Forman, Noah; Pal, Soumik; Rizzolo, Douglas; Winkel, Matthias Ranked masses in two-parameter Fleming-Viot diffusions. (English) Zbl 07641745 Trans. Am. Math. Soc. 376, No. 2, 1089-1111 (2023). MSC: 60J60 60J25 60G55 60J35 60J80 PDF BibTeX XML Cite \textit{N. Forman} et al., Trans. Am. Math. Soc. 376, No. 2, 1089--1111 (2023; Zbl 07641745) Full Text: DOI arXiv OpenURL
Mallein, Bastien; Shi, Quan A necessary and sufficient condition for the convergence of the derivative martingale in a branching Lévy process. (English) Zbl 07634405 Bernoulli 29, No. 1, 597-624 (2023). MSC: 60J80 60G51 PDF BibTeX XML Cite \textit{B. Mallein} and \textit{Q. Shi}, Bernoulli 29, No. 1, 597--624 (2023; Zbl 07634405) Full Text: DOI arXiv Link OpenURL
Chi, Jui-Lin; Hong, Jyy-I The range of asymmetric branching random walk. (English) Zbl 1499.60286 Stat. Probab. Lett. 193, Article ID 109705, 5 p. (2023). MSC: 60J80 PDF BibTeX XML Cite \textit{J.-L. Chi} and \textit{J.-I Hong}, Stat. Probab. Lett. 193, Article ID 109705, 5 p. (2023; Zbl 1499.60286) Full Text: DOI OpenURL
Dascaliuc, Radu; Pham, Tuan N.; Thomann, Enrique; Waymire, Edward C. Doubly stochastic Yule cascades. I: The explosion problem in the time-reversible case. (English) Zbl 1501.60055 J. Funct. Anal. 284, No. 1, Article ID 109722, 25 p. (2023). MSC: 60J80 35Q30 76D03 PDF BibTeX XML Cite \textit{R. Dascaliuc} et al., J. Funct. Anal. 284, No. 1, Article ID 109722, 25 p. (2023; Zbl 1501.60055) Full Text: DOI arXiv OpenURL
Vidmar, Matija Continuous-state branching processes with spectrally positive migration. (English) Zbl 07643891 Probab. Math. Stat. 42, No. 2, 227-249 (2022). MSC: 60J80 92D25 PDF BibTeX XML Cite \textit{M. Vidmar}, Probab. Math. Stat. 42, No. 2, 227--249 (2022; Zbl 07643891) Full Text: DOI arXiv OpenURL
Yin, Lu; Lu, YiKang; Du, ChunPeng; Shi, Lei Effect of vaccine efficacy on disease transmission with age-structured. (English) Zbl 07641681 Chaos Solitons Fractals 156, Article ID 111812, 9 p. (2022). MSC: 92-XX 62-XX PDF BibTeX XML Cite \textit{L. Yin} et al., Chaos Solitons Fractals 156, Article ID 111812, 9 p. (2022; Zbl 07641681) Full Text: DOI OpenURL
Horton, Emma; Watson, Alexander R. Strong laws of large numbers for a growth-fragmentation process with bounded cell sizes. (English) Zbl 07639723 ALEA, Lat. Am. J. Probab. Math. Stat. 19, No. 2, 1799-1826 (2022). MSC: 60J80 37A30 47D06 35Q92 PDF BibTeX XML Cite \textit{E. Horton} and \textit{A. R. Watson}, ALEA, Lat. Am. J. Probab. Math. Stat. 19, No. 2, 1799--1826 (2022; Zbl 07639723) Full Text: arXiv Link OpenURL
Profeta, Christophe Extreme values of critical and subcritical branching stable processes with positive jumps. (English) Zbl 07639712 ALEA, Lat. Am. J. Probab. Math. Stat. 19, No. 2, 1421-1433 (2022). MSC: 60J80 60G52 60G51 60G70 PDF BibTeX XML Cite \textit{C. Profeta}, ALEA, Lat. Am. J. Probab. Math. Stat. 19, No. 2, 1421--1433 (2022; Zbl 07639712) Full Text: arXiv Link OpenURL
Horst, Ulrich; Xu, Wei The microstructure of stochastic volatility models with self-exciting jump dynamics. (English) Zbl 07634775 Ann. Appl. Probab. 32, No. 6, 4568-4610 (2022). MSC: 60F17 60G52 60H40 60J80 91G99 PDF BibTeX XML Cite \textit{U. Horst} and \textit{W. Xu}, Ann. Appl. Probab. 32, No. 6, 4568--4610 (2022; Zbl 07634775) Full Text: DOI arXiv OpenURL
Bitseki Penda, S. Valère; Delmas, Jean-François Central limit theorem for bifurcating Markov chains under \(L^2\)-ergodic conditions. (English) Zbl 07632664 Adv. Appl. Probab. 54, No. 4, 999-1031 (2022). MSC: 60J05 60F05 60J80 62G05 62F12 PDF BibTeX XML Cite \textit{S. V. Bitseki Penda} and \textit{J.-F. Delmas}, Adv. Appl. Probab. 54, No. 4, 999--1031 (2022; Zbl 07632664) Full Text: DOI arXiv OpenURL
Iksanov, Alexander; Marynych, Alexander; Samoilenko, Igor On intermediate levels of a nested occupancy scheme in a random environment generated by stick-breaking. II. (English) Zbl 07629429 Stochastics 94, No. 7, 1077-1101 (2022). MSC: 60F05 60J80 60C05 PDF BibTeX XML Cite \textit{A. Iksanov} et al., Stochastics 94, No. 7, 1077--1101 (2022; Zbl 07629429) Full Text: DOI arXiv OpenURL
Ráth, Balázs; Swart, Jan M.; Szőke, Márton A phase transition between endogeny and nonendogeny. (English) Zbl 07628808 Electron. J. Probab. 27, Paper No. 145, 43 p. (2022). MSC: 82C27 60K35 82C26 60J80 PDF BibTeX XML Cite \textit{B. Ráth} et al., Electron. J. Probab. 27, Paper No. 145, 43 p. (2022; Zbl 07628808) Full Text: DOI arXiv OpenURL
Ma, Chunhua A fluctuation limit theorem of branching processes with immigration and statistical applications. (English) Zbl 07625320 Chin. J. Appl. Probab. Stat. 38, No. 3, 454-474 (2022). MSC: 60J35 60J80 60H20 60K37 PDF BibTeX XML Cite \textit{C. Ma}, Chin. J. Appl. Probab. Stat. 38, No. 3, 454--474 (2022; Zbl 07625320) Full Text: arXiv Link OpenURL
Wang, Feng; Wu, Xian-Yuan; Zhu, Rui A note on the asymptotic behavior of the height for a birth-and-death process. (English) Zbl 1498.60347 Probab. Eng. Inf. Sci. 36, No. 1, 41-48 (2022). MSC: 60J80 60K35 PDF BibTeX XML Cite \textit{F. Wang} et al., Probab. Eng. Inf. Sci. 36, No. 1, 41--48 (2022; Zbl 1498.60347) Full Text: DOI arXiv OpenURL
Cesana, Pierluigi; Hambly, Ben M. A probabilistic model for interfaces in a martensitic phase transition. (English) Zbl 1501.60054 J. Appl. Probab. 59, No. 4, 1081-1105 (2022). MSC: 60J80 60J85 82D35 60G50 PDF BibTeX XML Cite \textit{P. Cesana} and \textit{B. M. Hambly}, J. Appl. Probab. 59, No. 4, 1081--1105 (2022; Zbl 1501.60054) Full Text: DOI arXiv OpenURL
Cattiaux, Patrick; Fischer, Jens; Rœlly, Sylvie; Sindayigaya, Samuel Random population dynamics under catastrophic events. (English) Zbl 07616196 J. Appl. Probab. 59, No. 4, 962-982 (2022). Reviewer: Matthias Meiners (Gießen) MSC: 60J80 65Q30 34D45 35B40 PDF BibTeX XML Cite \textit{P. Cattiaux} et al., J. Appl. Probab. 59, No. 4, 962--982 (2022; Zbl 07616196) Full Text: DOI OpenURL
Elliriki, Mamatha; Reddy, C. S.; Anand, Krishna; Saritha, S. Multi server queuing system with crashes and alternative repair strategies. (English) Zbl 07613946 Commun. Stat., Theory Methods 51, No. 23, 8173-8185 (2022). MSC: 62-XX PDF BibTeX XML Cite \textit{M. Elliriki} et al., Commun. Stat., Theory Methods 51, No. 23, 8173--8185 (2022; Zbl 07613946) Full Text: DOI OpenURL
Pang, Guodong; Sarantsev, Andrey; Suhov, Yuri Birth and death processes in interactive random environments. (English) Zbl 07613933 Queueing Syst. 102, No. 1-2, 269-307 (2022). MSC: 60H10 60J60 60K25 90B22 PDF BibTeX XML Cite \textit{G. Pang} et al., Queueing Syst. 102, No. 1--2, 269--307 (2022; Zbl 07613933) Full Text: DOI arXiv OpenURL
Ozawa, Toshihisa Tail asymptotics in any direction of the stationary distribution in a two-dimensional discrete-time QBD process. (English) Zbl 1501.60037 Queueing Syst. 102, No. 1-2, 227-267 (2022). MSC: 60J10 60K25 PDF BibTeX XML Cite \textit{T. Ozawa}, Queueing Syst. 102, No. 1--2, 227--267 (2022; Zbl 1501.60037) Full Text: DOI arXiv OpenURL
Balashova, D. M. Clustering effect for multitype branching random walk. (English. Russian original) Zbl 1498.60337 Theory Probab. Appl. 67, No. 3, 352-362 (2022); translation from Teor. Veroyatn. Primen. 67, No. 3, 443-455 (2022). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{D. M. Balashova}, Theory Probab. Appl. 67, No. 3, 352--362 (2022; Zbl 1498.60337); translation from Teor. Veroyatn. Primen. 67, No. 3, 443--455 (2022) Full Text: DOI OpenURL
Basrak, Bojan; Kevei, Péter Limit theorems for branching processes with immigration in a random environment. (English) Zbl 1501.60052 Extremes 25, No. 4, 623-654 (2022). MSC: 60J80 60F05 60G55 60G50 PDF BibTeX XML Cite \textit{B. Basrak} and \textit{P. Kevei}, Extremes 25, No. 4, 623--654 (2022; Zbl 1501.60052) Full Text: DOI arXiv OpenURL
Fang, Rongjuan; Li, Zenghu Construction of continuous-state branching processes in varying environments. (English) Zbl 1498.60274 Ann. Appl. Probab. 32, No. 5, 3645-3673 (2022). MSC: 60H20 60J80 PDF BibTeX XML Cite \textit{R. Fang} and \textit{Z. Li}, Ann. Appl. Probab. 32, No. 5, 3645--3673 (2022; Zbl 1498.60274) Full Text: DOI arXiv OpenURL
Harris, Simon C.; Horton, Emma; Kyprianou, Andreas E.; Wang, Minmin Yaglom limit for critical nonlocal branching Markov processes. (English) Zbl 07608254 Ann. Probab. 50, No. 6, 2373-2408 (2022). MSC: 82D75 60J80 60J76 PDF BibTeX XML Cite \textit{S. C. Harris} et al., Ann. Probab. 50, No. 6, 2373--2408 (2022; Zbl 07608254) Full Text: DOI OpenURL
Shiozawa, Yuichi Maximal displacement of branching symmetric stable processes. (English) Zbl 1497.60121 Chen, Zhen-Qing (ed.) et al., Dirichlet forms and related topics, in honor of Masatoshi Fukushima’s beiju, IWDFRT 2022, Osaka, Japan, August 22–26,2022. Singapore: Springer. Springer Proc. Math. Stat. 394, 461-491 (2022). MSC: 60J80 60J76 60F05 60J55 60J46 PDF BibTeX XML Cite \textit{Y. Shiozawa}, Springer Proc. Math. Stat. 394, 461--491 (2022; Zbl 1497.60121) Full Text: DOI arXiv OpenURL
González, Miguel; Minuesa, Carmen; del Puerto, Inés Approximate Bayesian computation approach on the maximal offspring and parameters in controlled branching processes. (English) Zbl 1498.60342 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 4, Paper No. 147, 23 p. (2022). MSC: 60J80 62F15 92D25 PDF BibTeX XML Cite \textit{M. González} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 4, Paper No. 147, 23 p. (2022; Zbl 1498.60342) Full Text: DOI OpenURL
Berestycki, Julien; Brunet, Éric; Cortines, Aser; Mallein, Bastien A simple backward construction of branching Brownian motion with large displacement and applications. (English. French summary) Zbl 1498.60338 Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 4, 2094-2113 (2022). MSC: 60J80 60F10 60J65 PDF BibTeX XML Cite \textit{J. Berestycki} et al., Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 4, 2094--2113 (2022; Zbl 1498.60338) Full Text: DOI arXiv Link OpenURL
Broutin, Nicolas; Duquesne, Thomas; Wang, Minmin Limits of multiplicative inhomogeneous random graphs and Lévy trees: the continuum graphs. (English) Zbl 1499.60017 Ann. Appl. Probab. 32, No. 4, 2448-2503 (2022). MSC: 60C05 05C80 60J80 PDF BibTeX XML Cite \textit{N. Broutin} et al., Ann. Appl. Probab. 32, No. 4, 2448--2503 (2022; Zbl 1499.60017) Full Text: DOI arXiv OpenURL
Iksanov, Alexander; Kotelnikova, Valeriya Small counts in nested Karlin’s occupancy scheme generated by discrete Weibull-like distributions. (English) Zbl 1498.60132 Stochastic Processes Appl. 153, 283-320 (2022). MSC: 60F17 60J80 60G15 PDF BibTeX XML Cite \textit{A. Iksanov} and \textit{V. Kotelnikova}, Stochastic Processes Appl. 153, 283--320 (2022; Zbl 1498.60132) Full Text: DOI arXiv OpenURL
Ramtirthkar, Mukund; Kale, Mohan Multiplicative controlled branching process with immigration. (English) Zbl 07596350 Commun. Stat., Theory Methods 51, No. 21, 7683-7690 (2022). MSC: 60J80 62M05 PDF BibTeX XML Cite \textit{M. Ramtirthkar} and \textit{M. Kale}, Commun. Stat., Theory Methods 51, No. 21, 7683--7690 (2022; Zbl 07596350) Full Text: DOI OpenURL
Dai, Guowei; Luo, Hua Uniqueness for branching diffusion process with absorbing boundary. (English) Zbl 1497.60117 Appl. Anal. 101, No. 17, 6297-6302 (2022). MSC: 60J80 60J60 45N05 45C05 PDF BibTeX XML Cite \textit{G. Dai} and \textit{H. Luo}, Appl. Anal. 101, No. 17, 6297--6302 (2022; Zbl 1497.60117) Full Text: DOI OpenURL
Braun, Georg On supercritical branching processes with emigration. (English) Zbl 07589156 J. Appl. Probab. 59, No. 3, 734-754 (2022). Reviewer: Isamu Dôku (Saitama) MSC: 60J80 60J10 60F15 PDF BibTeX XML Cite \textit{G. Braun}, J. Appl. Probab. 59, No. 3, 734--754 (2022; Zbl 07589156) Full Text: DOI arXiv OpenURL
Ji, Lina; Li, Zenghu Construction of age-structured branching processes by stochastic equations. (English) Zbl 1498.60344 J. Appl. Probab. 59, No. 3, 670-684 (2022). Reviewer: Bastien Mallein (Paris) MSC: 60J80 60J85 60H15 60J25 92D25 PDF BibTeX XML Cite \textit{L. Ji} and \textit{Z. Li}, J. Appl. Probab. 59, No. 3, 670--684 (2022; Zbl 1498.60344) Full Text: DOI arXiv OpenURL
Forman, Noah; Rizzolo, Douglas; Shi, Quan; Winkel, Matthias A two-parameter family of measure-valued diffusions with Poisson-Dirichlet stationary distributions. (English) Zbl 1496.60097 Ann. Appl. Probab. 32, No. 3, 2211-2253 (2022). MSC: 60J60 60J80 60G18 60G52 60G55 PDF BibTeX XML Cite \textit{N. Forman} et al., Ann. Appl. Probab. 32, No. 3, 2211--2253 (2022; Zbl 1496.60097) Full Text: DOI arXiv OpenURL
Meng, Weiwei; Xi, Chengxun Some properties of 2-type Markov branching processes with immigration and instantaneous resurrection. (English) Zbl 1498.60345 Stat. Probab. Lett. 189, Article ID 109571, 10 p. (2022). MSC: 60J80 PDF BibTeX XML Cite \textit{W. Meng} and \textit{C. Xi}, Stat. Probab. Lett. 189, Article ID 109571, 10 p. (2022; Zbl 1498.60345) Full Text: DOI OpenURL
Johnson, Tobias; Peköz, Erol Concentration inequalities from monotone couplings for graphs, walks, trees and branching processes. (English) Zbl 1496.05176 Stochastic Processes Appl. 152, 1-31 (2022). MSC: 05C80 05D40 60J80 60F05 PDF BibTeX XML Cite \textit{T. Johnson} and \textit{E. Peköz}, Stochastic Processes Appl. 152, 1--31 (2022; Zbl 1496.05176) Full Text: DOI arXiv OpenURL
Calvez, Vincent; Henry, Benoît; Méléard, Sylvie; Tran, Viet Chi Dynamics of lineages in adaptation to a gradual environmental change. (Dynamique des lignées ancestrales en réponse à des changements environnementaux.) (English) Zbl 1498.92129 Ann. Henri Lebesgue 5, 729-777 (2022). MSC: 92D15 60J85 92D25 35Q92 PDF BibTeX XML Cite \textit{V. Calvez} et al., Ann. Henri Lebesgue 5, 729--777 (2022; Zbl 1498.92129) Full Text: DOI arXiv OpenURL
Yuan, Deqiang; Gao, Zhenlong Deviation estimations for Lotka-Nagaev estimator of a branching process with immigration. (English) Zbl 1494.60088 J. Math. Inequal. 16, No. 2, 599-608 (2022). MSC: 60J80 60F10 PDF BibTeX XML Cite \textit{D. Yuan} and \textit{Z. Gao}, J. Math. Inequal. 16, No. 2, 599--608 (2022; Zbl 1494.60088) Full Text: DOI OpenURL
Li, Yingqiu; Huang, Xulan; Peng, Zhaohui Central limit theorem and convergence rates for a supercritical branching process with immigration in a random environment. (English) Zbl 07562289 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 3, 957-974 (2022). MSC: 60J80 60F05 PDF BibTeX XML Cite \textit{Y. Li} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 3, 957--974 (2022; Zbl 07562289) Full Text: DOI OpenURL
Buraczewski, Dariusz; Dyszewski, Piotr Precise large deviation estimates for branching process in random environment. (English) Zbl 1494.60029 Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 3, 1669-1700 (2022). Reviewer: Anatoliy Swishchuk (Calgary) MSC: 60F10 60J80 60F05 PDF BibTeX XML Cite \textit{D. Buraczewski} and \textit{P. Dyszewski}, Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 3, 1669--1700 (2022; Zbl 1494.60029) Full Text: DOI arXiv OpenURL
Huang, Chunmao; Wang, Chen; Wang, Xiaoqiang Moments and large deviations for supercritical branching processes with immigration in random environments. (English) Zbl 07560235 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 1, 49-72 (2022). MSC: 60J80 60K37 60F10 PDF BibTeX XML Cite \textit{C. Huang} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 1, 49--72 (2022; Zbl 07560235) Full Text: DOI OpenURL
Gantert, Nina; Klenke, Achim The tail of the length of an excursion in a trap of random size. (English) Zbl 1493.60143 J. Stat. Phys. 188, No. 3, Paper No. 27, 20 p. (2022). MSC: 60K35 60J05 60J80 60G50 PDF BibTeX XML Cite \textit{N. Gantert} and \textit{A. Klenke}, J. Stat. Phys. 188, No. 3, Paper No. 27, 20 p. (2022; Zbl 1493.60143) Full Text: DOI arXiv OpenURL
Foucart, Clément; Zhou, Xiaowen On the explosion of the number of fragments in simple exchangeable fragmentation-coagulation processes. (English. French summary) Zbl 1492.60244 Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 2, 1182-1207 (2022). MSC: 60J90 60J80 60J70 92D25 PDF BibTeX XML Cite \textit{C. Foucart} and \textit{X. Zhou}, Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 2, 1182--1207 (2022; Zbl 1492.60244) Full Text: DOI arXiv OpenURL
Csűrös, Miklós Gain-loss-duplication models for copy number evolution on a phylogeny: exact algorithms for computing the likelihood and its gradient. (English) Zbl 07555031 Theor. Popul. Biol. 145, 80-94 (2022). MSC: 92-XX PDF BibTeX XML Cite \textit{M. Csűrös}, Theor. Popul. Biol. 145, 80--94 (2022; Zbl 07555031) Full Text: DOI arXiv OpenURL
Huillet, Thierry; Martinez, Servet Revisiting John Lamperti’s maximal branching process. (English) Zbl 1492.60238 Stochastics 94, No. 2, 277-310 (2022). MSC: 60J80 PDF BibTeX XML Cite \textit{T. Huillet} and \textit{S. Martinez}, Stochastics 94, No. 2, 277--310 (2022; Zbl 1492.60238) Full Text: DOI arXiv OpenURL
Lefèvre, Claude; Simon, Matthieu On the risk of ruin in a SIS type epidemic. (English) Zbl 1489.91223 Methodol. Comput. Appl. Probab. 24, No. 2, 939-961 (2022). MSC: 91G05 92D30 60J28 PDF BibTeX XML Cite \textit{C. Lefèvre} and \textit{M. Simon}, Methodol. Comput. Appl. Probab. 24, No. 2, 939--961 (2022; Zbl 1489.91223) Full Text: DOI OpenURL
Rahimov, Ibrahim A limit theorem for multitype general branching processes with reproduction-dependent immigration. (English) Zbl 1499.60297 Uzb. Math. J. 66, No. 1, 133-148 (2022). MSC: 60J80 60G70 PDF BibTeX XML Cite \textit{I. Rahimov}, Uzb. Math. J. 66, No. 1, 133--148 (2022; Zbl 1499.60297) Full Text: DOI OpenURL
Liu, Heng-Li; Li, Quan-Lin; Chang, Yan-Xia; Zhang, Chi Double-ended queues with non-Poisson inputs and their effective algorithms. (English) Zbl 07546539 Comput. Oper. Res. 144, Article ID 105793, 18 p. (2022). MSC: 90Bxx PDF BibTeX XML Cite \textit{H.-L. Liu} et al., Comput. Oper. Res. 144, Article ID 105793, 18 p. (2022; Zbl 07546539) Full Text: DOI OpenURL
Li, Junping; Tang, Yingchun; Zhou, Xiaowen Extinguishing behaviors for continuous-state nonlinear branching processes. (English) Zbl 1492.60240 J. Math. Anal. Appl. 514, No. 2, Article ID 126326, 27 p. (2022). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{J. Li} et al., J. Math. Anal. Appl. 514, No. 2, Article ID 126326, 27 p. (2022; Zbl 1492.60240) Full Text: DOI OpenURL
Jacka, Saul; Hernández-Hernández, Ma. Elena Minimising the expected commute time. (English) Zbl 1489.60127 Stochastic Processes Appl. 150, 729-751 (2022). MSC: 60J22 60J85 PDF BibTeX XML Cite \textit{S. Jacka} and \textit{Ma. E. Hernández-Hernández}, Stochastic Processes Appl. 150, 729--751 (2022; Zbl 1489.60127) Full Text: DOI arXiv Link OpenURL
Ren, Yan-Xia; Xiong, Jie; Yang, Xu; Zhou, Xiaowen On the extinction-extinguishing dichotomy for a stochastic Lotka-Volterra type population dynamical system. (English) Zbl 1495.60079 Stochastic Processes Appl. 150, 50-90 (2022). MSC: 60J80 60H10 92D25 PDF BibTeX XML Cite \textit{Y.-X. Ren} et al., Stochastic Processes Appl. 150, 50--90 (2022; Zbl 1495.60079) Full Text: DOI arXiv OpenURL
Barczy, Mátyás; Nedényi, Fanni K.; Pap, Gyula Convergence of partial sum processes to stable processes with application for aggregation of branching processes. (English) Zbl 07541084 Braz. J. Probab. Stat. 36, No. 2, 315-348 (2022). Reviewer: Heinrich Hering (Rockenberg) MSC: 60G10 60G52 60J80 PDF BibTeX XML Cite \textit{M. Barczy} et al., Braz. J. Probab. Stat. 36, No. 2, 315--348 (2022; Zbl 07541084) Full Text: DOI arXiv OpenURL
Tchorbadjieff, Assen; Mayster, Penka Factorial moments of the critical Markov branching process with geometric reproduction of particles. (English) Zbl 1491.60151 Mod. Stoch., Theory Appl. 9, No. 2, 229-244 (2022). MSC: 60J80 60K05 92C42 PDF BibTeX XML Cite \textit{A. Tchorbadjieff} and \textit{P. Mayster}, Mod. Stoch., Theory Appl. 9, No. 2, 229--244 (2022; Zbl 1491.60151) Full Text: DOI OpenURL
Gu, Guiding; Li, Wang; Li, Ren-Cang Highly accurate Latouche-Ramaswami logarithmic reduction algorithm for quasi-birth-and-death process. (English) Zbl 1499.65143 J. Math. Study 55, No. 2, 180-194 (2022). MSC: 65F45 15A24 65H10 PDF BibTeX XML Cite \textit{G. Gu} et al., J. Math. Study 55, No. 2, 180--194 (2022; Zbl 1499.65143) Full Text: DOI OpenURL
Li, Zenghu; Zhu, Yaping Survival probability for super-Brownian motion with absorption. (English) Zbl 1487.60151 Stat. Probab. Lett. 186, Article ID 109460, 9 p. (2022). MSC: 60J68 60J80 60J65 PDF BibTeX XML Cite \textit{Z. Li} and \textit{Y. Zhu}, Stat. Probab. Lett. 186, Article ID 109460, 9 p. (2022; Zbl 1487.60151) Full Text: DOI OpenURL
Vidmar, Matija Some harmonic functions for killed Markov branching processes with immigration and culling. (English) Zbl 1492.60243 Stochastics 94, No. 4, 578-601 (2022). Reviewer: Jean-Jil Duchamps (Besançon) MSC: 60J80 60J50 PDF BibTeX XML Cite \textit{M. Vidmar}, Stochastics 94, No. 4, 578--601 (2022; Zbl 1492.60243) Full Text: DOI arXiv OpenURL
Zheng, Huan; Jin, Shunfu A multi-source fluid queue based stochastic model of the probabilistic offloading strategy in a MEC system with multiple mobile devices and a single MEC server. (English) Zbl 07530793 Int. J. Appl. Math. Comput. Sci. 32, No. 1, 125-138 (2022). MSC: 68-XX PDF BibTeX XML Cite \textit{H. Zheng} and \textit{S. Jin}, Int. J. Appl. Math. Comput. Sci. 32, No. 1, 125--138 (2022; Zbl 07530793) Full Text: DOI OpenURL
Aïdékon, Elie; da Silva, William Growth-fragmentation process embedded in a planar Brownian excursion. (English) Zbl 1495.60007 Probab. Theory Relat. Fields 183, No. 1-2, 125-166 (2022). Reviewer: Isamu Dôku (Saitama) MSC: 60D05 60J80 PDF BibTeX XML Cite \textit{E. Aïdékon} and \textit{W. da Silva}, Probab. Theory Relat. Fields 183, No. 1--2, 125--166 (2022; Zbl 1495.60007) Full Text: DOI arXiv OpenURL
Buraczewski, Dariusz; Damek, Ewa Limit theorems for supercritical branching processes in random environment. (English) Zbl 1489.60160 Bernoulli 28, No. 3, 1602-1624 (2022). MSC: 60K37 60J80 60F05 60K05 92D25 PDF BibTeX XML Cite \textit{D. Buraczewski} and \textit{E. Damek}, Bernoulli 28, No. 3, 1602--1624 (2022; Zbl 1489.60160) Full Text: DOI arXiv Link OpenURL
Kersting, Götz; Minuesa, Carmen Defective Galton-Watson processes in a varying environment. (English) Zbl 1489.60138 Bernoulli 28, No. 2, 1408-1431 (2022). MSC: 60J80 PDF BibTeX XML Cite \textit{G. Kersting} and \textit{C. Minuesa}, Bernoulli 28, No. 2, 1408--1431 (2022; Zbl 1489.60138) Full Text: DOI arXiv Link OpenURL
Pirogov, Sergey; Zhizhina, Elena Contact processes on general spaces. Models on graphs and on manifolds. (English) Zbl 1489.82057 Electron. J. Probab. 27, Paper No. 41, 14 p. (2022). MSC: 82C22 82B21 60K35 60J80 60J74 82B27 82B41 PDF BibTeX XML Cite \textit{S. Pirogov} and \textit{E. Zhizhina}, Electron. J. Probab. 27, Paper No. 41, 14 p. (2022; Zbl 1489.82057) Full Text: DOI arXiv OpenURL
Bruss, F. Thomas Galton-Watson processes and their role as building blocks for branching processes. (English) Zbl 1492.60236 Theory Probab. Appl. 67, No. 1, 141-153 (2022) and Teor. Veroyatn. Primen. 67, No. 1, 177-192 (2022). MSC: 60J80 60J85 60K35 60K37 PDF BibTeX XML Cite \textit{F. T. Bruss}, Theory Probab. Appl. 67, No. 1, 141--153 (2022; Zbl 1492.60236) Full Text: DOI arXiv OpenURL
Dyszewski, Piotr; Gantert, Nina; Johnston, Samuel G. G.; Prochno, Joscha; Schmid, Dominik Sharp concentration for the largest and smallest fragment in a \(k\)-regular self-similar fragmentation. (English) Zbl 1498.60315 Ann. Probab. 50, No. 3, 1173-1203 (2022). MSC: 60J27 60G55 60J80 PDF BibTeX XML Cite \textit{P. Dyszewski} et al., Ann. Probab. 50, No. 3, 1173--1203 (2022; Zbl 1498.60315) Full Text: DOI arXiv OpenURL
Vatutin, V. A.; Smadi, C. Critical branching processes in a random environment with immigration: the size of the only surviving family. (English. Russian original) Zbl 07517616 Proc. Steklov Inst. Math. 316, No. 1, 336-355 (2022); translation from Tr. Mat. Inst. Steklova 316, 355-375 (2022). Reviewer: Bastien Mallein (Paris) MSC: 60J80 60K37 PDF BibTeX XML Cite \textit{V. A. Vatutin} and \textit{C. Smadi}, Proc. Steklov Inst. Math. 316, No. 1, 336--355 (2022; Zbl 07517616); translation from Tr. Mat. Inst. Steklova 316, 355--375 (2022) Full Text: DOI arXiv OpenURL
Kersting, Götz On the genealogical structure of critical branching processes in a varying environment. (English. Russian original) Zbl 07517608 Proc. Steklov Inst. Math. 316, No. 1, 209-219 (2022); translation from Tr. Mat. Inst. Steklova 316, 222-234 (2022). MSC: 60J80 60K37 PDF BibTeX XML Cite \textit{G. Kersting}, Proc. Steklov Inst. Math. 316, No. 1, 209--219 (2022; Zbl 07517608); translation from Tr. Mat. Inst. Steklova 316, 222--234 (2022) Full Text: DOI arXiv OpenURL
Hong, Wenming; Liang, Shengli; Zhang, Xiaoyue Conditional \(L^1\)-convergence for the martingale of a critical branching process in random environment. (English. Russian original) Zbl 07517606 Proc. Steklov Inst. Math. 316, No. 1, 184-194 (2022); translation from Tr. Mat. Inst. Steklova 316, 195-206 (2022). MSC: 60J80 60K37 PDF BibTeX XML Cite \textit{W. Hong} et al., Proc. Steklov Inst. Math. 316, No. 1, 184--194 (2022; Zbl 07517606); translation from Tr. Mat. Inst. Steklova 316, 195--206 (2022) Full Text: DOI OpenURL
Dyakonova, E. E. Intermediately subcritical branching process in a random environment: the initial stage of the evolution. (English. Russian original) Zbl 07517603 Proc. Steklov Inst. Math. 316, No. 1, 121-136 (2022); translation from Tr. Mat. Inst. Steklova 316, 129-144 (2022). MSC: 60K37 60J80 60G50 PDF BibTeX XML Cite \textit{E. E. Dyakonova}, Proc. Steklov Inst. Math. 316, No. 1, 121--136 (2022; Zbl 07517603); translation from Tr. Mat. Inst. Steklova 316, 129--144 (2022) Full Text: DOI arXiv OpenURL
Velleret, Aurélien Unique quasi-stationary distribution, with a possibly stabilizing extinction. (English) Zbl 1491.60128 Stochastic Processes Appl. 148, 98-138 (2022). MSC: 60J25 60J27 60J80 92D25 PDF BibTeX XML Cite \textit{A. Velleret}, Stochastic Processes Appl. 148, 98--138 (2022; Zbl 1491.60128) Full Text: DOI arXiv OpenURL
Le, V. On the extinction of continuous state branching processes with competition. (English) Zbl 1494.60086 Stat. Probab. Lett. 185, Article ID 109410, 7 p. (2022). Reviewer: Isamu Dôku (Saitama) MSC: 60J80 60J85 92D25 60G51 PDF BibTeX XML Cite \textit{V. Le}, Stat. Probab. Lett. 185, Article ID 109410, 7 p. (2022; Zbl 1494.60086) Full Text: DOI OpenURL
Nachmias, Asaf; Peres, Yuval The local limit of uniform spanning trees. (English) Zbl 1486.05285 Probab. Theory Relat. Fields 182, No. 3-4, 1133-1161 (2022). MSC: 05C81 60J80 05C05 60C05 PDF BibTeX XML Cite \textit{A. Nachmias} and \textit{Y. Peres}, Probab. Theory Relat. Fields 182, No. 3--4, 1133--1161 (2022; Zbl 1486.05285) Full Text: DOI arXiv OpenURL
Greenman, Chris D. Time series path integral expansions for stochastic processes. (English) Zbl 1486.92160 J. Stat. Phys. 187, No. 3, Paper No. 24, 25 p. (2022). MSC: 92D25 60J85 60K25 46T12 PDF BibTeX XML Cite \textit{C. D. Greenman}, J. Stat. Phys. 187, No. 3, Paper No. 24, 25 p. (2022; Zbl 1486.92160) Full Text: DOI arXiv OpenURL
Foss, Sergey; Korshunov, Dmitry; Palmowski, Zbigniew Branching processes with immigration in atypical random environment. (English) Zbl 1486.60109 Extremes 25, No. 1, 55-77 (2022). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{S. Foss} et al., Extremes 25, No. 1, 55--77 (2022; Zbl 1486.60109) Full Text: DOI arXiv OpenURL
Wang, Hua-Ming; Yao, Huizi Two-type linear-fractional branching processes in varying environments with asymptotically constant mean matrices. (English) Zbl 1486.60114 J. Appl. Probab. 59, No. 1, 224-255 (2022). Reviewer: Anatoliy Swishchuk (Calgary) MSC: 60J80 60J10 15B48 PDF BibTeX XML Cite \textit{H.-M. Wang} and \textit{H. Yao}, J. Appl. Probab. 59, No. 1, 224--255 (2022; Zbl 1486.60114) Full Text: DOI arXiv OpenURL
Grama, Ion; Lauvergnat, Ronan; Le Page, Émile Limit theorems for critical branching processes in a finite-state-space Markovian environment. (English) Zbl 1486.60110 Adv. Appl. Probab. 54, No. 1, 111-140 (2022). MSC: 60J80 60F05 60J10 PDF BibTeX XML Cite \textit{I. Grama} et al., Adv. Appl. Probab. 54, No. 1, 111--140 (2022; Zbl 1486.60110) Full Text: DOI HAL OpenURL
Li, Zenghu; Pardoux, Etienne; Wakolbinger, Anton The height process of a continuous-state branching process with interaction. (English) Zbl 1484.60097 J. Theor. Probab. 35, No. 1, 142-185 (2022). MSC: 60J80 60J25 60H10 92D25 PDF BibTeX XML Cite \textit{Z. Li} et al., J. Theor. Probab. 35, No. 1, 142--185 (2022; Zbl 1484.60097) Full Text: DOI arXiv OpenURL
Giorno, Virginia; Nobile, Amelia G. On some integral equations for the evaluation of first-passage-time densities of time-inhomogeneous birth-death processes. (English) Zbl 07488771 Appl. Math. Comput. 422, Article ID 126993, 19 p. (2022). MSC: 60J80 60J27 60J28 60J22 PDF BibTeX XML Cite \textit{V. Giorno} and \textit{A. G. Nobile}, Appl. Math. Comput. 422, Article ID 126993, 19 p. (2022; Zbl 07488771) Full Text: DOI OpenURL
Bertacchi, Daniela; Braunsteins, Peter; Hautphenne, Sophie; Zucca, Fabio Extinction probabilities in branching processes with count-ably many types: a general framework. (English) Zbl 1482.60113 ALEA, Lat. Am. J. Probab. Math. Stat. 19, No. 1, 311-338 (2022). MSC: 60J80 60J10 PDF BibTeX XML Cite \textit{D. Bertacchi} et al., ALEA, Lat. Am. J. Probab. Math. Stat. 19, No. 1, 311--338 (2022; Zbl 1482.60113) Full Text: arXiv Link OpenURL
Braunsteins, Peter; Hautphenne, Sophie; Minuesa, Carmen Parameter estimation in branching processes with almost sure extinction. (English) Zbl 1481.60175 Bernoulli 28, No. 1, 33-63 (2022). MSC: 60J80 92D25 PDF BibTeX XML Cite \textit{P. Braunsteins} et al., Bernoulli 28, No. 1, 33--63 (2022; Zbl 1481.60175) Full Text: DOI arXiv Link OpenURL
Mytnik, Leonid; Roquejoffre, Jean-Michel; Ryzhik, Lenya Fisher-KPP equation with small data and the extremal process of branching Brownian motion. (English) Zbl 1481.60182 Adv. Math. 396, Article ID 108106, 58 p. (2022). MSC: 60J80 60J65 35R60 60G50 PDF BibTeX XML Cite \textit{L. Mytnik} et al., Adv. Math. 396, Article ID 108106, 58 p. (2022; Zbl 1481.60182) Full Text: DOI arXiv OpenURL
Zhang, Xiaoyue; Hong, Wenming Quenched convergence rates for a supercritical branching process in a random environment. (English) Zbl 1478.60274 Stat. Probab. Lett. 181, Article ID 109279, 8 p. (2022). MSC: 60K37 60J80 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{W. Hong}, Stat. Probab. Lett. 181, Article ID 109279, 8 p. (2022; Zbl 1478.60274) Full Text: DOI OpenURL
Ramtirthkar, Mukund; Kale, Mohan A note on the local asymptotic mixed normality of a controlled branching process with a random control function. (English) Zbl 1486.60113 Stat. Probab. Lett. 181, Article ID 109270, 6 p. (2022). Reviewer: Isamu Dôku (Saitama) MSC: 60J80 62M05 PDF BibTeX XML Cite \textit{M. Ramtirthkar} and \textit{M. Kale}, Stat. Probab. Lett. 181, Article ID 109270, 6 p. (2022; Zbl 1486.60113) Full Text: DOI OpenURL
Struleva, M. A.; Prokopenko, E. I. Integro-local limit theorems for supercritical branching process in a random environment. (English) Zbl 1478.60273 Stat. Probab. Lett. 181, Article ID 109234, 9 p. (2022). MSC: 60K37 60J80 PDF BibTeX XML Cite \textit{M. A. Struleva} and \textit{E. I. Prokopenko}, Stat. Probab. Lett. 181, Article ID 109234, 9 p. (2022; Zbl 1478.60273) Full Text: DOI OpenURL
Popov, Serguei; Shcherbakov, Vadim; Volkov, Stanislav Linear competition processes and generalized Pólya urns with removals. (English) Zbl 1480.60265 Stochastic Processes Appl. 144, 125-152 (2022). MSC: 60J80 60K35 PDF BibTeX XML Cite \textit{S. Popov} et al., Stochastic Processes Appl. 144, 125--152 (2022; Zbl 1480.60265) Full Text: DOI arXiv OpenURL
Li, Bo; Pang, Guodong Functional limit theorems for nonstationary marked Hawkes processes in the high intensity regime. (English) Zbl 1480.60075 Stochastic Processes Appl. 143, 285-339 (2022). MSC: 60F17 60F15 60G55 60J80 PDF BibTeX XML Cite \textit{B. Li} and \textit{G. Pang}, Stochastic Processes Appl. 143, 285--339 (2022; Zbl 1480.60075) Full Text: DOI OpenURL
Iksanov, Alexander; Kabluchko, Zakhar; Kotelnikova, Valeriya A functional limit theorem for nested Karlin’s occupancy scheme generated by discrete Weibull-like distributions. (English) Zbl 1479.60028 J. Math. Anal. Appl. 507, No. 2, Article ID 125798, 24 p. (2022). MSC: 60E05 60F17 60G15 60J80 60B12 PDF BibTeX XML Cite \textit{A. Iksanov} et al., J. Math. Anal. Appl. 507, No. 2, Article ID 125798, 24 p. (2022; Zbl 1479.60028) Full Text: DOI arXiv OpenURL
Duffy, Dean G. Advanced engineering mathematics with MATLAB. 5th edition. (English) Zbl 1487.00002 Advances in Applied Mathematics (Boca Raton). Boca Raton, FL: CRC Press (ISBN 978-0-367-62405-7/hbk; 978-1-003-10930-3/ebook). xix, 595 p. (2022). MSC: 00A06 33F05 33F10 33F99 97F50 42A16 44A10 34B24 35L05 PDF BibTeX XML Cite \textit{D. G. Duffy}, Advanced engineering mathematics with MATLAB. 5th edition. Boca Raton, FL: CRC Press (2022; Zbl 1487.00002) OpenURL
Kudratov, Kh. È.; Khusanbaev, Ya. M. On asymptotic relations for the critical Galton-Watson process. (Russian. English summary) Zbl 07640437 Vestn. Tomsk. Gos. Univ., Mat. Mekh. 2021, No. 73, 5-16 (2021). MSC: 60J80 PDF BibTeX XML Cite \textit{Kh. È. Kudratov} and \textit{Ya. M. Khusanbaev}, Vestn. Tomsk. Gos. Univ., Mat. Mekh. 2021, No. 73, 5--16 (2021; Zbl 07640437) Full Text: DOI MNR OpenURL
Imomov, A. A.; Meĭliev, A. Kh. On the asymptotic structure of non-critical Markov stochastic branching processes with continuous time. (Russian. English summary) Zbl 07640392 Vestn. Tomsk. Gos. Univ., Mat. Mekh. 2021, No. 69, 22-36 (2021). MSC: 60J80 60J10 26A12 PDF BibTeX XML Cite \textit{A. A. Imomov} and \textit{A. Kh. Meĭliev}, Vestn. Tomsk. Gos. Univ., Mat. Mekh. 2021, No. 69, 22--36 (2021; Zbl 07640392) Full Text: DOI MNR OpenURL
Yakymyshyn, Khrystyna M.; Bazylevych, Iryna B.; Aliyev, Soltan A. Limit theorems for homogeneous branching processes with migration. (English) Zbl 07619507 Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 41, No. 4, Math., 141-152 (2021). MSC: 60J80 PDF BibTeX XML Cite \textit{K. M. Yakymyshyn} et al., Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 41, No. 4, Math., 141--152 (2021; Zbl 07619507) Full Text: Link OpenURL
Baur, Erich; Bertoin, Jean On a two-parameter Yule-Simon distribution. (English) Zbl 1496.60105 Chaumont, Loïc (ed.) et al., A lifetime of excursions through random walks and Lévy processes. A volume in honour of Ron Doney’s 80th birthday. Cham: Birkhäuser. Prog. Probab. 78, 59-82 (2021). MSC: 60J80 60J85 PDF BibTeX XML Cite \textit{E. Baur} and \textit{J. Bertoin}, Prog. Probab. 78, 59--82 (2021; Zbl 1496.60105) Full Text: DOI arXiv OpenURL
Chen, Shukai; Li, Zenghu Continuous time mixed state branching processes and stochastic equations. (English) Zbl 07559785 Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 5, 1445-1473 (2021). MSC: 60J80 60H20 60G51 PDF BibTeX XML Cite \textit{S. Chen} and \textit{Z. Li}, Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 5, 1445--1473 (2021; Zbl 07559785) Full Text: DOI arXiv OpenURL
Ramtirthkar, Mukund; Kale, Mohan Joint estimation of the offspring mean and offspring variance of a second order branching process. (English) Zbl 07532950 Commun. Stat., Theory Methods 50, No. 6, 1314-1324 (2021). MSC: 60J80 62M05 62-XX PDF BibTeX XML Cite \textit{M. Ramtirthkar} and \textit{M. Kale}, Commun. Stat., Theory Methods 50, No. 6, 1314--1324 (2021; Zbl 07532950) Full Text: DOI OpenURL
Chen, Haotian; Zhang, Yong Moderate deviations for the total population arising from a nearly unstable sub-critical Galton-Watson process with immigration. (English) Zbl 07532131 Commun. Stat., Theory Methods 50, No. 2, 432-445 (2021). MSC: 60J80 60F10 62G20 62-XX PDF BibTeX XML Cite \textit{H. Chen} and \textit{Y. Zhang}, Commun. Stat., Theory Methods 50, No. 2, 432--445 (2021; Zbl 07532131) Full Text: DOI OpenURL
Abramov, Vyacheslav M. Necessary and sufficient conditions for the convergence of positive series. (English) Zbl 1499.40001 J. Class. Anal. 19, No. 2, 117-125 (2021). MSC: 40A05 60J80 PDF BibTeX XML Cite \textit{V. M. Abramov}, J. Class. Anal. 19, No. 2, 117--125 (2021; Zbl 1499.40001) Full Text: DOI arXiv OpenURL
Rahimov, Ibrahim Homogeneous branching processes with non-homogeneous immigration. (English) Zbl 1494.60087 Stoch. Qual. Control 36, No. 2, 165-183 (2021). Reviewer: Krzysztof Bartoszek (Linköping) MSC: 60J80 62F12 60G99 60-06 PDF BibTeX XML Cite \textit{I. Rahimov}, Stoch. Qual. Control 36, No. 2, 165--183 (2021; Zbl 1494.60087) Full Text: DOI OpenURL
Afanasyev, Valeriy Ivanovich Limit theorems for a strongly supercritical branching process with immigration in random environment. (English) Zbl 1494.60085 Stoch. Qual. Control 36, No. 2, 129-143 (2021). Reviewer: Krzysztof Bartoszek (Linköping) MSC: 60J80 60J85 60G50 PDF BibTeX XML Cite \textit{V. I. Afanasyev}, Stoch. Qual. Control 36, No. 2, 129--143 (2021; Zbl 1494.60085) Full Text: DOI OpenURL
Sagitov, Serik Critical Galton-Watson processes with overlapping generations. (English) Zbl 1487.60158 Stoch. Qual. Control 36, No. 2, 87-110 (2021). MSC: 60J80 PDF BibTeX XML Cite \textit{S. Sagitov}, Stoch. Qual. Control 36, No. 2, 87--110 (2021; Zbl 1487.60158) Full Text: DOI arXiv OpenURL
Imomov, Azam A. On estimation of the convergence rate to invariant measures in Markov branching processes with possibly infinite variance and immigration. (English) Zbl 1492.60239 J. Sib. Fed. Univ., Math. Phys. 14, No. 5, 573-583 (2021). MSC: 60J80 92D25 PDF BibTeX XML Cite \textit{A. A. Imomov}, J. Sib. Fed. Univ., Math. Phys. 14, No. 5, 573--583 (2021; Zbl 1492.60239) Full Text: DOI MNR OpenURL
Wang, Yanqing; Liu, Quansheng Berry-Esseen’s bound for a supercritical branching process with immigration in a random environment. (Chinese. English summary) Zbl 1499.60300 Sci. Sin., Math. 51, No. 5, 751-762 (2021). MSC: 60J80 60F05 60K37 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{Q. Liu}, Sci. Sin., Math. 51, No. 5, 751--762 (2021; Zbl 1499.60300) Full Text: DOI OpenURL
Barczy, Mátyás; Bezdány, Dániel; Pap, Gyula A note on asymptotic behavior of critical Galton-Watson processes with immigration. (English) Zbl 1483.60123 Involve 14, No. 5, 871-891 (2021). MSC: 60J80 60F17 PDF BibTeX XML Cite \textit{M. Barczy} et al., Involve 14, No. 5, 871--891 (2021; Zbl 1483.60123) Full Text: DOI arXiv OpenURL
Maillard, Pascal; Mallein, Bastien On the branching convolution equation \(\mathcal{E}=\mathcal{Z}\circledast \mathcal{E} \). (English) Zbl 1487.60155 Electron. Commun. Probab. 26, Paper No. 59, 12 p. (2021). Reviewer: Matthias Meiners (Gießen) MSC: 60J80 60G55 60G70 60G42 60G50 PDF BibTeX XML Cite \textit{P. Maillard} and \textit{B. Mallein}, Electron. Commun. Probab. 26, Paper No. 59, 12 p. (2021; Zbl 1487.60155) Full Text: DOI arXiv OpenURL