Lott, John Comparison geometry of holomorphic bisectional curvature for Kähler manifolds and limit spaces. (English) Zbl 07442549 Duke Math. J. 170, No. 14, 3039-3071 (2021). Reviewer: Yang Li (Cambridge) MSC: 53C23 53C55 PDF BibTeX XML Cite \textit{J. Lott}, Duke Math. J. 170, No. 14, 3039--3071 (2021; Zbl 07442549) Full Text: DOI arXiv OpenURL
Lee, Man-Chun Second Ricci flow on noncompact Hermitian manifolds. (English) Zbl 07413803 Anal. PDE 14, No. 4, 1309-1332 (2021). MSC: 53C55 53E20 32Q20 PDF BibTeX XML Cite \textit{M.-C. Lee}, Anal. PDE 14, No. 4, 1309--1332 (2021; Zbl 07413803) Full Text: DOI arXiv OpenURL
Xia, Qiaoling; Zhang, Xi On the steinness of strongly convex Kähler Finsler manifolds. (English) Zbl 1478.32030 Math. Z. 299, No. 1-2, 1037-1069 (2021). MSC: 32E10 53B40 32Q15 PDF BibTeX XML Cite \textit{Q. Xia} and \textit{X. Zhang}, Math. Z. 299, No. 1--2, 1037--1069 (2021; Zbl 1478.32030) Full Text: DOI OpenURL
Barbaro, Giuseppe Griffiths positivity for Bismut curvature and its behaviour along Hermitian curvature flows. (English) Zbl 1477.53122 J. Geom. Phys. 169, Article ID 104323, 17 p. (2021). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 53E30 53C55 PDF BibTeX XML Cite \textit{G. Barbaro}, J. Geom. Phys. 169, Article ID 104323, 17 p. (2021; Zbl 1477.53122) Full Text: DOI arXiv OpenURL
Tong, Freid A new positivity condition for the curvature of Hermitian manifolds. (English) Zbl 1471.53062 Math. Z. 298, No. 3-4, 1175-1185 (2021). MSC: 53C55 32Q15 PDF BibTeX XML Cite \textit{F. Tong}, Math. Z. 298, No. 3--4, 1175--1185 (2021; Zbl 1471.53062) Full Text: DOI arXiv OpenURL
Ni, Lei The fundamental group, rational connectedness and the positivity of Kähler manifolds. (English) Zbl 1470.53063 J. Reine Angew. Math. 774, 267-299 (2021). MSC: 53C55 57M05 14M22 14J45 PDF BibTeX XML Cite \textit{L. Ni}, J. Reine Angew. Math. 774, 267--299 (2021; Zbl 1470.53063) Full Text: DOI arXiv OpenURL
Huang, Shaochuang On Ricci flows with curvature bounded by \(\frac Ct\). (English) Zbl 1460.32049 Ji, Lizhen (ed.) et al., Proceedings of the international consortium of Chinese mathematicians, 2018. Second meeting, Taipei, Taiwan, December 2018. Somerville, MA: International Press. 567-581 (2020). MSC: 32Q15 53E20 PDF BibTeX XML Cite \textit{S. Huang}, in: Proceedings of the international consortium of Chinese mathematicians, 2018. Second meeting, Taipei, Taiwan, December 2018. Somerville, MA: International Press. 567--581 (2020; Zbl 1460.32049) OpenURL
Tang, Kai Several parabolic Schwarz lemmas for Hermitian curvature flows. (English) Zbl 1463.53080 Adv. Math., Beijing 49, No. 5, 626-634 (2020). MSC: 53C55 53E30 PDF BibTeX XML Cite \textit{K. Tang}, Adv. Math., Beijing 49, No. 5, 626--634 (2020; Zbl 1463.53080) Full Text: DOI OpenURL
Lee, Man-Chun; Tam, Luen-Fai Chern-Ricci flows on noncompact complex manifolds. (English) Zbl 1469.32017 J. Differ. Geom. 115, No. 3, 529-564 (2020). Reviewer: Ruadhaí Dervan (Cambridge) MSC: 32Q15 53C55 PDF BibTeX XML Cite \textit{M.-C. Lee} and \textit{L.-F. Tam}, J. Differ. Geom. 115, No. 3, 529--564 (2020; Zbl 1469.32017) Full Text: DOI arXiv Euclid OpenURL
Freixas i Montplet, Gerard; Wentworth, Richard A. Deligne pairings and families of rank one local systems on algebraic curves. (English) Zbl 1454.58030 J. Differ. Geom. 115, No. 3, 475-528 (2020). MSC: 58J52 14C40 53E30 58J10 PDF BibTeX XML Cite \textit{G. Freixas i Montplet} and \textit{R. A. Wentworth}, J. Differ. Geom. 115, No. 3, 475--528 (2020; Zbl 1454.58030) Full Text: DOI arXiv Euclid OpenURL
Deng, Yuxing; Zhu, Xiaohua Rigidity of \(\kappa \)-noncollapsed steady Kähler-Ricci solitons. (English) Zbl 1440.53052 Math. Ann. 377, No. 1-2, 847-861 (2020). MSC: 53C25 53C55 58J05 53E30 PDF BibTeX XML Cite \textit{Y. Deng} and \textit{X. Zhu}, Math. Ann. 377, No. 1--2, 847--861 (2020; Zbl 1440.53052) Full Text: DOI OpenURL
Li, Xiaolong; Ni, Lei Kähler-Ricci shrinkers and ancient solutions with nonnegative orthogonal bisectional curvature. (English. French summary) Zbl 1439.53084 J. Math. Pures Appl. (9) 138, 28-45 (2020). MSC: 53E30 53C55 53C20 32Q15 PDF BibTeX XML Cite \textit{X. Li} and \textit{L. Ni}, J. Math. Pures Appl. (9) 138, 28--45 (2020; Zbl 1439.53084) Full Text: DOI arXiv OpenURL
Yin, Songting; Zhang, Xi Comparison theorems and their applications on Kähler Finsler manifolds. (English) Zbl 1467.53080 J. Geom. Anal. 30, No. 2, 2105-2131 (2020). Reviewer: Gauree Shanker (Bathinda) MSC: 53C60 53B40 53B35 PDF BibTeX XML Cite \textit{S. Yin} and \textit{X. Zhang}, J. Geom. Anal. 30, No. 2, 2105--2131 (2020; Zbl 1467.53080) Full Text: DOI OpenURL
Tang, Kai Real bisectional curvature, Miyaoka-Yau inequality and Kähler-Ricci flows. (English) Zbl 1449.53047 Adv. Math., Beijing 48, No. 5, 620-626 (2019). MSC: 53C55 53E30 PDF BibTeX XML Cite \textit{K. Tang}, Adv. Math., Beijing 48, No. 5, 620--626 (2019; Zbl 1449.53047) Full Text: DOI OpenURL
Ogaja, James W. Complete open Kähler manifolds with nonnegative bisectional curvature and non-maximal volume growth. (English) Zbl 1430.53076 J. Geom. 110, No. 3, Paper No. 44, 8 p. (2019). Reviewer: Quanting Zhao (Wuhan) MSC: 53C55 53C21 PDF BibTeX XML Cite \textit{J. W. Ogaja}, J. Geom. 110, No. 3, Paper No. 44, 8 p. (2019; Zbl 1430.53076) Full Text: DOI arXiv OpenURL
Megha; Kumar, Sangeet Some results on normal \(GCR\)-lightlike submanifolds of indefinite nearly Kaehler manifolds. (English) Zbl 1422.53014 Int. J. Geom. Methods Mod. Phys. 16, No. 3, Article ID 1950037, 14 p. (2019). MSC: 53B25 53C15 53C55 83D05 53B30 PDF BibTeX XML Cite \textit{Megha} and \textit{S. Kumar}, Int. J. Geom. Methods Mod. Phys. 16, No. 3, Article ID 1950037, 14 p. (2019; Zbl 1422.53014) Full Text: DOI OpenURL
Zhang, Shijin Gradient Kähler-Ricci solitons with nonnegative orthogonal bisectional curvature. (English) Zbl 1417.53081 Result. Math. 74, No. 4, Paper No. 127, 10 p. (2019). MSC: 53C55 53C25 32J27 PDF BibTeX XML Cite \textit{S. Zhang}, Result. Math. 74, No. 4, Paper No. 127, 10 p. (2019; Zbl 1417.53081) Full Text: DOI arXiv OpenURL
Lee, Man-Chun; Tam, Luen-Fai Some curvature estimates of Kähler-Ricci flow. (English) Zbl 07057725 Proc. Am. Math. Soc. 147, No. 6, 2641-2654 (2019). MSC: 32Q15 53C44 PDF BibTeX XML Cite \textit{M.-C. Lee} and \textit{L.-F. Tam}, Proc. Am. Math. Soc. 147, No. 6, 2641--2654 (2019; Zbl 07057725) Full Text: DOI OpenURL
Yang, Xiaokui; Zheng, Fangyang On real bisectional curvature for Hermitian manifolds. (English) Zbl 1417.32027 Trans. Am. Math. Soc. 371, No. 4, 2703-2718 (2019). Reviewer: Adara M. Blaga (Timişoara) MSC: 32Q05 53C55 PDF BibTeX XML Cite \textit{X. Yang} and \textit{F. Zheng}, Trans. Am. Math. Soc. 371, No. 4, 2703--2718 (2019; Zbl 1417.32027) Full Text: DOI arXiv OpenURL
Tang, Kai On real bisectional curvature and Kähler-Ricci flow. (English) Zbl 1417.53077 Proc. Am. Math. Soc. 147, No. 2, 793-798 (2019). Reviewer: Daniele Angella (Firenze) MSC: 53C55 32Q05 PDF BibTeX XML Cite \textit{K. Tang}, Proc. Am. Math. Soc. 147, No. 2, 793--798 (2019; Zbl 1417.53077) Full Text: DOI OpenURL
Kalafat, Mustafa; Koca, Caner On the curvature of Einstein-Hermitian surfaces. (English) Zbl 1411.53037 Ill. J. Math. 62, No. 1-4, 25-39 (2018). Reviewer: Gabor Etesi (Budapest) MSC: 53C25 53C55 PDF BibTeX XML Cite \textit{M. Kalafat} and \textit{C. Koca}, Ill. J. Math. 62, No. 1--4, 25--39 (2018; Zbl 1411.53037) Full Text: DOI arXiv Euclid OpenURL
Siu, Yum-Tong; Yau, Shing-Tung Compact Kähler manifolds of positive bisectional curvature. (English) Zbl 1415.32018 Ji, Lizhen (ed.), Complex geometry from Riemann to Kähler-Einstein and Calabi-Yau. Somerville, MA: International Press; Beijing: Higher Education Press. Adv. Lect. Math. (ALM) 38, 349-364 (2018). MSC: 32J27 PDF BibTeX XML Cite \textit{Y.-T. Siu} and \textit{S.-T. Yau}, Adv. Lect. Math. (ALM) 38, 349--364 (2018; Zbl 1415.32018) OpenURL
Liu, Gang; Yuan, Yuan Diameter rigidity for Kähler manifolds with positive bisectional curvature. (English) Zbl 1401.53061 Math. Z. 290, No. 3-4, 1055-1061 (2018). Reviewer: Nicolai K. Smolentsev (Kemerovo) MSC: 53C55 53B35 32Q15 32Q10 PDF BibTeX XML Cite \textit{G. Liu} and \textit{Y. Yuan}, Math. Z. 290, No. 3--4, 1055--1061 (2018; Zbl 1401.53061) Full Text: DOI arXiv OpenURL
Lin, Aijin; Shen, Liangming Conic Kähler-Einstein metrics along simple normal crossing divisors on Fano manifolds. (English) Zbl 1391.53084 J. Funct. Anal. 275, No. 2, 300-328 (2018). MSC: 53C55 32Q20 14J45 PDF BibTeX XML Cite \textit{A. Lin} and \textit{L. Shen}, J. Funct. Anal. 275, No. 2, 300--328 (2018; Zbl 1391.53084) Full Text: DOI arXiv OpenURL
Huang, Shaochuang; Tam, Luen-Fai Kähler-Ricci flow with unbounded curvature. (English) Zbl 1386.53088 Am. J. Math. 140, No. 1, 189-220 (2018). MSC: 53C55 32Q15 PDF BibTeX XML Cite \textit{S. Huang} and \textit{L.-F. Tam}, Am. J. Math. 140, No. 1, 189--220 (2018; Zbl 1386.53088) Full Text: DOI arXiv OpenURL
Liu, Gang Gromov-Hausdorff limits of Kähler manifolds with bisectional curvature lower bound. (English) Zbl 1384.53042 Commun. Pure Appl. Math. 71, No. 2, 267-303 (2018). Reviewer: Thilo Kuessner (Augsburg) MSC: 53C23 53C55 PDF BibTeX XML Cite \textit{G. Liu}, Commun. Pure Appl. Math. 71, No. 2, 267--303 (2018; Zbl 1384.53042) Full Text: DOI arXiv OpenURL
Feng, Huitao; Liu, Kefeng; Wan, Xueyuan Compact Kähler manifolds with positive orthogonal bisectional curvature. (English) Zbl 1390.32013 Math. Res. Lett. 24, No. 3, 767-780 (2017). MSC: 32J27 32Q10 PDF BibTeX XML Cite \textit{H. Feng} et al., Math. Res. Lett. 24, No. 3, 767--780 (2017; Zbl 1390.32013) Full Text: DOI arXiv OpenURL
Han, Deliang Biharmonic holomorphic maps into Kähler manifolds. (English) Zbl 1369.58011 J. Geom. Phys. 119, 9-18 (2017). MSC: 58E20 53C43 53C55 PDF BibTeX XML Cite \textit{D. Han}, J. Geom. Phys. 119, 9--18 (2017; Zbl 1369.58011) Full Text: DOI OpenURL
Guan, Daniel On bisectional nonpositively curved compact Kähler-Einstein surfaces. (English) Zbl 1369.32017 Pac. J. Math. 288, No. 2, 343-353 (2017). MSC: 32Q20 53C55 PDF BibTeX XML Cite \textit{D. Guan}, Pac. J. Math. 288, No. 2, 343--353 (2017; Zbl 1369.32017) Full Text: DOI OpenURL
Chau, Albert; Li, Ka-Fai; Tam, Luen-Fai Longtime existence of the Kähler-Ricci flow on \(\mathbb {C}^n\). (English) Zbl 1370.53050 Trans. Am. Math. Soc. 369, No. 8, 5747-5768 (2017). Reviewer: Nicoleta Aldea (Brasov) MSC: 53C55 58J35 35K55 PDF BibTeX XML Cite \textit{A. Chau} et al., Trans. Am. Math. Soc. 369, No. 8, 5747--5768 (2017; Zbl 1370.53050) Full Text: DOI arXiv OpenURL
Jain, Varun; Rani, Rachna; Kumar, Rakesh; Nagaich, R. K. Some characterization theorems on holomorphic sectional curvature of GCR-lightlike submanifolds. (English) Zbl 1362.53029 Int. J. Geom. Methods Mod. Phys. 14, No. 3, Article ID 1750034, 18 p. (2017). MSC: 53B25 53B30 53C25 PDF BibTeX XML Cite \textit{V. Jain} et al., Int. J. Geom. Methods Mod. Phys. 14, No. 3, Article ID 1750034, 18 p. (2017; Zbl 1362.53029) Full Text: DOI OpenURL
Rani, Rachna; Kumar, Sangeet; Kumar, Rakesh; Nagaich, R. K. Characterizations of null holomorphic sectional curvature of GCR-lightlike submanifolds of indefinite nearly Kähler manifolds. (English) Zbl 1374.53056 Anal. Theory Appl. 32, No. 2, 122-134 (2016). MSC: 53C15 53C40 53C55 PDF BibTeX XML Cite \textit{R. Rani} et al., Anal. Theory Appl. 32, No. 2, 122--134 (2016; Zbl 1374.53056) Full Text: DOI OpenURL
Yang, XiaoKui The Chern-Ricci flow and holomorphic bisectional curvature. (English) Zbl 1365.53061 Sci. China, Math. 59, No. 11, 2199-2204 (2016). MSC: 53C44 53C55 PDF BibTeX XML Cite \textit{X. Yang}, Sci. China, Math. 59, No. 11, 2199--2204 (2016; Zbl 1365.53061) Full Text: DOI arXiv OpenURL
Liu, Gang Gromov-Hausdorff limits of Kähler manifolds and the finite generation conjecture. (English) Zbl 1380.32025 Ann. Math. (2) 184, No. 3, 775-815 (2016). Reviewer: Valentino Tosatti (Evanston) MSC: 32Q15 53C55 PDF BibTeX XML Cite \textit{G. Liu}, Ann. Math. (2) 184, No. 3, 775--815 (2016; Zbl 1380.32025) Full Text: DOI arXiv OpenURL
Vezzoni, Luigi; Zedda, Michela On the \(J\)-flow in Sasakian manifolds. (English) Zbl 1341.53075 Ann. Mat. Pura Appl. (4) 195, No. 3, 757-774 (2016). MSC: 53C25 53C44 58E11 PDF BibTeX XML Cite \textit{L. Vezzoni} and \textit{M. Zedda}, Ann. Mat. Pura Appl. (4) 195, No. 3, 757--774 (2016; Zbl 1341.53075) Full Text: DOI arXiv OpenURL
Wu, Guoqiang; Zhang, Shijin Remarks on shrinking gradient Kähler-Ricci solitons with positive bisectional curvature. (Remarques sur les solitons de Kähler-Ricci évanescents à courbure bisectionnelle positive.) (English. French summary) Zbl 1341.53076 C. R., Math., Acad. Sci. Paris 354, No. 7, 713-716 (2016). MSC: 53C25 53C55 58J05 PDF BibTeX XML Cite \textit{G. Wu} and \textit{S. Zhang}, C. R., Math., Acad. Sci. Paris 354, No. 7, 713--716 (2016; Zbl 1341.53076) Full Text: DOI arXiv OpenURL
Liu, Gang On the volume growth of Kähler manifolds with nonnegative bisectional curvature. (English) Zbl 1348.53072 J. Differ. Geom. 102, No. 3, 485-500 (2016). Reviewer: Gueo Grantcharov (Miami) MSC: 53C55 PDF BibTeX XML Cite \textit{G. Liu}, J. Differ. Geom. 102, No. 3, 485--500 (2016; Zbl 1348.53072) Full Text: DOI arXiv Euclid Link OpenURL
Chodosh, Otis; Fong, Frederick Tsz-Ho Rotational symmetry of conical Kähler-Ricci solitons. (English) Zbl 1336.53075 Math. Ann. 364, No. 3-4, 777-792 (2016). MSC: 53C44 35C08 PDF BibTeX XML Cite \textit{O. Chodosh} and \textit{F. T. H. Fong}, Math. Ann. 364, No. 3--4, 777--792 (2016; Zbl 1336.53075) Full Text: DOI arXiv OpenURL
Cherif, Ahmed Mohammed; Djaa, Mustapha; Zegga, Kaddour Stable \(f\)-harmonic maps on sphere. (English) Zbl 1330.53081 Commun. Korean Math. Soc. 30, No. 4, 471-479 (2015). MSC: 53C43 58E20 PDF BibTeX XML Cite \textit{A. M. Cherif} et al., Commun. Korean Math. Soc. 30, No. 4, 471--479 (2015; Zbl 1330.53081) Full Text: DOI Link OpenURL
Xiong, Yueshan Homotopy connectedness theorems for submanifolds of Sasakian manifolds. (English) Zbl 1329.53081 Front. Math. China 10, No. 2, 395-414 (2015). MSC: 53C40 53C25 55Q05 PDF BibTeX XML Cite \textit{Y. Xiong}, Front. Math. China 10, No. 2, 395--414 (2015; Zbl 1329.53081) Full Text: DOI OpenURL
Huang, Hong Sasaki manifolds with positive transverse orthogonal bisectional curvature. (English) Zbl 1326.53092 Adv. Geom. 15, No. 4, 409-413 (2015). MSC: 53C44 53C25 PDF BibTeX XML Cite \textit{H. Huang}, Adv. Geom. 15, No. 4, 409--413 (2015; Zbl 1326.53092) Full Text: DOI arXiv OpenURL
Ge, Jian Comparison theorems for manifolds with mean convex boundary. (English) Zbl 1327.53038 Commun. Contemp. Math. 17, No. 5, Article ID 1550010, 12 p. (2015). MSC: 53C20 PDF BibTeX XML Cite \textit{J. Ge}, Commun. Contemp. Math. 17, No. 5, Article ID 1550010, 12 p. (2015; Zbl 1327.53038) Full Text: DOI arXiv OpenURL
Huang, Shaochuang; Tam, Luen-Fai \(\mathrm{U}(n)\)-invariant Kähler metrics with nonnegative quadratic bisectional curvature. (English) Zbl 1311.32009 Asian J. Math. 19, No. 1, 1-16 (2015). MSC: 32Q15 53C55 53C44 PDF BibTeX XML Cite \textit{S. Huang} and \textit{L.-F. Tam}, Asian J. Math. 19, No. 1, 1--16 (2015; Zbl 1311.32009) Full Text: DOI arXiv OpenURL
Ren, Xin-An; Yao, Sha; Shen, Li-Ju; Zhang, Guang-Ying Constrained matrix Li-Yau-Hamilton estimates on Kähler manifolds. (English) Zbl 1315.53075 Math. Ann. 361, No. 3-4, 927-941 (2015). Reviewer: Yoshinobu Kamishima (Saitama) MSC: 53C44 53C55 53C21 PDF BibTeX XML Cite \textit{X.-A. Ren} et al., Math. Ann. 361, No. 3--4, 927--941 (2015; Zbl 1315.53075) Full Text: DOI arXiv OpenURL
Yu, Chengjie Nonpositively curved almost Hermitian metrics on product of compact almost complex manifolds. (English) Zbl 1326.53106 Acta Math. Sin., Engl. Ser. 31, No. 1, 61-70 (2015). Reviewer: Aurel Bejancu (Safat) MSC: 53C55 PDF BibTeX XML Cite \textit{C. Yu}, Acta Math. Sin., Engl. Ser. 31, No. 1, 61--70 (2015; Zbl 1326.53106) Full Text: DOI OpenURL
Fu, Xiaoyong; Ge, Jian On a Kähler version of Cheeger-Gromoll-Perelman’s soul theorem. (English) Zbl 1313.53087 Acta Math. Sci., Ser. B, Engl. Ed. 34, No. 3, 713-718 (2014). MSC: 53C55 53C21 PDF BibTeX XML Cite \textit{X. Fu} and \textit{J. Ge}, Acta Math. Sci., Ser. B, Engl. Ed. 34, No. 3, 713--718 (2014; Zbl 1313.53087) Full Text: DOI OpenURL
Fan, Xu-Qian; Tam, Luen-Fai; Yu, Chengjie Product of almost-Hermitian manifolds. (English) Zbl 1303.53038 J. Geom. Anal. 24, No. 3, 1425-1446 (2014). MSC: 53C15 53C55 PDF BibTeX XML Cite \textit{X.-Q. Fan} et al., J. Geom. Anal. 24, No. 3, 1425--1446 (2014; Zbl 1303.53038) Full Text: DOI arXiv Link OpenURL
Niu, Yanyan A note on nonnegative quadratic orthogonal bisectional curvature. (English) Zbl 1415.53021 Proc. Am. Math. Soc. 142, No. 11, 3975-3979 (2014). MSC: 53C20 53C55 PDF BibTeX XML Cite \textit{Y. Niu}, Proc. Am. Math. Soc. 142, No. 11, 3975--3979 (2014; Zbl 1415.53021) Full Text: DOI OpenURL
Bökstedt, Marcel; Romão, Nuno M. On the curvature of vortex moduli spaces. (English) Zbl 1294.32005 Math. Z. 277, No. 1-2, 549-573 (2014). MSC: 32G13 30F10 32Q15 57R19 PDF BibTeX XML Cite \textit{M. Bökstedt} and \textit{N. M. Romão}, Math. Z. 277, No. 1--2, 549--573 (2014; Zbl 1294.32005) Full Text: DOI arXiv OpenURL
Ali, Danish; Davidov, Johann; Mushkarov, Oleg Holomorphic curvatures of twistor spaces. (English) Zbl 1288.53037 Int. J. Geom. Methods Mod. Phys. 11, No. 3, Article ID 1450022, 16 p. (2014). MSC: 53C28 53C21 PDF BibTeX XML Cite \textit{D. Ali} et al., Int. J. Geom. Methods Mod. Phys. 11, No. 3, Article ID 1450022, 16 p. (2014; Zbl 1288.53037) Full Text: DOI OpenURL
Sun, Liling; Zhong, Chunping Characterizations of complex Finsler connections and weakly complex Berwald metrics. (English) Zbl 1319.53083 Differ. Geom. Appl. 31, No. 5, 648-671 (2013). MSC: 53C60 53C40 PDF BibTeX XML Cite \textit{L. Sun} and \textit{C. Zhong}, Differ. Geom. Appl. 31, No. 5, 648--671 (2013; Zbl 1319.53083) Full Text: DOI OpenURL
Ali, Danish; Davidov, Johann; Mushkarov, Oleg Twistor spaces with positive holomorphic bisectional curvature. (English) Zbl 1313.53086 C. R. Acad. Bulg. Sci. 66, No. 3, 339-344 (2013). Reviewer: Angela Slavova (Sofia) MSC: 53C55 53C28 PDF BibTeX XML Cite \textit{D. Ali} et al., C. R. Acad. Bulg. Sci. 66, No. 3, 339--344 (2013; Zbl 1313.53086) OpenURL
Yau, Shing-Tung; Ma, Hui; Tsai, Chung-Jun; Wang, Mu-Tao; Zhao, En-Tao Open problems in differential geometry. (English) Zbl 1302.53003 Ji, Lizhen (ed.) et al., Open problems and surveys of contemporary mathematics. Somerville, MA: International Press; Beijing: Higher Education Press (ISBN 978-1-57146-278-7/pbk). Surveys of Modern Mathematics 6, 397-477 (2013). Reviewer: Ioan Pop (Iaşi) MSC: 53-02 53-06 53A15 53A20 53C20 53C25 53C55 57R15 57R20 PDF BibTeX XML Cite \textit{S.-T. Yau} et al., Surv. Mod. Math. 6, 397--477 (2013; Zbl 1302.53003) OpenURL
He, Weiyong The Sasaki-Ricci flow and compact Sasaki manifolds of positive transverse holomorphic bisectional curvature. (English) Zbl 1281.53067 J. Geom. Anal. 23, No. 4, 1876-1931 (2013). Reviewer: Ricardo Miranda Martins (Campinas) MSC: 53C44 53C25 PDF BibTeX XML Cite \textit{W. He}, J. Geom. Anal. 23, No. 4, 1876--1931 (2013; Zbl 1281.53067) Full Text: DOI arXiv OpenURL
Chau, Albert; Tam, Luen-Fai Kähler \(C\)-spaces and quadratic bisectional curvature. (English) Zbl 1277.53072 J. Differ. Geom. 94, No. 3, 409-468 (2013). Reviewer: Daniel Beltiţă (Bucureşti) MSC: 53C55 53C30 PDF BibTeX XML Cite \textit{A. Chau} and \textit{L.-F. Tam}, J. Differ. Geom. 94, No. 3, 409--468 (2013; Zbl 1277.53072) Full Text: DOI arXiv Euclid OpenURL
Li, Qun; Wu, Damin; Zheng, Fangyang An example of compact Kähler manifold with nonnegative quadratic bisectional curvature. (English) Zbl 1276.32018 Proc. Am. Math. Soc. 141, No. 6, 2117-2126 (2013). Reviewer: Zbigniew Olszak (Wrocław) MSC: 32Q15 32Q20 53C55 PDF BibTeX XML Cite \textit{Q. Li} et al., Proc. Am. Math. Soc. 141, No. 6, 2117--2126 (2013; Zbl 1276.32018) Full Text: DOI arXiv OpenURL
Biswas, Indranil On the curvature of symmetric products of a compact Riemann surface. (English) Zbl 1271.14011 Arch. Math. 100, No. 5, 413-415 (2013). Reviewer: Junyan Cao (St. Martin d’Hères) MSC: 14C20 32Q10 PDF BibTeX XML Cite \textit{I. Biswas}, Arch. Math. 100, No. 5, 413--415 (2013; Zbl 1271.14011) Full Text: DOI arXiv Link OpenURL
Yu, Chengjie A note on Wu-Zheng’s splitting conjecture. (English) Zbl 1262.53058 Proc. Am. Math. Soc. 141, No. 5, 1791-1793 (2013). MSC: 53C44 53C55 PDF BibTeX XML Cite \textit{C. Yu}, Proc. Am. Math. Soc. 141, No. 5, 1791--1793 (2013; Zbl 1262.53058) Full Text: DOI arXiv OpenURL
Yang, Bo On a problem of Yau regarding a higher dimensional generalization of the Cohn-Vossen inequality. (English) Zbl 1264.53043 Math. Ann. 355, No. 2, 765-781 (2013). Reviewer: Hugues Auvray (Bonn) MSC: 53C20 53C55 PDF BibTeX XML Cite \textit{B. Yang}, Math. Ann. 355, No. 2, 765--781 (2013; Zbl 1264.53043) Full Text: DOI arXiv OpenURL
Chau, Albert; Tam, Luen-Fai On quadratic orthogonal bisectional curvature. (English) Zbl 1276.53075 J. Differ. Geom. 92, No. 2, 187-200 (2012). Reviewer: Gueo Grantcharov (Miami) MSC: 53C55 PDF BibTeX XML Cite \textit{A. Chau} and \textit{L.-F. Tam}, J. Differ. Geom. 92, No. 2, 187--200 (2012; Zbl 1276.53075) Full Text: DOI arXiv Euclid OpenURL
Ni, Lei An optimal gap theorem. (English) Zbl 1253.32009 Invent. Math. 189, No. 3, 737-761 (2012); erratum ibid. 196, No. 2, 511-514 (2014). Reviewer: Yuguang Zhang (La Jolla) MSC: 32Q15 53C55 32Q30 35K05 PDF BibTeX XML Cite \textit{L. Ni}, Invent. Math. 189, No. 3, 737--761 (2012; Zbl 1253.32009) Full Text: DOI arXiv OpenURL
Biard, Séverine On \(L^2\)-estimates for \(\overline{\partial}\) on pseudoconvex domains in a complete Kähler manifold with positive holomorphic bisectional curvature. (Estimées \(L^2\) pour l’opérateur \(\overline{\partial}\) sur des domaines pseudoconvexes dans une variété kählerienne complète à courbure bisectionnelle holomorphe strictement positive.) (French. Abridged English version) Zbl 1251.32031 C. R., Math., Acad. Sci. Paris 350, No. 11-12, 565-570 (2012). Reviewer: Emil J. Straube (College Station) MSC: 32W05 32Q15 PDF BibTeX XML Cite \textit{S. Biard}, C. R., Math., Acad. Sci. Paris 350, No. 11--12, 565--570 (2012; Zbl 1251.32031) Full Text: DOI OpenURL
Seo, Aeryeong On a theorem of Paul Yang on negatively pinched bisectional curvature. (English) Zbl 1243.32016 Pac. J. Math. 256, No. 1, 201-209 (2012). MSC: 32Q05 32Q15 PDF BibTeX XML Cite \textit{A. Seo}, Pac. J. Math. 256, No. 1, 201--209 (2012; Zbl 1243.32016) Full Text: DOI Link OpenURL
Zhang, Xiangwen On the boundary of Kähler cones. (English) Zbl 1272.53059 Proc. Am. Math. Soc. 140, No. 2, 701-705 (2012). MSC: 53C50 53B35 PDF BibTeX XML Cite \textit{X. Zhang}, Proc. Am. Math. Soc. 140, No. 2, 701--705 (2012; Zbl 1272.53059) Full Text: DOI OpenURL
Tam, Luen-Fai; Yu, Chengjie Some comparison theorems for Kähler manifolds. (English) Zbl 1243.53114 Manuscr. Math. 137, No. 3-4, 483-495 (2012). Reviewer: Zbigniew Olszak (Wrocław) MSC: 53C55 53B35 PDF BibTeX XML Cite \textit{L.-F. Tam} and \textit{C. Yu}, Manuscr. Math. 137, No. 3--4, 483--495 (2012; Zbl 1243.53114) Full Text: DOI arXiv OpenURL
Aldea, Nicoleta; Munteanu, Gheorghe New results on two-dimensional complex Finsler spaces. (English) Zbl 1260.53051 Mihai, Adela (ed.) et al., Riemannian geometry and applications. Proceedings of the international conference – RIGA, Bucharest, Romania, May 10–14, 2011. Bucureşti: Editura Universităţii din Bucureşti (ISBN 978-606-16-0053-3/pbk). 5-16 (2011). MSC: 53B40 53C60 PDF BibTeX XML Cite \textit{N. Aldea} and \textit{G. Munteanu}, in: Riemannian geometry and applications. Proceedings of the international conference -- RIGA, Bucharest, Romania, May 10--14, 2011. Bucureşti: Editura Universităţii din Bucureşti. 5--16 (2011; Zbl 1260.53051) Full Text: arXiv OpenURL
Wu, Hung-Hsi; Zheng, Fangyang Examples of positively curved complete Kähler manifolds. (English) Zbl 1262.53063 Ji, Lizhen (ed.), Geometry and analysis, No. 1. Collected papers of the conference “Geometric analysis: Present and future” on the occasion of Shing-Tung Yau’s 60th birthday, Harvard University, Cambridge, MA, USA, August 27–September 1, 2008. Somerville, MA: International Press; Beijing: Higher Education Press (ISBN 978-1-57146-224-4/pbk). Advanced Lectures in Mathematics (ALM) 17, 517-542 (2011). Reviewer: Zbigniew Olszak (Wrocław) MSC: 53C55 53B35 PDF BibTeX XML Cite \textit{H.-H. Wu} and \textit{F. Zheng}, Adv. Lect. Math. (ALM) 17, 517--542 (2011; Zbl 1262.53063) OpenURL
Zheng, Fangyang On Yau’s pioneer contribution on the Frankel conjecture and related questions. (English) Zbl 1268.53080 Ji, Lizhen (ed.), Geometry and analysis, No. 1. Collected papers of the conference “Geometric analysis: Present and future” on the occasion of Shing-Tung Yau’s 60th birthday, Harvard University, Cambridge, MA, USA, August 27–September 1, 2008. Somerville, MA: International Press; Beijing: Higher Education Press (ISBN 978-1-57146-224-4/pbk). Advanced Lectures in Mathematics (ALM) 17, 215-219 (2011). MSC: 53C55 32Q30 32Q10 14N15 01A70 PDF BibTeX XML Cite \textit{F. Zheng}, Adv. Lect. Math. (ALM) 17, 215--219 (2011; Zbl 1268.53080) OpenURL
Zhu, Xiaorui The Harnack estimates on compact Kähler manifolds. (Chinese. English summary) Zbl 1265.53082 Chin. Ann. Math., Ser. A 32, No. 6, 745-752 (2011). MSC: 53C55 53C44 58J35 28D20 35K05 PDF BibTeX XML Cite \textit{X. Zhu}, Chin. Ann. Math., Ser. A 32, No. 6, 745--752 (2011; Zbl 1265.53082) OpenURL
Yu, Chengjie Nonpositively curved Hermitian metrics on product manifolds. (English) Zbl 1216.53050 Proc. Am. Math. Soc. 139, No. 4, 1469-1472 (2011). MSC: 53C40 53B35 PDF BibTeX XML Cite \textit{C. Yu}, Proc. Am. Math. Soc. 139, No. 4, 1469--1472 (2011; Zbl 1216.53050) Full Text: DOI arXiv OpenURL
Chau, Albert; Tam, Luen-Fai; Yu, Chengjie Pseudolocality for the Ricci flow and applications. (English) Zbl 1214.53053 Can. J. Math. 63, No. 1, 55-85 (2011). Reviewer: Adara M. Blaga (Timişoara) MSC: 53C44 58J37 35B35 PDF BibTeX XML Cite \textit{A. Chau} et al., Can. J. Math. 63, No. 1, 55--85 (2011; Zbl 1214.53053) Full Text: DOI arXiv OpenURL
Li, Song-Ying On the Kähler manifolds with the largest infimum of spectrum of Laplace-Beltrami operators and sharp lower bound of Ricci or holomorphic bisectional curvatures. (English) Zbl 1242.53092 Commun. Anal. Geom. 18, No. 3, 555-578 (2010). Reviewer: Laurent Guillopé (Nantes) MSC: 53C55 53C24 58J50 32Q15 32Q20 PDF BibTeX XML Cite \textit{S.-Y. Li}, Commun. Anal. Geom. 18, No. 3, 555--578 (2010; Zbl 1242.53092) Full Text: DOI OpenURL
Tam, Luen-Fai; Yu, Chengjie Complex product manifolds and bounds of curvature. (English) Zbl 1208.53074 Asian J. Math. 14, No. 2, 235-242 (2010). MSC: 53C55 PDF BibTeX XML Cite \textit{L.-F. Tam} and \textit{C. Yu}, Asian J. Math. 14, No. 2, 235--242 (2010; Zbl 1208.53074) Full Text: DOI arXiv Euclid OpenURL
Niu, Yanyan Maximum principles for real \((p, p)\)-forms on Kähler manifolds. (English) Zbl 1203.53071 Geom. Dedicata 149, 363-371 (2010). MSC: 53C55 PDF BibTeX XML Cite \textit{Y. Niu}, Geom. Dedicata 149, 363--371 (2010; Zbl 1203.53071) Full Text: DOI OpenURL
Dinew, Sławomir Hölder continuous potentials on manifolds with partially positive curvature. (English) Zbl 1207.32034 J. Inst. Math. Jussieu 9, No. 4, 705-718 (2010). Reviewer: Alexandr Yu. Rashkovsky (Stavanger) MSC: 32W20 32U15 53C55 PDF BibTeX XML Cite \textit{S. Dinew}, J. Inst. Math. Jussieu 9, No. 4, 705--718 (2010; Zbl 1207.32034) Full Text: DOI arXiv OpenURL
Gu, Huiling; Zhang, Zhuhong An extension of Mok’s theorem on the generalized Frankel conjecture. (English) Zbl 1204.53058 Sci. China, Math. 53, No. 5, 1253-1264 (2010). Reviewer: Zbigniew Olszak (Wrocław) MSC: 53C55 PDF BibTeX XML Cite \textit{H. Gu} and \textit{Z. Zhang}, Sci. China, Math. 53, No. 5, 1253--1264 (2010; Zbl 1204.53058) Full Text: DOI arXiv OpenURL
Chang, Yu-Lin Some results on compact Kähler surfaces with non-positive bisectional curvature. (English) Zbl 1190.32018 Geom. Dedicata 145, 65-70 (2010). Reviewer: Gabriela Paola Ovando (Freiburg) MSC: 32Q05 32Q15 32Q30 PDF BibTeX XML Cite \textit{Y.-L. Chang}, Geom. Dedicata 145, 65--70 (2010; Zbl 1190.32018) Full Text: DOI OpenURL
Jbilou, Asma Complex Hessian equations on some compact Kähler manifolds. (Equations hessiennes complexes sur des variétés kählériennes compactes.) (French. Abridged English version) Zbl 1189.53071 C. R., Math., Acad. Sci. Paris 348, No. 1-2, 41-46 (2010). Reviewer: V. V. Chueshev (Kemerovo) MSC: 53C55 53C21 53B35 PDF BibTeX XML Cite \textit{A. Jbilou}, C. R., Math., Acad. Sci. Paris 348, No. 1--2, 41--46 (2010; Zbl 1189.53071) Full Text: DOI OpenURL
Cao, Huai-Dong; Zhu, Meng A note on compact Kähler-Ricci flow with positive bisectional curvature. (English) Zbl 1193.53141 Math. Res. Lett. 16, No. 5-6, 935-939 (2009). Reviewer: Witold Mozgawa (Lublin) MSC: 53C44 53C55 PDF BibTeX XML Cite \textit{H.-D. Cao} and \textit{M. Zhu}, Math. Res. Lett. 16, No. 5--6, 935--939 (2009; Zbl 1193.53141) Full Text: DOI arXiv OpenURL
Huang, Hong A note on Kähler manifolds with almost nonnegative bisectional curvature. (English) Zbl 1178.53075 Ann. Global Anal. Geom. 36, No. 3, 323-325 (2009). Reviewer: Nicolai K. Smolentsev (Kemerovo) MSC: 53C55 53C20 53C35 PDF BibTeX XML Cite \textit{H. Huang}, Ann. Global Anal. Geom. 36, No. 3, 323--325 (2009; Zbl 1178.53075) Full Text: DOI arXiv Link OpenURL
Chen, Xiuxiong; Sun, Song; Tian, Gang A note on Kähler-Ricci soliton. (English) Zbl 1177.53037 Int. Math. Res. Not. 2009, No. 17, 3328-3336 (2009). Reviewer: Vasyl Gorkaviy (Kharkov) MSC: 53C21 53C55 53C44 32Q15 PDF BibTeX XML Cite \textit{X. Chen} et al., Int. Math. Res. Not. 2009, No. 17, 3328--3336 (2009; Zbl 1177.53037) Full Text: DOI arXiv OpenURL
Li, Peter; Wang, Jiaping Connectedness at infinity of complete Kähler manifolds. (English) Zbl 1204.53059 Am. J. Math. 131, No. 3, 771-817 (2009). Reviewer: Marisa Fernandez (Bilbao) MSC: 53C55 58J50 PDF BibTeX XML Cite \textit{P. Li} and \textit{J. Wang}, Am. J. Math. 131, No. 3, 771--817 (2009; Zbl 1204.53059) Full Text: DOI Link OpenURL
Gu, Hui-Ling A new proof of Mok’s generalized Frankel conjecture theorem. (English) Zbl 1165.53024 Proc. Am. Math. Soc. 137, No. 3, 1063-1068 (2009). Reviewer: Peibiao Zhao (Nanjing) MSC: 53C20 53C55 53C44 PDF BibTeX XML Cite \textit{H.-L. Gu}, Proc. Am. Math. Soc. 137, No. 3, 1063--1068 (2009; Zbl 1165.53024) Full Text: DOI OpenURL
Chao, Xiaoli; Chen, Ranran Vanishing theorems for ACH Kähler manifolds and harmonic maps. (English) Zbl 1199.53116 Anal. Theory Appl. 24, No. 3, 292-302 (2008). MSC: 53C40 53C43 PDF BibTeX XML Cite \textit{X. Chao} and \textit{R. Chen}, Anal. Theory Appl. 24, No. 3, 292--302 (2008; Zbl 1199.53116) Full Text: DOI OpenURL
Chen, Xiuxiong; Li, Haozhao The Kähler-Ricci flow on Kähler manifolds with 2-non-negative traceless bisectional curvature operator. (English) Zbl 1153.53048 Chin. Ann. Math., Ser. B 29, No. 5, 543-556 (2008). MSC: 53C44 32Q20 PDF BibTeX XML Cite \textit{X. Chen} and \textit{H. Li}, Chin. Ann. Math., Ser. B 29, No. 5, 543--556 (2008; Zbl 1153.53048) Full Text: DOI OpenURL
Phong, D. H.; Song, Jian; Sturm, Jacob; Weinkove, Ben The Kähler-Ricci flow with positive bisectional curvature. (English) Zbl 1145.53050 Invent. Math. 173, No. 3, 651-665 (2008). MSC: 53C44 32Q20 PDF BibTeX XML Cite \textit{D. H. Phong} et al., Invent. Math. 173, No. 3, 651--665 (2008; Zbl 1145.53050) Full Text: DOI arXiv OpenURL
Seshadri, Harish; Zheng, Fangyang Complex product manifolds cannot be negatively curved. (English) Zbl 1147.53317 Asian J. Math. 12, No. 1, 145-149 (2008). MSC: 53C55 53C21 PDF BibTeX XML Cite \textit{H. Seshadri} and \textit{F. Zheng}, Asian J. Math. 12, No. 1, 145--149 (2008; Zbl 1147.53317) Full Text: DOI arXiv Euclid OpenURL
Jiao, Zhenhua; Fu, Xiaoyong Volume growth estimates of manifolds with nonnegative curvature outside a compact set. (English) Zbl 1150.53011 Acta Math. Sci., Ser. B, Engl. Ed. 28, No. 1, 86-92 (2008). MSC: 53C21 53C55 PDF BibTeX XML Cite \textit{Z. Jiao} and \textit{X. Fu}, Acta Math. Sci., Ser. B, Engl. Ed. 28, No. 1, 86--92 (2008; Zbl 1150.53011) Full Text: DOI OpenURL
Chau, Albert; Tam, Luen-Fai On the steinness of a class of Kähler manifolds. (English) Zbl 1155.32015 J. Differ. Geom. 79, No. 2, 167-183 (2008). Reviewer: Eugen Pascu (Montréal) MSC: 32Q15 53C55 32E10 32Q28 PDF BibTeX XML Cite \textit{A. Chau} and \textit{L.-F. Tam}, J. Differ. Geom. 79, No. 2, 167--183 (2008; Zbl 1155.32015) Full Text: DOI arXiv Euclid OpenURL
Tosatti, Valentino A general Schwarz lemma for almost-Hermitian manifolds. (English) Zbl 1145.53019 Commun. Anal. Geom. 15, No. 5, 1063-1086 (2007). MSC: 53C15 PDF BibTeX XML Cite \textit{V. Tosatti}, Commun. Anal. Geom. 15, No. 5, 1063--1086 (2007; Zbl 1145.53019) Full Text: DOI arXiv Euclid OpenURL
Chen, X. X. On Kähler manifolds with positive orthogonal bisectional curvature. (English) Zbl 1131.53038 Adv. Math. 215, No. 2, 427-445 (2007). Reviewer: Mihail Banaru (Smolensk) MSC: 53C55 PDF BibTeX XML Cite \textit{X. X. Chen}, Adv. Math. 215, No. 2, 427--445 (2007; Zbl 1131.53038) Full Text: DOI arXiv OpenURL
Zhou, Chaohui; Chen, Zhihua A remark on Steinness. (English) Zbl 1129.32007 Chin. Ann. Math., Ser. B 28, No. 2, 161-164 (2007). Reviewer: Elizabeth Gasparim (Las Cruces) MSC: 32E10 32Q05 PDF BibTeX XML Cite \textit{C. Zhou} and \textit{Z. Chen}, Chin. Ann. Math., Ser. B 28, No. 2, 161--164 (2007; Zbl 1129.32007) Full Text: DOI OpenURL
Chau, Albert; Tam, Luenfai Non-negatively curved Kähler manifolds with average quadratic curvature decay. (English) Zbl 1125.53055 Commun. Anal. Geom. 15, No. 1, 121-146 (2007). Reviewer: Mihail Banaru (Smolensk) MSC: 53C55 53C25 PDF BibTeX XML Cite \textit{A. Chau} and \textit{L. Tam}, Commun. Anal. Geom. 15, No. 1, 121--146 (2007; Zbl 1125.53055) Full Text: DOI arXiv OpenURL
Chen, Xiuxiong; Tian, Gang Ricci flow on Kähler-Einstein manifolds. (English) Zbl 1097.53045 Duke Math. J. 131, No. 1, 17-73 (2006). Reviewer: V. V. Chueshev (Kemerovo) MSC: 53C44 32Q20 53C25 53C55 PDF BibTeX XML Cite \textit{X. Chen} and \textit{G. Tian}, Duke Math. J. 131, No. 1, 17--73 (2006; Zbl 1097.53045) Full Text: DOI OpenURL
Aldea, Nicoleta The holomorphic bisectional curvature of the complex Finsler spaces. (English) Zbl 1224.53041 Novi Sad J. Math. 35, No. 2, 143-153 (2005). Reviewer: Irena Čomić (Novi Sad) MSC: 53B40 53C60 PDF BibTeX XML Cite \textit{N. Aldea}, Novi Sad J. Math. 35, No. 2, 143--153 (2005; Zbl 1224.53041) OpenURL
Pyo, Yong-Soo; Shin, Kyoung-Hwa On the Chern-type problem in Kähler geometry. (English) Zbl 1111.53043 Balkan J. Geom. Appl. 10, No. 2, 93-105 (2005). MSC: 53C40 53C50 53C55 PDF BibTeX XML Cite \textit{Y.-S. Pyo} and \textit{K.-H. Shin}, Balkan J. Geom. Appl. 10, No. 2, 93--105 (2005; Zbl 1111.53043) Full Text: EuDML OpenURL
Wong, Pit-Mann; Wong, Philip P. W. Bisectional curvature of complements of curves in \(\mathbb P^2\). (English) Zbl 1104.53076 J. Math. Kyoto Univ. 45, No. 3, 599-625 (2005). Reviewer: Pietro De Poi (Trieste) MSC: 53C60 32Q05 14J60 PDF BibTeX XML Cite \textit{P.-M. Wong} and \textit{P. P. W. Wong}, J. Math. Kyoto Univ. 45, No. 3, 599--625 (2005; Zbl 1104.53076) Full Text: DOI OpenURL
Liu, Kefeng; Sun, Xiaofeng; Yau, Shing-Tung Canonical metrics on the moduli space of Riemann surfaces. II. (English) Zbl 1086.32011 J. Differ. Geom. 69, No. 1, 163-216 (2005). Reviewer: Vasily A. Chernecky (Odessa) MSC: 32G15 30F40 53C20 PDF BibTeX XML Cite \textit{K. Liu} et al., J. Differ. Geom. 69, No. 1, 163--216 (2005; Zbl 1086.32011) Full Text: DOI arXiv OpenURL
Li, Peter; Wang, Jiaping Comparison theorem for Kähler manifolds and positivity of spectrum. (English) Zbl 1087.53067 J. Differ. Geom. 69, No. 1, 43-74 (2005). Reviewer: Gabriel Teodor Pripoae (Bucureşti) MSC: 53C55 58J50 PDF BibTeX XML Cite \textit{P. Li} and \textit{J. Wang}, J. Differ. Geom. 69, No. 1, 43--74 (2005; Zbl 1087.53067) Full Text: DOI OpenURL
Chen, Binglong; Tang, Siuhung; Zhu, Xiping A uniformization theorem for complete non-compact Kähler surfaces with positive bisectional curvature. (English) Zbl 1100.32009 J. Differ. Geom. 67, No. 3, 519-570 (2004). Reviewer: Witold Mozgawa (Lublin) MSC: 32Q30 53C44 53C21 32Q20 53C55 PDF BibTeX XML Cite \textit{B. Chen} et al., J. Differ. Geom. 67, No. 3, 519--570 (2004; Zbl 1100.32009) Full Text: DOI arXiv OpenURL