×

Numerical integration using integrals over hyperplane sections of simplices in a triangulation of a polytope. (English) Zbl 1496.65040

Summary: In this paper, we consider the problem of approximating a definite integral of a given function \(f\) when, rather than its values at some points, a number of integrals of \(f\) over some hyperplane sections of simplices in a triangulation of a polytope \(P\) in \(\mathbb{R}^d\) are only available. We present several new families of “extended” integration formulas, all of which are a weighted sum of integrals over some hyperplane sections of simplices, and which contain in a special case of our result multivariate analogues of the midpoint rule, the trapezoidal rule and the Simpson’s rule. Along with an efficient algorithm for their implementations, several illustrative numerical examples are provided comparing these cubature formulas among themselves. The paper also presents the best possible explicit constants for their approximation errors. We perform numerical tests which allow the comparison of the new cubature formulas. Finally, we will discuss a conjecture suggested by the numerical results.

MSC:

65D32 Numerical quadrature and cubature formulas
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
41A44 Best constants in approximation theory

Software:

DistMesh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Acu, AM; Gonska, H., Generalized alomari functionals, Mediterr. J. Math., 14, 1-17, (2017) · Zbl 1364.41018 · doi:10.1007/s00009-016-0833-2
[2] Bachar, M.; Guessab, A.; Mohammed, O.; Zaim, Y., New cubature formulas and Hermite-Hadamard type inequalities using integrals over some hyperplanes in the \(d\)-dimensional hyper-rectangle, Appl. Math. Comput., 315, 347-362, (2017)
[3] Bachar, M.; Guessab, A., A simple necessary and sufficient condition for the enrichment of the Crouzeix-Raviart element, Appl. Anal. Discrete Math., 10, 378-393, (2016) · Zbl 1474.65434 · doi:10.2298/AADM160610012B
[4] Bachar, M.; Guessab, A., Characterization of the existence of an enriched linear finite element approximation using biorthogonal systems, Results Math., 70, 401-413, (2016) · Zbl 1416.65431 · doi:10.1007/s00025-016-0565-4
[5] Barvinok, AI, Computation of exponential integrals, J. Math. Sci., 70, 1934-1944, (1994) · Zbl 0835.65044 · doi:10.1007/BF02112432
[6] Chin, Eric B.; Lasserre, Jean B.; Sukumar, N., Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra, Comput. Mech., 56, 967-981, (2015) · Zbl 1336.65020 · doi:10.1007/s00466-015-1213-7
[7] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) · Zbl 0383.65058
[8] Crouzeix, M.; Raviart, PA, Conforming and non-conforming finite element methods for solving the stationary Stokes equations, R.A.I.R.O Anal. Numer., 7, 33-76, (1973) · Zbl 0302.65087 · doi:10.1051/m2an/197307R300331
[9] Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Series: Applied Mathematical Sciences, vol. 159. Springer, New York (2004) · Zbl 1059.65103
[10] Guessab, A.; Schmeisser, G., Convexity results and sharp error estimates in approximate multivariate integration, Math. Comput., 73, 1365-1384, (2004) · Zbl 1119.65016 · doi:10.1090/S0025-5718-03-01622-3
[11] Guessab, A., Approximations of differentiable convex functions on arbitrary convex polytopes, Appl. Math. Comput., 240, 326-338, (2014) · Zbl 1334.65037
[12] Hammer, PC, The midpoint method of numerical integration, Math. Mag., 31, 193-195, (1958) · Zbl 0085.11402 · doi:10.2307/3029196
[13] Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer Texts in Applied Mathematics, vol. 54. Springer, New York (2008) · Zbl 1134.65068
[14] Hossain, MA; Islam, MdSh, Generalized composite numerical integration rule over a polygon using Gaussian quadrature, Dhaka Univ. J. Sci., 62, 25-29, (2014)
[15] Lasserre, JB; Zeron, ES, Solving a class of multivariate integration problems via Laplace techniques, Appl. Math., 28, 391-405, (2001) · Zbl 1008.65016
[16] Ouazzi, A.; Turek, S., Unified edge-oriented stabilization of nonconforming FEM for incompressible flow problems: numerical investigations, J. Numer. Math., 15, 299-322, (2007) · Zbl 1219.76030
[17] Persson, PO; Strang, G., A simple mesh generator in MATLAB, SIAM Rev., 46, 329-345, (2004) · Zbl 1061.65134 · doi:10.1137/S0036144503429121
[18] Persson, P.O.: Mesh Generation for Implicit Geometries. Ph.D. thesis, Department of Mathematics, MIT (2004)
[19] Vermolen, F., Segal, G.: On an integration rule for products of barycentric coordinates over simplexes in \(\mathbb{R}^d,\) Technical Report 17-02. Delft University of Technology, DIAM (2017) · Zbl 1379.65090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.