Cai, Ying; Chen, Jinru; Wang, Nan A Nitsche mixed extended finite element method for the biharmonic interface problem. (English) Zbl 07594628 Math. Comput. Simul. 203, 112-130 (2023). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{Y. Cai} et al., Math. Comput. Simul. 203, 112--130 (2023; Zbl 07594628) Full Text: DOI OpenURL
Li, Shanqing; Yang, Chunsheng; Xia, Fengfei; Yuan, Hong A mathematical analysis method for bending problem of clamped shallow spherical shell on elastic foundation. (English) Zbl 07633868 Int. J. Comput. Methods 19, No. 7, Article ID 2141016, 21 p. (2022). MSC: 74-XX 65-XX PDF BibTeX XML Cite \textit{S. Li} et al., Int. J. Comput. Methods 19, No. 7, Article ID 2141016, 21 p. (2022; Zbl 07633868) Full Text: DOI OpenURL
Li, Yu; Xie, Manting; Xiong, Chunguang A new family of mixed method for the biharmonic eigenvalue problem based on the first order equations of Hellan-Herrmann-Johnson type. (English) Zbl 07632653 J. Sci. Comput. 93, No. 3, Paper No. 66, 23 p. (2022). MSC: 65N30 65N25 31A30 74K20 74S05 35Q74 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Sci. Comput. 93, No. 3, Paper No. 66, 23 p. (2022; Zbl 07632653) Full Text: DOI OpenURL
Causil, José; Reales, Carlos; Velásquez, Iván A \(C^1\)-\(C^0\) virtual element discretization for a sixth-order elliptic equation. (English) Zbl 07618949 Calcolo 59, No. 4, Paper No. 39, 27 p. (2022). MSC: 35J40 31A30 65N15 65N30 PDF BibTeX XML Cite \textit{J. Causil} et al., Calcolo 59, No. 4, Paper No. 39, 27 p. (2022; Zbl 07618949) Full Text: DOI OpenURL
Doumate, Jonas Télé; Toyou, Lawouè Robert; Leadi, Liamidi A. On eigenvalues of \(p\)-biharmonic operator and associated concave-convex type equationc. (English) Zbl 07610255 Gulf J. Math. 13, No. 1, 54-87 (2022). MSC: 35J30 35J62 35P30 PDF BibTeX XML Cite \textit{J. T. Doumate} et al., Gulf J. Math. 13, No. 1, 54--87 (2022; Zbl 07610255) Full Text: Link OpenURL
Hoppe, Ronald H. W. A \(\mathrm{C}^0\) Interior Penalty Discontinuous Galerkin method and an equilibrated a posteriori error estimator for a nonlinear fourth order elliptic boundary value problem of \(p\)-biharmonic type. (English) Zbl 07609839 ESAIM, Math. Model. Numer. Anal. 56, No. 6, 2051-2079 (2022). MSC: 65-XX 35K35 35K55 65M60 PDF BibTeX XML Cite \textit{R. H. W. Hoppe}, ESAIM, Math. Model. Numer. Anal. 56, No. 6, 2051--2079 (2022; Zbl 07609839) Full Text: DOI OpenURL
Dong, Zhaonan; Ern, Alexandre Hybrid high-order and weak Galerkin methods for the biharmonic problem. (English) Zbl 07596675 SIAM J. Numer. Anal. 60, No. 5, 2626-2656 (2022). MSC: 65N30 65N15 31A30 74K20 PDF BibTeX XML Cite \textit{Z. Dong} and \textit{A. Ern}, SIAM J. Numer. Anal. 60, No. 5, 2626--2656 (2022; Zbl 07596675) Full Text: DOI arXiv OpenURL
Naraveni, Rajashekar; Chaudhary, Sudhakar; VVK, Srinivas Kumar Higher order approximation of biharmonic problem using the WEB-spline based mesh-free method. (English) Zbl 07582989 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 5, 719-734 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{R. Naraveni} et al., Int. J. Nonlinear Sci. Numer. Simul. 23, No. 5, 719--734 (2022; Zbl 07582989) Full Text: DOI OpenURL
Bhattacharyya, Sombuddha; Ghosh, Tuhin An inverse problem on determining second order symmetric tensor for perturbed biharmonic operator. (English) Zbl 1497.35511 Math. Ann. 384, No. 1-2, 457-489 (2022). Reviewer: Giovanni S. Alberti (Genova) MSC: 35R30 35J40 31B20 31B30 PDF BibTeX XML Cite \textit{S. Bhattacharyya} and \textit{T. Ghosh}, Math. Ann. 384, No. 1--2, 457--489 (2022; Zbl 1497.35511) Full Text: DOI arXiv OpenURL
Li, Peijun; Wang, Xu An inverse random source problem for the biharmonic wave equation. (English) Zbl 1496.35453 SIAM/ASA J. Uncertain. Quantif. 10, 949-974 (2022). MSC: 35R30 35J30 35R60 65M32 PDF BibTeX XML Cite \textit{P. Li} and \textit{X. Wang}, SIAM/ASA J. Uncertain. Quantif. 10, 949--974 (2022; Zbl 1496.35453) Full Text: DOI arXiv OpenURL
Akel, Mohamed; Begehr, Heinrich; Mohammed, Alip Integral representations in the complex plane and iterated boundary value problems. (English) Zbl 07555144 Rocky Mt. J. Math. 52, No. 2, 381-413 (2022). MSC: 30E25 30G20 31A10 31A30 35J40 PDF BibTeX XML Cite \textit{M. Akel} et al., Rocky Mt. J. Math. 52, No. 2, 381--413 (2022; Zbl 07555144) Full Text: DOI Link OpenURL
Zhang, Baiju; Li, Hengguang; Zhang, Zhimin Solving biharmonic eigenvalue problem with Navier boundary condition via Poisson solvers on non-convex domains. (English) Zbl 1490.65258 J. Sci. Comput. 92, No. 1, Paper No. 24, 20 p. (2022). MSC: 65N25 35J40 65N12 65N30 PDF BibTeX XML Cite \textit{B. Zhang} et al., J. Sci. Comput. 92, No. 1, Paper No. 24, 20 p. (2022; Zbl 1490.65258) Full Text: DOI arXiv OpenURL
Karachik, Valery Green’s functions of some boundary value problems for the biharmonic equation. (English) Zbl 1492.31005 Complex Var. Elliptic Equ. 67, No. 7, 1712-1736 (2022). MSC: 31B30 35J08 35J67 PDF BibTeX XML Cite \textit{V. Karachik}, Complex Var. Elliptic Equ. 67, No. 7, 1712--1736 (2022; Zbl 1492.31005) Full Text: DOI OpenURL
Shodiev, Dilshod S. On the Cauchy problem for the biharmonic equation. (English) Zbl 07547859 J. Sib. Fed. Univ., Math. Phys. 15, No. 2, 201-215 (2022). MSC: 35Jxx 35Rxx 32Axx PDF BibTeX XML Cite \textit{D. S. Shodiev}, J. Sib. Fed. Univ., Math. Phys. 15, No. 2, 201--215 (2022; Zbl 07547859) Full Text: DOI MNR OpenURL
Zhao, Lina; Park, Eun-Jae; Kim, Wonjong A staggered cell-centered DG method for the biharmonic Steklov problem on polygonal meshes: a priori and a posteriori analysis. (English) Zbl 07546686 Comput. Math. Appl. 117, 216-228 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{L. Zhao} et al., Comput. Math. Appl. 117, 216--228 (2022; Zbl 07546686) Full Text: DOI OpenURL
Belyaev, V. A.; Bryndin, L. S.; Golushko, S. K.; Semisalov, B. V.; Shapeev, V. P. \(h\)-, \(p\)-, and \(hp\)-versions of the least-squares collocation method for solving boundary value problems for biharmonic equation in irregular domains and their applications. (English. Russian original) Zbl 1492.65338 Comput. Math. Math. Phys. 62, No. 4, 517-537 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 4, 531-552 (2022). MSC: 65N35 65N12 65N55 31A30 74K20 35Q74 PDF BibTeX XML Cite \textit{V. A. Belyaev} et al., Comput. Math. Math. Phys. 62, No. 4, 517--537 (2022; Zbl 1492.65338); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 4, 531--552 (2022) Full Text: DOI OpenURL
Wang, Xu; Schiavone, Peter In-plane deformations of a circular elastic inhomogeneity with an eccentric interphase layer. (English) Zbl 1492.30086 Z. Angew. Math. Phys. 73, No. 3, Paper No. 101, 20 p. (2022). MSC: 30E25 31A30 PDF BibTeX XML Cite \textit{X. Wang} and \textit{P. Schiavone}, Z. Angew. Math. Phys. 73, No. 3, Paper No. 101, 20 p. (2022; Zbl 1492.30086) Full Text: DOI OpenURL
Li, Peijin; Luo, Qinghong; Ponnusamy, Saminathan Schwarz-Pick and Landau type theorems for solutions to the Dirichlet-Neumann problem in the unit disk. (English) Zbl 1486.31008 Comput. Methods Funct. Theory 22, No. 1, 95-113 (2022). MSC: 31A30 35J40 30C80 PDF BibTeX XML Cite \textit{P. Li} et al., Comput. Methods Funct. Theory 22, No. 1, 95--113 (2022; Zbl 1486.31008) Full Text: DOI arXiv OpenURL
Li, Peijin; Ponnusamy, Saminathan Bi-Lipschitz continuity of quasiconformal solutions to a biharmonic Dirichlet-Neumann problem in the unit disk. (English) Zbl 1486.31009 J. Geom. Anal. 32, No. 5, Paper No. 170, 30 p. (2022). MSC: 31A30 30C62 26A16 PDF BibTeX XML Cite \textit{P. Li} and \textit{S. Ponnusamy}, J. Geom. Anal. 32, No. 5, Paper No. 170, 30 p. (2022; Zbl 1486.31009) Full Text: DOI OpenURL
Ortner, Norbert; Wagner, Peter On the Green function of an orthotropic clamped plate in a half-plane. (English) Zbl 1486.35174 Ann. Mat. Pura Appl. (4) 201, No. 1, 423-442 (2022). MSC: 35J30 35J40 35J08 PDF BibTeX XML Cite \textit{N. Ortner} and \textit{P. Wagner}, Ann. Mat. Pura Appl. (4) 201, No. 1, 423--442 (2022; Zbl 1486.35174) Full Text: DOI OpenURL
Xi, Yingxia; Ji, Xia A new method using \(C^0\)IPG for the biharmonic eigenvalue problem. (English) Zbl 1490.65257 J. Sci. Comput. 90, No. 3, Paper No. 81, 18 p. (2022). MSC: 65N25 65N30 47B07 PDF BibTeX XML Cite \textit{Y. Xi} and \textit{X. Ji}, J. Sci. Comput. 90, No. 3, Paper No. 81, 18 p. (2022; Zbl 1490.65257) Full Text: DOI OpenURL
Carstensen, Carsten; Nataraj, Neela Lowest-order equivalent nonstandard finite element methods for biharmonic plates. (English) Zbl 1483.65177 ESAIM, Math. Model. Numer. Anal. 56, No. 1, 41-78 (2022). MSC: 65N30 65N12 65N15 65N50 31A30 74K20 PDF BibTeX XML Cite \textit{C. Carstensen} and \textit{N. Nataraj}, ESAIM, Math. Model. Numer. Anal. 56, No. 1, 41--78 (2022; Zbl 1483.65177) Full Text: DOI arXiv OpenURL
Inoguchi, Jun-ichi; Lee, Ji-Eun Biharmonic curves in \(f\)-Kenmotsu 3-manifolds. (English) Zbl 1485.53032 J. Math. Anal. Appl. 509, No. 1, Article ID 125941, 19 p. (2022). MSC: 53C15 53C43 PDF BibTeX XML Cite \textit{J.-i. Inoguchi} and \textit{J.-E. Lee}, J. Math. Anal. Appl. 509, No. 1, Article ID 125941, 19 p. (2022; Zbl 1485.53032) Full Text: DOI OpenURL
Nair, M. Thamban; Shylaja, Devika Conforming and nonconforming finite element methods for biharmonic inverse source problem. (English) Zbl 1493.65181 Inverse Probl. 38, No. 2, Article ID 025001, 36 p. (2022). MSC: 65N21 65N20 65J20 65N30 65N15 31A30 35R25 PDF BibTeX XML Cite \textit{M. T. Nair} and \textit{D. Shylaja}, Inverse Probl. 38, No. 2, Article ID 025001, 36 p. (2022; Zbl 1493.65181) Full Text: DOI arXiv OpenURL
Danielli, Donatella; Haj Ali, Alaa A two phase boundary obstacle-type problem for the bi-Laplacian. (English) Zbl 1479.35317 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112583, 26 p. (2022). MSC: 35J30 35R35 35B65 35J35 PDF BibTeX XML Cite \textit{D. Danielli} and \textit{A. Haj Ali}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112583, 26 p. (2022; Zbl 1479.35317) Full Text: DOI arXiv OpenURL
Meng, Jian; Mei, Liquan The optimal order convergence for the lowest order mixed finite element method of the biharmonic eigenvalue problem. (English) Zbl 1481.65217 J. Comput. Appl. Math. 402, Article ID 113783, 14 p. (2022). MSC: 65N25 65N30 65N15 65N12 31A30 PDF BibTeX XML Cite \textit{J. Meng} and \textit{L. Mei}, J. Comput. Appl. Math. 402, Article ID 113783, 14 p. (2022; Zbl 1481.65217) Full Text: DOI OpenURL
Gilsbach, Alexandra; Stollenwerk, Kathrin Existence and stability of solutions for a fourth order overdetermined problem. (English) Zbl 1479.35318 J. Math. Anal. Appl. 505, No. 2, Article ID 125531, 18 p. (2022). MSC: 35J30 31B30 35N05 35A01 PDF BibTeX XML Cite \textit{A. Gilsbach} and \textit{K. Stollenwerk}, J. Math. Anal. Appl. 505, No. 2, Article ID 125531, 18 p. (2022; Zbl 1479.35318) Full Text: DOI OpenURL
Liao, Fang-Fang; Heidarkhani, Shapour; Moradi, Shahin Multiple solutions for nonlocal elliptic problems driven by \(p(x)\)-biharmonic operator. (English) Zbl 07543320 AIMS Math. 6, No. 4, 4156-4172 (2021). MSC: 35J20 35J60 47J30 PDF BibTeX XML Cite \textit{F.-F. Liao} et al., AIMS Math. 6, No. 4, 4156--4172 (2021; Zbl 07543320) Full Text: DOI OpenURL
Wang, Bo; Yu, Dandan; Tan, Bao A fast Fourier-Galerkin method solving a system of integral equations for the biharmonic equation. (English) Zbl 1495.31009 J. Integral Equations Appl. 33, No. 4, 511-530 (2021). MSC: 31A30 45E05 65N30 PDF BibTeX XML Cite \textit{B. Wang} et al., J. Integral Equations Appl. 33, No. 4, 511--530 (2021; Zbl 1495.31009) Full Text: DOI OpenURL
Meng, Jian; Mei, Liquan A \(C^0\) virtual element method for the biharmonic eigenvalue problem. (English) Zbl 1480.65324 Int. J. Comput. Math. 98, No. 9, 1821-1833 (2021). MSC: 65N25 65N30 74K10 PDF BibTeX XML Cite \textit{J. Meng} and \textit{L. Mei}, Int. J. Comput. Math. 98, No. 9, 1821--1833 (2021; Zbl 1480.65324) Full Text: DOI OpenURL
He, Shangqin; Feng, Xiufang A kind of operator regularization method for Cauchy problem of the Helmholtz equation in a multi-dimensional case. (English) Zbl 1479.35841 Int. J. Comput. Math. 98, No. 7, 1349-1364 (2021). MSC: 35Q60 26D15 31A25 31B30 31B35 65N20 PDF BibTeX XML Cite \textit{S. He} and \textit{X. Feng}, Int. J. Comput. Math. 98, No. 7, 1349--1364 (2021; Zbl 1479.35841) Full Text: DOI OpenURL
Buoso, Davide; Luzzini, Paolo; Provenzano, Luigi; Stubbe, Joachim On the spectral asymptotics for the buckling problem. (English) Zbl 1490.35480 J. Math. Phys. 62, No. 12, 121501, 18 p. (2021). MSC: 35Q74 74G60 35B40 31A30 15A18 PDF BibTeX XML Cite \textit{D. Buoso} et al., J. Math. Phys. 62, No. 12, 121501, 18 p. (2021; Zbl 1490.35480) Full Text: DOI arXiv OpenURL
Başakoğlu, Engin Regularity properties of the cubic biharmonic Schrödinger equation on the half line. (English) Zbl 1483.35197 SN Partial Differ. Equ. Appl. 2, No. 4, Paper No. 52, 37 p. (2021). MSC: 35Q55 35B65 35G30 31A30 PDF BibTeX XML Cite \textit{E. Başakoğlu}, SN Partial Differ. Equ. Appl. 2, No. 4, Paper No. 52, 37 p. (2021; Zbl 1483.35197) Full Text: DOI OpenURL
Fishelov, D.; Croisille, J.-P. Optimal convergence for time-dependent Stokes equation: a new approach. (English) Zbl 07435292 J. Sci. Comput. 89, No. 3, Paper No. 66, 32 p. (2021). MSC: 65Mxx 76Dxx 76Mxx PDF BibTeX XML Cite \textit{D. Fishelov} and \textit{J. P. Croisille}, J. Sci. Comput. 89, No. 3, Paper No. 66, 32 p. (2021; Zbl 07435292) Full Text: DOI OpenURL
Song, Shicang; Lu, Lijuan A nonconforming scheme with piecewise quasi three degree polynomial space to solve biharmonic problem. (English) Zbl 1475.65202 J. Appl. Math. Comput. 66, No. 1-2, 581-597 (2021). MSC: 65N30 PDF BibTeX XML Cite \textit{S. Song} and \textit{L. Lu}, J. Appl. Math. Comput. 66, No. 1--2, 581--597 (2021; Zbl 1475.65202) Full Text: DOI OpenURL
Carstensen, Carsten; Nataraj, Neela A priori and a posteriori error analysis of the Crouzeix-Raviart and Morley FEM with original and modified right-hand sides. (English) Zbl 1476.65294 Comput. Methods Appl. Math. 21, No. 2, 289-315 (2021). MSC: 65N30 65N12 65N15 65N50 PDF BibTeX XML Cite \textit{C. Carstensen} and \textit{N. Nataraj}, Comput. Methods Appl. Math. 21, No. 2, 289--315 (2021; Zbl 1476.65294) Full Text: DOI arXiv OpenURL
Gryshchuk, Serhii V.; Plaksa, Sergiy A. Schwartz-type boundary-value problems for canonical domains in a biharmonic plane. (English) Zbl 1477.30045 J. Math. Sci., New York 259, No. 1, 37-52 (2021) and Ukr. Mat. Visn. 18, No. 3, 338-358 (2021). MSC: 30G35 31A30 30E25 PDF BibTeX XML Cite \textit{S. V. Gryshchuk} and \textit{S. A. Plaksa}, J. Math. Sci., New York 259, No. 1, 37--52 (2021; Zbl 1477.30045) Full Text: DOI OpenURL
Kozlov, A. I.; Kokurin, M. Yu. On Lavrent’ev-type integral equations in coefficient inverse problems for wave equations. (English. Russian original) Zbl 1486.35467 Comput. Math. Math. Phys. 61, No. 9, 1470-1484 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 9, 1492-1507 (2021). MSC: 35R30 35L05 35L15 PDF BibTeX XML Cite \textit{A. I. Kozlov} and \textit{M. Yu. Kokurin}, Comput. Math. Math. Phys. 61, No. 9, 1470--1484 (2021; Zbl 1486.35467); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 9, 1492--1507 (2021) Full Text: DOI OpenURL
Tang, Shibing; Xu, Xuejun An optimal multilevel method with one smoothing step for the Morley element. (English) Zbl 1473.65318 Comput. Methods Appl. Math. 21, No. 3, 609-633 (2021). MSC: 65N30 65N55 35J40 PDF BibTeX XML Cite \textit{S. Tang} and \textit{X. Xu}, Comput. Methods Appl. Math. 21, No. 3, 609--633 (2021; Zbl 1473.65318) Full Text: DOI OpenURL
Cai, Ying; Chen, Jinru; Wang, Nan A Nitsche extended finite element method for the biharmonic interface problem. (English) Zbl 07415034 Comput. Methods Appl. Mech. Eng. 382, Article ID 113880, 24 p. (2021). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{Y. Cai} et al., Comput. Methods Appl. Mech. Eng. 382, Article ID 113880, 24 p. (2021; Zbl 07415034) Full Text: DOI OpenURL
Long, Boyong; Xu, Ling; Wang, Qihan Fully starlike and fully convex biharmonic mappings of order \(\alpha\). (Chinese. English summary) Zbl 1488.30098 J. Anhui Univ., Nat. Sci. 45, No. 2, 1-10 (2021). MSC: 30C45 30C50 31A30 PDF BibTeX XML Cite \textit{B. Long} et al., J. Anhui Univ., Nat. Sci. 45, No. 2, 1--10 (2021; Zbl 1488.30098) Full Text: DOI OpenURL
Nazarov, S. A. Trapping of waves in semiinfinite Kirchhoff plate with periodically damaged edge. (English. Russian original) Zbl 1473.35300 J. Math. Sci., New York 257, No. 5, 684-704 (2021); translation from Probl. Mat. Anal. 111, 119-136 (2021). MSC: 35J91 35J40 PDF BibTeX XML Cite \textit{S. A. Nazarov}, J. Math. Sci., New York 257, No. 5, 684--704 (2021; Zbl 1473.35300); translation from Probl. Mat. Anal. 111, 119--136 (2021) Full Text: DOI OpenURL
Harju, Markus; Kultima, Jaakko; Serov, Valery; Tyni, Teemu Two-dimensional inverse scattering for quasi-linear biharmonic operator. (English) Zbl 1473.35293 Inverse Probl. Imaging 15, No. 5, 1015-1033 (2021). MSC: 35J91 35P25 35R30 65M32 PDF BibTeX XML Cite \textit{M. Harju} et al., Inverse Probl. Imaging 15, No. 5, 1015--1033 (2021; Zbl 1473.35293) Full Text: DOI OpenURL
Matevossian, H. A. Dirichlet-Neumann problem for the biharmonic equation in exterior domains. (English. Russian original) Zbl 1473.35179 Differ. Equ. 57, No. 8, 1020-1033 (2021); translation from Differ. Uravn. 57, No. 8, 1049-1062 (2021). MSC: 35J30 31B30 35J40 35A02 PDF BibTeX XML Cite \textit{H. A. Matevossian}, Differ. Equ. 57, No. 8, 1020--1033 (2021; Zbl 1473.35179); translation from Differ. Uravn. 57, No. 8, 1049--1062 (2021) Full Text: DOI OpenURL
Aghajani, Asadollah; Cowan, Craig; Rădulescu, Vicenţiu D. Positive supersolutions of fourth-order nonlinear elliptic equations: explicit estimates and Liouville theorems. (English) Zbl 1479.35377 J. Differ. Equations 298, 323-345 (2021). Reviewer: Leszek Gasiński (Kraków) MSC: 35J60 35B53 35G30 PDF BibTeX XML Cite \textit{A. Aghajani} et al., J. Differ. Equations 298, 323--345 (2021; Zbl 1479.35377) Full Text: DOI OpenURL
Li, Peijun; Yao, Xiaohua; Zhao, Yue Stability of an inverse source problem for the damped biharmonic plate equation. (English) Zbl 1469.35256 Inverse Probl. 37, No. 8, Article ID 085003, 19 p. (2021). MSC: 35R30 35J30 74K20 PDF BibTeX XML Cite \textit{P. Li} et al., Inverse Probl. 37, No. 8, Article ID 085003, 19 p. (2021; Zbl 1469.35256) Full Text: DOI arXiv OpenURL
Bakharev, F. L.; Matveenko, S. G. Localization of eigenfunctions in a narrow Kirchhoff plate. (English) Zbl 1485.35309 Russ. J. Math. Phys. 28, No. 2, 156-178 (2021). MSC: 35P20 35B25 35J40 74K20 PDF BibTeX XML Cite \textit{F. L. Bakharev} and \textit{S. G. Matveenko}, Russ. J. Math. Phys. 28, No. 2, 156--178 (2021; Zbl 1485.35309) Full Text: DOI OpenURL
Gander, Martin J.; Liu, Yongxiang Is there more than one Dirichlet-Neumann algorithm for the biharmonic problem? (English) Zbl 1477.65259 SIAM J. Sci. Comput. 43, No. 3, A1881-A1906 (2021). MSC: 65N55 31A30 PDF BibTeX XML Cite \textit{M. J. Gander} and \textit{Y. Liu}, SIAM J. Sci. Comput. 43, No. 3, A1881--A1906 (2021; Zbl 1477.65259) Full Text: DOI OpenURL
Karachik, V. V. Green’s functions of the Navier and Riquier-Neumann problems for the biharmonic equation in the ball. (English. Russian original) Zbl 1479.35329 Differ. Equ. 57, No. 5, 654-668 (2021); translation from Differ. Uravn. 57, No. 5, 673-686 (2021). MSC: 35J40 31B30 PDF BibTeX XML Cite \textit{V. V. Karachik}, Differ. Equ. 57, No. 5, 654--668 (2021; Zbl 1479.35329); translation from Differ. Uravn. 57, No. 5, 673--686 (2021) Full Text: DOI OpenURL
Petrov, A. G. Algorithm for construction of quadrature formulas with exponential convergence for linear operators acting on periodic functions. (English. Russian original) Zbl 1473.65023 Russ. Math. 65, No. 2, 75-80 (2021); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 2, 86-92 (2021). MSC: 65D32 65D20 PDF BibTeX XML Cite \textit{A. G. Petrov}, Russ. Math. 65, No. 2, 75--80 (2021; Zbl 1473.65023); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 2, 86--92 (2021) Full Text: DOI OpenURL
Azevedo, A.; Rodrigues, J. F.; Santos, L. Lagrange multipliers for evolution problems with constraints on the derivatives. (English) Zbl 1464.49005 St. Petersbg. Math. J. 32, No. 3, 435-448 (2021) and Algebra Anal. 32, No. 3, 65-83 (2020). MSC: 49J40 49S05 PDF BibTeX XML Cite \textit{A. Azevedo} et al., St. Petersbg. Math. J. 32, No. 3, 435--448 (2021; Zbl 1464.49005) Full Text: DOI OpenURL
Luyen, Duong Trong Infinitely many solutions for a fourth-order semilinear elliptic equations perturbed from symmetry. (English) Zbl 1465.35171 Bull. Malays. Math. Sci. Soc. (2) 44, No. 3, 1701-1725 (2021). MSC: 35J40 31B30 35A01 PDF BibTeX XML Cite \textit{D. T. Luyen}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 3, 1701--1725 (2021; Zbl 1465.35171) Full Text: DOI OpenURL
Tran Nhat Luan; Tran Thi Khieu; Tra Quoc Khanh A filter method with a priori and a posteriori parameter choice for the regularization of Cauchy problems for biharmonic equations. (English) Zbl 1460.31023 Numer. Algorithms 86, No. 4, 1721-1746 (2021). MSC: 31B30 47A52 65F22 65J20 PDF BibTeX XML Cite \textit{Tran Nhat Luan} et al., Numer. Algorithms 86, No. 4, 1721--1746 (2021; Zbl 1460.31023) Full Text: DOI OpenURL
He, Qihan; Lv, Zongyan Existence and nonexistence of nontrivial solutions for critical biharmonic equations. (English) Zbl 1459.35214 J. Math. Anal. Appl. 495, No. 1, Article ID 124713, 30 p. (2021). MSC: 35J91 35J40 31B30 PDF BibTeX XML Cite \textit{Q. He} and \textit{Z. Lv}, J. Math. Anal. Appl. 495, No. 1, Article ID 124713, 30 p. (2021; Zbl 1459.35214) Full Text: DOI OpenURL
Carstensen, Carsten; Mallik, Gouranga; Nataraj, Neela Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity. (English) Zbl 1460.65145 IMA J. Numer. Anal. 41, No. 1, 164-205 (2021). MSC: 65N30 65N15 65N12 31A30 35J61 65J08 PDF BibTeX XML Cite \textit{C. Carstensen} et al., IMA J. Numer. Anal. 41, No. 1, 164--205 (2021; Zbl 1460.65145) Full Text: DOI arXiv OpenURL
Xu, Shipeng A posteriori error estimates for weak Galerkin methods for second order elliptic problems on polygonal meshes. (English) Zbl 1460.65150 Appl. Numer. Math. 161, 510-524 (2021). MSC: 65N30 65N15 35J15 76D07 31A30 65N85 PDF BibTeX XML Cite \textit{S. Xu}, Appl. Numer. Math. 161, 510--524 (2021; Zbl 1460.65150) Full Text: DOI OpenURL
Abdelhak, Hadj; Saker, Hacene Corrigendum to: “Integral equations method for solving a biharmonic inverse problem in detection of Robin coefficients”. (English) Zbl 1472.31006 Appl. Numer. Math. 161, 147 (2021). MSC: 31A30 35J40 35R30 PDF BibTeX XML Cite \textit{H. Abdelhak} and \textit{H. Saker}, Appl. Numer. Math. 161, 147 (2021; Zbl 1472.31006) Full Text: DOI OpenURL
Hadj, Abdelhak; Saker, Hacene Integral equations method for solving a biharmonic inverse problem in detection of Robin coefficients. (English) Zbl 1459.31002 Appl. Numer. Math. 160, 436-450 (2021); corrigendum ibid. 161, 147 (2021). MSC: 31A30 35J40 35R30 PDF BibTeX XML Cite \textit{A. Hadj} and \textit{H. Saker}, Appl. Numer. Math. 160, 436--450 (2021; Zbl 1459.31002) Full Text: DOI OpenURL
Abreu Blaya, R. A Riemann jump problem for biharmonic functions in fractal domains. (English) Zbl 1456.31003 Anal. Math. Phys. 11, No. 1, Paper No. 22, 13 p. (2021). MSC: 31A30 31A25 PDF BibTeX XML Cite \textit{R. Abreu Blaya}, Anal. Math. Phys. 11, No. 1, Paper No. 22, 13 p. (2021; Zbl 1456.31003) Full Text: DOI OpenURL
Karachik, V. V. Presentation of solution of the Dirichlet problem for biharmonic equation in the unit ball through the Green function. (Russian. English summary) Zbl 1479.35319 Chelyabinskiĭ Fiz.-Mat. Zh. 5, No. 4, Part 1, 391-399 (2020). MSC: 35J30 31B30 35J40 PDF BibTeX XML Cite \textit{V. V. Karachik}, Chelyabinskiĭ Fiz.-Mat. Zh. 5, No. 4, Part 1, 391--399 (2020; Zbl 1479.35319) Full Text: DOI MNR OpenURL
Chen, Shaolin Modulus of continuity and Heinz-Schwarz type inequalities of solutions to biharmonic equations. (Chinese. English summary) Zbl 1488.31003 Acta Math. Sin., Chin. Ser. 63, No. 5, 505-522 (2020). MSC: 31A30 31A05 PDF BibTeX XML Cite \textit{S. Chen}, Acta Math. Sin., Chin. Ser. 63, No. 5, 505--522 (2020; Zbl 1488.31003) Full Text: arXiv OpenURL
Matevossian, Hovik A. Mixed biharmonic Dirichlet-Neumann problem in exterior domains. (English) Zbl 07334132 J. Sib. Fed. Univ., Math. Phys. 13, No. 6, 755-762 (2020). MSC: 35Jxx 35Pxx 26Dxx PDF BibTeX XML Cite \textit{H. A. Matevossian}, J. Sib. Fed. Univ., Math. Phys. 13, No. 6, 755--762 (2020; Zbl 07334132) Full Text: DOI MNR Link OpenURL
Capistrano-Filho, Roberto de A.; Cavalcante, Márcio; Gallego, Fernando A. Lower regularity solutions of the biharmonic Schrödinger equation in a quarter plane. (English) Zbl 1464.35312 Pac. J. Math. 309, No. 1, 35-70 (2020). Reviewer: Xingbin Pan (Shanghai) MSC: 35Q55 35A01 35A02 35C15 35G15 35G30 PDF BibTeX XML Cite \textit{R. de A. Capistrano-Filho} et al., Pac. J. Math. 309, No. 1, 35--70 (2020; Zbl 1464.35312) Full Text: DOI arXiv OpenURL
Kovalenko, Mikhail D.; Menshova, Irina V.; Kerzhaev, Alexander P.; Yu, Guangming A boundary value problem in the theory of elasticity for a rectangle: exact solutions. (English) Zbl 1455.74014 Z. Angew. Math. Phys. 71, No. 6, Paper No. 199, 20 p. (2020). MSC: 74B05 74G05 74G10 74S70 PDF BibTeX XML Cite \textit{M. D. Kovalenko} et al., Z. Angew. Math. Phys. 71, No. 6, Paper No. 199, 20 p. (2020; Zbl 1455.74014) Full Text: DOI OpenURL
Shen, Yue; Jin, Chang Decoupled mixed element methods for fourth order elliptic optimal control problems with control constraints. (English) Zbl 1463.65376 Numer. Math., Theory Methods Appl. 13, No. 2, 400-432 (2020). MSC: 65N30 65N15 49J20 31A30 49M41 65K15 PDF BibTeX XML Cite \textit{Y. Shen} and \textit{C. Jin}, Numer. Math., Theory Methods Appl. 13, No. 2, 400--432 (2020; Zbl 1463.65376) Full Text: DOI OpenURL
Du, Zhihua; Li, Yumei An \({L^p}\) inhomogeneous polyharmonic Neumann problem on Lipschitz domains in \({\mathbb{R}^n}\). (Chinese. English summary) Zbl 1463.31006 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 271-287 (2020). MSC: 31B10 31B30 35J40 PDF BibTeX XML Cite \textit{Z. Du} and \textit{Y. Li}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 271--287 (2020; Zbl 1463.31006) OpenURL
Apushkinskaya, D. E.; Repin, S. I. Biharmonic obstacle problem: guaranteed and computable error bounds for approximate solutions. (English. Russian original) Zbl 1454.35182 Comput. Math. Math. Phys. 60, No. 11, 1823-1838 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 11, 1881-1897 (2020). MSC: 35J86 31B30 PDF BibTeX XML Cite \textit{D. E. Apushkinskaya} and \textit{S. I. Repin}, Comput. Math. Math. Phys. 60, No. 11, 1823--1838 (2020; Zbl 1454.35182); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 11, 1881--1897 (2020) Full Text: DOI arXiv OpenURL
Antonietti, Paola F.; Manzini, G.; Verani, Marco The conforming virtual element method for polyharmonic problems. (English) Zbl 1452.65320 Comput. Math. Appl. 79, No. 7, 2021-2034 (2020). MSC: 65N30 65N12 31A30 35J05 PDF BibTeX XML Cite \textit{P. F. Antonietti} et al., Comput. Math. Appl. 79, No. 7, 2021--2034 (2020; Zbl 1452.65320) Full Text: DOI arXiv OpenURL
Li, Weifeng; Dang, Pei; Du, Zhihua; Guo, Guoan; Li, Yumei \(L^p\) polyharmonic Robin problems on Lipschitz domains. (English) Zbl 1452.31015 Complex Var. Elliptic Equ. 65, No. 10, 1777-1791 (2020). MSC: 31B30 31B10 35J30 35J40 PDF BibTeX XML Cite \textit{W. Li} et al., Complex Var. Elliptic Equ. 65, No. 10, 1777--1791 (2020; Zbl 1452.31015) Full Text: DOI arXiv OpenURL
Karachik, V. V. Neumann type problems for the polyharmonic equation in ball. (English. Russian original) Zbl 1452.31013 J. Math. Sci., New York 249, No. 6, 974-988 (2020); translation from Probl. Mat. Anal. 103, 143-154 (2020). MSC: 31B30 35J30 35J40 PDF BibTeX XML Cite \textit{V. V. Karachik}, J. Math. Sci., New York 249, No. 6, 974--988 (2020; Zbl 1452.31013); translation from Probl. Mat. Anal. 103, 143--154 (2020) Full Text: DOI OpenURL
Meng, Jian; Mei, Liquan A mixed virtual element method for the vibration problem of clamped Kirchhoff plate. (English) Zbl 1467.65112 Adv. Comput. Math. 46, No. 5, Paper No. 68, 18 p. (2020). Reviewer: Vit Dolejsi (Praha) MSC: 65N30 65N25 65N15 65N12 74K10 74H15 PDF BibTeX XML Cite \textit{J. Meng} and \textit{L. Mei}, Adv. Comput. Math. 46, No. 5, Paper No. 68, 18 p. (2020; Zbl 1467.65112) Full Text: DOI OpenURL
Hu, Jun; Tian, Shudan; Zhang, Shangyou A family of 3D \(H^2\)-nonconforming tetrahedral finite elements for the biharmonic equation. (English) Zbl 1446.65171 Sci. China, Math. 63, No. 8, 1505-1522 (2020). MSC: 65N30 65N15 31A30 PDF BibTeX XML Cite \textit{J. Hu} et al., Sci. China, Math. 63, No. 8, 1505--1522 (2020; Zbl 1446.65171) Full Text: DOI arXiv OpenURL
Gutlyanskiĭ, V. Ya.; Nesmelova, O. V.; Ryazanov, V. I. The Dirichlet problem for the Poisson type equations in the plane. (English) Zbl 1449.30085 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2020, No. 5, 10-16 (2020). MSC: 30E25 30C62 31A30 PDF BibTeX XML Cite \textit{V. Ya. Gutlyanskiĭ} et al., Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2020, No. 5, 10--16 (2020; Zbl 1449.30085) Full Text: DOI OpenURL
Thach, Tran Ngoc; Tuan, Nguyen Huy; O’Regan, Donal Regularized solution for a biharmonic equation with discrete data. (English) Zbl 1439.65135 Evol. Equ. Control Theory 9, No. 2, 341-358 (2020). MSC: 65N20 35J40 65N12 PDF BibTeX XML Cite \textit{T. N. Thach} et al., Evol. Equ. Control Theory 9, No. 2, 341--358 (2020; Zbl 1439.65135) Full Text: DOI OpenURL
Karachik, V. V. The Green function of the Dirichlet problem for the triharmonic equation in the ball. (English. Russian original) Zbl 1442.35084 Math. Notes 107, No. 1, 105-120 (2020); translation from Mat. Zametki 107, No. 1, 87-105 (2020). MSC: 35J08 35J40 31B30 PDF BibTeX XML Cite \textit{V. V. Karachik}, Math. Notes 107, No. 1, 105--120 (2020; Zbl 1442.35084); translation from Mat. Zametki 107, No. 1, 87--105 (2020) Full Text: DOI OpenURL
Schnieders, Inka; Sweers, Guido A biharmonic converse to Krein-Rutman: a maximum principle near a positive eigenfunction. (English) Zbl 1441.35082 Positivity 24, No. 3, 677-710 (2020). MSC: 35B50 35J40 47B65 PDF BibTeX XML Cite \textit{I. Schnieders} and \textit{G. Sweers}, Positivity 24, No. 3, 677--710 (2020; Zbl 1441.35082) Full Text: DOI OpenURL
An, Jing; Li, Huiyuan; Zhang, Zhimin Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains. (English) Zbl 1465.65155 Numer. Algorithms 84, No. 2, 427-455 (2020). MSC: 65N35 65N25 65N15 31A30 PDF BibTeX XML Cite \textit{J. An} et al., Numer. Algorithms 84, No. 2, 427--455 (2020; Zbl 1465.65155) Full Text: DOI arXiv OpenURL
Li, Chong-Jun; Jia, Yan-Mei A superconvergent nonconforming quadrilateral spline element for biharmonic equation using the B-net method. (English) Zbl 1449.65318 Comput. Appl. Math. 39, No. 2, Paper No. 70, 31 p. (2020). MSC: 65N30 65D07 65N12 65N15 PDF BibTeX XML Cite \textit{C.-J. Li} and \textit{Y.-M. Jia}, Comput. Appl. Math. 39, No. 2, Paper No. 70, 31 p. (2020; Zbl 1449.65318) Full Text: DOI OpenURL
Li, Hao; Bi, Hai; Yang, Yidu The two-grid and multigrid discretizations of the \(C^0\)IPG method for biharmonic eigenvalue problem. (English) Zbl 1437.65173 Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1775-1789 (2020). MSC: 65N25 65N30 65N55 65N50 65F15 31A30 PDF BibTeX XML Cite \textit{H. Li} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1775--1789 (2020; Zbl 1437.65173) Full Text: DOI OpenURL
Miao, Di; Zou, Zhihui; Scott, Michael A.; Borden, Michael J.; Thomas, Derek C. Isogeometric Bézier dual mortaring: the enriched Bézier dual basis with application to second- and fourth-order problems. (English) Zbl 1436.65187 Comput. Methods Appl. Mech. Eng. 363, Article ID 112900, 40 p. (2020). MSC: 65N30 65D07 65D17 PDF BibTeX XML Cite \textit{D. Miao} et al., Comput. Methods Appl. Mech. Eng. 363, Article ID 112900, 40 p. (2020; Zbl 1436.65187) Full Text: DOI OpenURL
Bonanno, Gabriele; Chinnì, Antonia; O’Regan, Donal Existence of two non-zero weak solutions for a nonlinear Navier boundary value problem involving the \(p\)-biharmonic. (English) Zbl 1432.35099 Acta Appl. Math. 166, 1-10 (2020). MSC: 35J92 35A15 35D30 PDF BibTeX XML Cite \textit{G. Bonanno} et al., Acta Appl. Math. 166, 1--10 (2020; Zbl 1432.35099) Full Text: DOI OpenURL
Yousef, A.; Al-Naimi, R. On Toeplitz operators with biharmonic symbols. (English) Zbl 07179240 Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1647-1659 (2020). MSC: 47B35 30H20 PDF BibTeX XML Cite \textit{A. Yousef} and \textit{R. Al-Naimi}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1647--1659 (2020; Zbl 07179240) Full Text: DOI OpenURL
Luan, Tran Nhat; Khieu, Tran Thi; Khanh, Tra Quoc Regularized solution of the Cauchy problem for the biharmonic equation. (English) Zbl 1436.31021 Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 757-782 (2020). MSC: 31B30 47A52 65F22 65J20 PDF BibTeX XML Cite \textit{T. N. Luan} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 757--782 (2020; Zbl 1436.31021) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Zhou, Yong; Thach, Tran Ngoc; Can, Nguyen Huu An approximate solution for a nonlinear biharmonic equation with discrete random data. (English) Zbl 1434.65233 J. Comput. Appl. Math. 371, Article ID 112711, 19 p. (2020). MSC: 65N21 65N20 31A30 35R30 35R60 65N35 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., J. Comput. Appl. Math. 371, Article ID 112711, 19 p. (2020; Zbl 1434.65233) Full Text: DOI OpenURL
Wang, Fajie; Fan, Chia-Ming; Hua, Qingsong; Gu, Yan Localized MFS for the inverse Cauchy problems of two-dimensional Laplace and biharmonic equations. (English) Zbl 1433.65338 Appl. Math. Comput. 364, Article ID 124658, 14 p. (2020). MSC: 65N80 35R30 35J05 PDF BibTeX XML Cite \textit{F. Wang} et al., Appl. Math. Comput. 364, Article ID 124658, 14 p. (2020; Zbl 1433.65338) Full Text: DOI OpenURL
Guo, Yuxia; Liu, Ting Lazer-McKenna conjecture for higher order elliptic problem with critical growth. (English) Zbl 1433.35048 Discrete Contin. Dyn. Syst. 40, No. 2, 1159-1189 (2020). MSC: 35J30 31B30 35B33 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{T. Liu}, Discrete Contin. Dyn. Syst. 40, No. 2, 1159--1189 (2020; Zbl 1433.35048) Full Text: DOI OpenURL
Li, Gongbao; Yang, Tao; Huang, Anlang Existence of two weak solutions for biharmonic equations with the Hardy-Sobolev critical exponent and non-homogeneous perturbation term. (Chinese. English summary) Zbl 1499.35171 Sci. Sin., Math. 49, No. 12, 1813-1844 (2019). MSC: 35D30 35J35 35J60 35B33 PDF BibTeX XML Cite \textit{G. Li} et al., Sci. Sin., Math. 49, No. 12, 1813--1844 (2019; Zbl 1499.35171) Full Text: DOI OpenURL
Biagi, Stefano; Valdinoci, Enrico; Vecchi, Eugenio A symmetry result for elliptic systems in punctured domains. (English) Zbl 1481.35165 Commun. Pure Appl. Anal. 18, No. 5, 2819-2833 (2019). MSC: 35J47 35J91 35B06 31B30 PDF BibTeX XML Cite \textit{S. Biagi} et al., Commun. Pure Appl. Anal. 18, No. 5, 2819--2833 (2019; Zbl 1481.35165) Full Text: DOI OpenURL
Karachik, V. V.; Turmetov, B. Kh. On solvability of some nonlocal boundary value problems for polyharmonic equation. (English) Zbl 1488.31004 Mat. Zh. 19, No. 1, 39-49 (2019). MSC: 31A30 31B30 35J40 PDF BibTeX XML Cite \textit{V. V. Karachik} and \textit{B. Kh. Turmetov}, Mat. Zh. 19, No. 1, 39--49 (2019; Zbl 1488.31004) OpenURL
Benrabah, A.; Boussetila, N. Modified nonlocal boundary value problem method for an ill-posed problem for the biharmonic equation. (English) Zbl 1471.65178 Inverse Probl. Sci. Eng. 27, No. 3, 340-368 (2019). MSC: 65N20 65N12 31A30 35B45 35J40 35R25 47A52 PDF BibTeX XML Cite \textit{A. Benrabah} and \textit{N. Boussetila}, Inverse Probl. Sci. Eng. 27, No. 3, 340--368 (2019; Zbl 1471.65178) Full Text: DOI OpenURL
Turmetov, Batirkhan Khudaĭbergenovich Green function for analogue of Robin problem for polyharmonic equation. (Russian. English summary) Zbl 1463.35241 Ufim. Mat. Zh. 11, No. 3, 79-88 (2019); translation in Ufa Math. J. 11, No. 3, 78-87 (2019). MSC: 35J40 31B30 PDF BibTeX XML Cite \textit{B. K. Turmetov}, Ufim. Mat. Zh. 11, No. 3, 79--88 (2019; Zbl 1463.35241); translation in Ufa Math. J. 11, No. 3, 78--87 (2019) Full Text: DOI MNR OpenURL
Banz, Lothar; Petsche, Jan; Schröder, Andreas \(hp\)-FEM for a stabilized three-field formulation of the biharmonic problem. (English) Zbl 1442.65346 Comput. Math. Appl. 77, No. 9, 2463-2488 (2019). MSC: 65N30 65N12 35J40 PDF BibTeX XML Cite \textit{L. Banz} et al., Comput. Math. Appl. 77, No. 9, 2463--2488 (2019; Zbl 1442.65346) Full Text: DOI OpenURL
Sogn, Jarle; Takacs, Stefan Robust multigrid solvers for the biharmonic problem in isogeometric analysis. (English) Zbl 1442.65432 Comput. Math. Appl. 77, No. 1, 105-124 (2019). MSC: 65N55 35J40 PDF BibTeX XML Cite \textit{J. Sogn} and \textit{S. Takacs}, Comput. Math. Appl. 77, No. 1, 105--124 (2019; Zbl 1442.65432) Full Text: DOI arXiv OpenURL
Droniou, Jérôme; Ilyas, Muhammad; Lamichhane, Bishnu P.; Wheeler, Glen E. A mixed finite element method for a sixth-order elliptic problem. (English) Zbl 1465.65133 IMA J. Numer. Anal. 39, No. 1, 374-397 (2019). MSC: 65N30 65N15 35G15 31A30 PDF BibTeX XML Cite \textit{J. Droniou} et al., IMA J. Numer. Anal. 39, No. 1, 374--397 (2019; Zbl 1465.65133) Full Text: DOI arXiv OpenURL
Führer, Thomas; Heuer, Norbert Fully discrete DPG methods for the Kirchhoff-Love plate bending model. (English) Zbl 1440.74198 Comput. Methods Appl. Mech. Eng. 343, 550-571 (2019). MSC: 74K20 35J57 35Q74 65N30 74S05 PDF BibTeX XML Cite \textit{T. Führer} and \textit{N. Heuer}, Comput. Methods Appl. Mech. Eng. 343, 550--571 (2019; Zbl 1440.74198) Full Text: DOI arXiv OpenURL
Rajashekar, Naraveni; Chaudhary, Sudhakar; Srinivas Kumar, V. V. K. Approximation of \(p\)-biharmonic problem using WEB-spline based mesh-free method. (English) Zbl 07168323 Int. J. Nonlinear Sci. Numer. Simul. 20, No. 6, 703-712 (2019). MSC: 65N12 65N22 65N30 41A15 35Q90 PDF BibTeX XML Cite \textit{N. Rajashekar} et al., Int. J. Nonlinear Sci. Numer. Simul. 20, No. 6, 703--712 (2019; Zbl 07168323) Full Text: DOI OpenURL
Nam, Danh Hua Quoc; van Au, Vo; Tuan, Nguyen Huy; O’Regan, Donal Regularization of a final value problem for a nonlinear biharmonic equation. (English) Zbl 1434.65165 Math. Methods Appl. Sci. 42, No. 18, 6672-6685 (2019). MSC: 65M32 47J06 47H10 65M30 31B30 35R30 65J20 PDF BibTeX XML Cite \textit{D. H. Q. Nam} et al., Math. Methods Appl. Sci. 42, No. 18, 6672--6685 (2019; Zbl 1434.65165) Full Text: DOI OpenURL
Ben-Artzi, Matania; Croisille, Jean-Pierre; Fishelov, Dalia A Cartesian compact scheme for the Navier-Stokes equations in streamfunction formulation in irregular domains. (English) Zbl 1434.65107 J. Sci. Comput. 81, No. 3, 1386-1408 (2019). MSC: 65M06 76M20 76D05 31A30 65D05 41A05 PDF BibTeX XML Cite \textit{M. Ben-Artzi} et al., J. Sci. Comput. 81, No. 3, 1386--1408 (2019; Zbl 1434.65107) Full Text: DOI OpenURL
Banz, Lothar; Petsche, Jan; Schröder, Andreas Two stabilized three-field formulations for the biharmonic problem. (English) Zbl 1433.65275 Apel, Thomas (ed.) et al., Advanced finite element methods with applications. Selected papers from the 30th Chemnitz finite element symposium, St. Wolfgang/Strobl, Austria, September 25–27, 2017. Cham: Springer. Lect. Notes Comput. Sci. Eng. 128, 41-55 (2019). MSC: 65N30 65N12 65N15 65N50 35J30 31A30 35B45 PDF BibTeX XML Cite \textit{L. Banz} et al., Lect. Notes Comput. Sci. Eng. 128, 41--55 (2019; Zbl 1433.65275) Full Text: DOI OpenURL
Leadi, Liamidi A.; Toyou, Robert L. Principal eigenvalue for cooperative \((p,q)\)-biharmonic systems. (English) Zbl 1449.35334 J. Partial Differ. Equations 32, No. 1, 33-51 (2019). MSC: 35P30 35J58 35J50 35J92 PDF BibTeX XML Cite \textit{L. A. Leadi} and \textit{R. L. Toyou}, J. Partial Differ. Equations 32, No. 1, 33--51 (2019; Zbl 1449.35334) Full Text: DOI OpenURL