25] Luo, C.; Li, T.; Yi, Z.; Fujita, H., Matrix approach to decision-theoretic rough sets for evolving data, Knowledge-Based Systems, 99, 123-134 (2016) · doi:10.1016/j.knosys.2016.01.042
[26] Fu, C.; Xu, D. L., Determining attribute weights to improve solution reliability and its application to selecting leading industries, Annals of Operations Research, 245, 401-426 (2014) · Zbl 1406.90060
[27] Wang, J.; Hu, Y.; Xiao, F.; Deng, X.; Deng, Y., A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster-Shafer theory of evidence: an application in medical diagnosis, Artificial Intelligence in Medicine, 69, 1-11 (2016) · doi:10.1016/j.artmed.2016.04.004
[28] Deng, X.; Zheng, X.; Su, X.; Chan, F. T. S.; Hu, Y.; Sadiq, R.; Deng, Y., An evidential game theory framework in multi-criteria decision making process, Applied Mathematics and Computation, 244, 783-793 (2014) · Zbl 1335.91028 · doi:10.1016/j.amc.2014.07.065
[29] Kang, B.; Hu, Y.; Deng, Y.; Zhou, D., A new methodology of multicriteria decision-making in supplier selection based on \(Z\)-numbers, Mathematical Problems in Engineering, 2016 (2016) · Zbl 1400.90192 · doi:10.1155/2016/8475987
[30] Liu, Z.-G.; Pan, Q.; Dezert, J., A new belief-based K-nearest neighbor classification method, Pattern Recognition, 46, 3, 834-844 (2013) · doi:10.1016/j.patcog.2012.10.001
[31] Ma, J.; Liu, W.; Miller, P.; Zhou, H., An evidential fusion approach for gender profiling, Information Sciences, 333, 10-20 (2016) · doi:10.1016/j.ins.2015.11.011
[32] Liu, Z.-G.; Pan, Q.; Dezert, J.; Mercier, G., Credal c-means clustering method based on belief functions, Knowledge-Based Systems, 74, 119-132 (2015) · doi:10.1016/j.knosys.2014.11.013
[33] Han, D.; Liu, W.; Dezert, J.; Yang, Y., A novel approach to pre-extracting support vectors based on the theory of belief functions, Knowledge-Based Systems, 110, 210-223 (2016) · doi:10.1016/j.knosys.2016.07.029
[34] Liu, Z.-G.; Pan, Q.; Dezert, J.; Martin, A., Adaptive imputation of missing values for incomplete pattern classification, Pattern Recognition, 52, 85-95 (2016) · doi:10.1016/j.patcog.2015.10.001
[35] Su, X.; Deng, Y.; Mahadevan, S.; Bao, Q., An improved method for risk evaluation in failure modes and effects analysis of aircraft engine rotor blades, Engineering Failure Analysis, 26, 164-174 (2012) · doi:10.1016/j.engfailanal.2012.07.009
[36] Jiang, W.; Xie, C.; Zhuang, M.; Shou, Y.; Tang, Y., Sensor data fusion with z-numbers and its application in fault diagnosis, Sensors, 16, 9, 1509 (2016) · doi:10.3390/s16091509
[37] Yuan, K.; Xiao, F.; Fei, L.; Kang, B.; Deng, Y., Modeling sensor reliability in fault diagnosis based on evidence theory, Sensors, 16, 1, article 113 (2016) · doi:10.3390/s16010113
[38] Jiang, W.; Wei, B.; Qin, X.; Zhan, J.; Tang, Y., Sensor data fusion based on a new conflict measure, Mathematical Problems in Engineering, 2016 (2016) · Zbl 1400.68218 · doi:10.1155/2016/5769061
[39] Chin, K.-S.; Fu, C.; Wang, Y., A method of determining attribute weights in evidential reasoning approach based on incompatibility among attributes, Computers and Industrial Engineering, 87, 150-162 (2015) · doi:10.1016/j.cie.2015.04.016
[40] Du, W. S.; Hu, B. Q., Attribute reduction in ordered decision tables via evidence theory, Information Sciences, 364-365, 91-110 (2016) · Zbl 1427.68311 · doi:10.1016/j.ins.2016.05.011
[41] Fu, C.; Wang, Y., An interval difference based evidential reasoning approach with unknown attribute weights and utilities of assessment grades, Computers & Industrial Engineering, 81, 109-117 (2015) · doi:10.1016/j.cie.2014.12.031
[42] Wang, Y.-M.; Elhag, T. M. S., A comparison of neural network, evidential reasoning and multiple regression analysis in modelling bridge risks, Expert Systems with Applications, 32, 2, 336-348 (2007) · doi:10.1016/j.eswa.2005.11.029
[43] Jiang, W.; Xie, C.; Wei, B.; Zhou, D., A modified method for risk evaluation in failure modes and effects analysis of aircraft turbine rotor blades, Advances in Mechanical Engineering, 8, 4, 1-16 (2016) · doi:10.1177/1687814016644579
[44] Yager, R. R.; Filev, D. P., Including probabilistic uncertainty in fuzzy logic controller modeling using dempster-shafer theory, IEEE Transactions on Systems, Man, and Cybernetics, 25, 8, 1221-1230 (1995) · doi:10.1109/21.398683
[45] Tang, Y.; Zhou, D.; Jiang, W., A new fuzzy-evidential controller for stabilization of the planar inverted pendulum system, PLoS ONE, 11, 8 (2016) · doi:10.1371/journal.pone.0160416
[46] Wang, Y.-M.; Yang, J.-B.; Xu, D.-L.; Chin, K.-S., Consumer preference prediction by using a hybrid evidential reasoning and belief rule-based methodology, Expert Systems with Applications, 36, 4, 8421-8430 (2009) · doi:10.1016/j.eswa.2008.10.052
[47] Ma, J.; Liu, W.; Benferhat, S., A belief revision framework for revising epistemic states with partial epistemic states, International Journal of Approximate Reasoning, 59, 20-40 (2015) · Zbl 1328.68214 · doi:10.1016/j.ijar.2015.01.003
[48] Zhou, K.; Martin, A.; Pan, Q.; Liu, Z.-G., Median evidential c-means algorithm and its application to community detection, Knowledge-Based Systems, 74, 69-88 (2015) · doi:10.1016/j.knosys.2014.11.010
[49] Zadeh, L. A., Simple view of the dempster-shafer theory of evidence and its implication for the rule of combination, AI Magazine, 7, 2, 85-90 (1986)
[50] Liu, W., Analyzing the degree of conflict among belief functions, Artificial Intelligence, 170, 11, 909-924 (2006) · Zbl 1131.68539 · doi:10.1016/j.artint.2006.05.002
[51] Schubert, J., Conflict management in Dempster-Shafer theory using the degree of falsity, International Journal of Approximate Reasoning, 52, 3, 449-460 (2011) · doi:10.1016/j.ijar.2010.10.004
[52] Deng, Y., Generalized evidence theory, Applied Intelligence, 43, 3, 530-543 (2015) · doi:10.1007/s10489-015-0661-2
[53] Su, X.; Mahadevan, S.; Han, W.; Deng, Y., Combining dependent bodies of evidence, Applied Intelligence, 44, 3, 634-644 (2016) · doi:10.1007/s10489-015-0723-5
[54] Su, X.; Mahadevan, S.; Xu, P.; Deng, Y., Dependence assessment in human reliability analysis using evidence theory and AHP, Risk Analysis, 35, 7, 1296-1316 (2015) · doi:10.1111/risa.12347
[55] Su, X.; Mahadevan, S.; Xu, P.; Deng, Y., Handling of dependence in Dempster-Shafer theory, International Journal of Intelligent Systems, 30, 4, 441-467 (2015) · doi:10.1002/int.21695
[56] Deng, X.; Liu, Q.; Deng, Y.; Mahadevan, S., An improved method to construct basic probability assignment based on the confusion matrix for classification problem, Information Sciences, 340-341, 250-261 (2016) · doi:10.1016/j.ins.2016.01.033
[57] Yi, Y.; Liu, Y., Iterative approximation of basic belief assignment based on distance of evidence, PLoS ONE, 11, 2 (2016) · doi:10.1371/journal.pone.0147799
[58] Jiang, W.; Zhan, J.; Zhou, D.; Li, X., A method to determine generalized basic probability assignment in the open world, Mathematical Problems in Engineering, 2016 (2016) · doi:10.1155/2016/3878634
[59] Smets, P.; Kennes, R., The transferable belief model, Artificial Intelligence, 66, 2, 191-234 (1994) · Zbl 0807.68087 · doi:10.1016/0004-3702(94)90026-4
[60] Smets, P., Belief functions on real numbers, International Journal of Approximate Reasoning, 40, 3, 181-223 (2005) · Zbl 1110.68149 · doi:10.1016/j.ijar.2005.04.001
[61] Zhou, D.; Tang, Y.; Jiang, W., A modified model of failure mode and effects analysis based on generalized evidence theory, Mathematical Problems in Engineering, 2016 (2016) · doi:10.1155/2016/4512383
[62] Shannon, C. E., A mathematical theory of communication, ACM SIGMOBILE Mobile Computing and Communications Review, 5, 1, 3-55 (2001) · doi:10.1145/584091.584093
[63] Tavana, M.; Sodenkamp, M. A.; Pirdashti, M., A fuzzy opportunity and threat aggregation approach in multicriteria decision analysis, Fuzzy Optimization and Decision Making, 9, 4, 455-492 (2010) · Zbl 1198.90244 · doi:10.1007/s10700-010-9087-9
[64] Dejus, T.; Antuchevičiene, J., Assessment of health and safety solutions at a construction site, Journal of Civil Engineering and Management, 19, 5, 728-737 (2013) · doi:10.3846/13923730.2013.812578
[65] Tavana, M.; Khalili-Damghani, K.; Rahmatian, R., A hybrid fuzzy MCDM method for measuring the performance of publicly held pharmaceutical companies, Annals of Operations Research, 226, 589-621 (2015) · Zbl 1309.90131 · doi:10.1007/s10479-014-1738-8
[66] Hohle, U., Entropy with respect to plausibility measures, Proceedings of the 12th IEEE International Symposium on Multiple-Valued Logic (MVL ’82) · Zbl 0549.94015
[67] Yager, R. R., Entropy and specificity in a mathematical theory of evidence, International Journal of General Systems, 9, 4, 249-260 (1983) · Zbl 0521.94008 · doi:10.1080/03081078308960825
[68] Dubois, D.; Prade, H., A note on measures of specificity for fuzzy sets, International Journal of General Systems, 10, 4, 279-283 (1985) · Zbl 0569.94032 · doi:10.1080/03081078508934893
[69] Klir, G. J.; Ramer, A., Uncertainty in the Dempster-Shafer theory: a critical re-examination, International Journal of General Systems, 18, 2, 155-166 (1990) · Zbl 0732.60004 · doi:10.1080/03081079008935135
[70] Klir, G. J.; Parviz, B., A note on the measure of discord, Proceedings of the 8th International Conference on Uncertainty in Artificial Intelligence
[71] George, T.; Pal, N. R., Quantification of conflict in Dempster-Shafer framework: a new approach, International Journal of General Systems, 24, 4, 407-423 (1996) · Zbl 0856.90153 · doi:10.1080/03081079608945130
[72] Yang, Y.; Han, D., A new distance-based total uncertainty measure in the theory of belief functions, Knowledge-Based Systems, 94, 114-123 (2016) · doi:10.1016/j.knosys.2015.11.014
[73] Song, Y.; Wang, X.; Lei, L.; Yue, S., Uncertainty measure for interval-valued belief structures, Measurement, 80, 241-250 (2016) · doi:10.1016/j.measurement.2015.11.032
[74] Song, Y.; Wang, X.; Zhang, H., A distance measure between intuitionistic fuzzy belief functions, Knowledge-Based Systems, 86, 288-298 (2015) · doi:10.1016/j.knosys.2015.06.011
[75] Deng, Y., Deng entropy, Chaos, Solitons and Fractals, 91, 549-553 (2016) · Zbl 1372.94368 · doi:10.1016/j.chaos.2016.07.014
[76] Yager, R. R., On the Dempster-Shafer framework and new combination rules, Information Sciences, 41, 2, 93-137 (1987) · Zbl 0629.68092 · doi:10.1016/0020-0255(87)90007-7
[77] Murphy, C. K., Combining belief functions when evidence conflicts, Decision Support Systems, 29, 1, 1-9 (2000) · doi:10.1016/S0167-9236(99)00084-6
[78] Yong, D.; WenKang, S.; ZhenFu, Z.; Qi, L., Combining belief functions based on distance of evidence, Decision Support Systems, 38, 3, 489-493 (2004) · doi:10.1016/j.dss.2004.04.015
[79] Zhang, Z.; Liu, T.; Chen, D.; Zhang, W., Novel algorithm for identifying and fusing conflicting data in wireless sensor networks, Sensors, 14, 6, 9562-9581 (2014) · doi:10.3390/s140609562
[80] Yuan, K.; Xiao, F.; Fei, L.; Kang, B.; Deng, Y., Conflict management based on belief function entropy in sensor fusion, SpringerPlus, 5, 1, article no. 638 (2016) · doi:10.1186/s40064-016-2205-6
[81] Jiang, W.; Wei, B.; Xie, C.; Zhou, D., An evidential sensor fusion method in fault diagnosis, Advances in Mechanical Engineering, 8, 3, 1-7 (2016) · doi:10.1177/1687814016641820
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.