Fanelli, Francesco; Granero-Belinchón, Rafael Finite time blow-up for some parabolic systems arising in turbulence theory. (English) Zbl 07568807 Z. Angew. Math. Phys. 73, No. 5, Paper No. 180, 19 p. (2022). MSC: 35K65 35B44 35B65 76F60 PDF BibTeX XML Cite \textit{F. Fanelli} and \textit{R. Granero-Belinchón}, Z. Angew. Math. Phys. 73, No. 5, Paper No. 180, 19 p. (2022; Zbl 07568807) Full Text: DOI OpenURL
Wang, Qingxuan; Feng, Binhua On a parameter-stability for normalized ground states of two-dimensional cubic-quintic nonlinear Schrödinger equations. (English) Zbl 07568806 Z. Angew. Math. Phys. 73, No. 5, Paper No. 179, 17 p. (2022). MSC: 34D20 34E10 35J20 PDF BibTeX XML Cite \textit{Q. Wang} and \textit{B. Feng}, Z. Angew. Math. Phys. 73, No. 5, Paper No. 179, 17 p. (2022; Zbl 07568806) Full Text: DOI OpenURL
Jiang, Chao; Liu, Zuhan; Zhou, Ling Blow-up in a fractional Laplacian mutualistic model with Neumann boundary conditions. (English) Zbl 07567989 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 5, 1809-1816 (2022). MSC: 35B05 35B44 35D05 35N30 PDF BibTeX XML Cite \textit{C. Jiang} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 5, 1809--1816 (2022; Zbl 07567989) Full Text: DOI OpenURL
Liu, Jianli; Wang, Jingjie; Yuen, Manwai Blowup of regular solutions and \(C^1\) solutions for free boundary problem of Euler-Poisson equations with repulsive force in \({\mathbb{R}}^n \). (English) Zbl 07565470 J. Evol. Equ. 22, No. 3, Paper No. 66, 14 p. (2022). MSC: 35Q31 35B44 35B40 76N10 PDF BibTeX XML Cite \textit{J. Liu} et al., J. Evol. Equ. 22, No. 3, Paper No. 66, 14 p. (2022; Zbl 07565470) Full Text: DOI OpenURL
Gnowille, Kambire Diopina; Nachid, H.; Jacques, Ntakpe J. The Euler method in the blow-up numerical solutions for a reaction-diffusion problems with boundary conditions. (English) Zbl 07564684 J. Ramanujan Soc. Math. Math. Sci. 9, No. 2, 109-130 (2022). MSC: 35B40 35B50 35K60 65M06 PDF BibTeX XML Cite \textit{K. D. Gnowille} et al., J. Ramanujan Soc. Math. Math. Sci. 9, No. 2, 109--130 (2022; Zbl 07564684) Full Text: Link OpenURL
Zhang, Lei; Mu, Chunlai; Zhou, Shouming On the initial value problem for the hyperbolic Keller-Segel equations in Besov spaces. (English) Zbl 07563799 J. Differ. Equations 334, 451-489 (2022). MSC: 35Qxx 92Cxx 35Bxx PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Differ. Equations 334, 451--489 (2022; Zbl 07563799) Full Text: DOI OpenURL
Delova, Maria I.; Rozanova, Olga S. The interplay of regularizing factors in the model of upper hybrid oscillations of cold plasma. (English) Zbl 07562105 J. Math. Anal. Appl. 515, No. 2, Article ID 126449, 10 p. (2022). MSC: 35Bxx 35Lxx 35Qxx PDF BibTeX XML Cite \textit{M. I. Delova} and \textit{O. S. Rozanova}, J. Math. Anal. Appl. 515, No. 2, Article ID 126449, 10 p. (2022; Zbl 07562105) Full Text: DOI OpenURL
Abdelhedi, Bouthaina; Zaag, Hatem Refined blow-up asymptotics for a perturbed nonlinear heat equation with a gradient and a non-local term. (English) Zbl 07562103 J. Math. Anal. Appl. 515, No. 2, Article ID 126447, 19 p. (2022). MSC: 35Kxx 35Bxx 35Rxx PDF BibTeX XML Cite \textit{B. Abdelhedi} and \textit{H. Zaag}, J. Math. Anal. Appl. 515, No. 2, Article ID 126447, 19 p. (2022; Zbl 07562103) Full Text: DOI OpenURL
Guo, Hui; Liang, Xueting; Yang, Yang Provable convergence of blow-up time of numerical approximations for a class of convection-diffusion equations. (English) Zbl 07561095 J. Comput. Phys. 466, Article ID 111421, 21 p. (2022). MSC: 65Mxx 92Cxx 35Bxx PDF BibTeX XML Cite \textit{H. Guo} et al., J. Comput. Phys. 466, Article ID 111421, 21 p. (2022; Zbl 07561095) Full Text: DOI OpenURL
Dancer, Edward N. On the number of stable positive solutions of weakly nonlinear elliptic equations when the diffusion is small. (English) Zbl 07560281 Topol. Methods Nonlinear Anal. 59, No. 2, 467-474 (2022). MSC: 35J61 35B35 35J70 35B44 PDF BibTeX XML Cite \textit{E. N. Dancer}, Topol. Methods Nonlinear Anal. 59, No. 2, 467--474 (2022; Zbl 07560281) Full Text: DOI OpenURL
Liu, Jianli; Wang, Jingwei Classical solutions for 1D compressible Euler equations with over damping. (English) Zbl 07559961 J. Math. Fluid Mech. 24, No. 3, Paper No. 76, 15 p. (2022). MSC: 76N10 35Q31 PDF BibTeX XML Cite \textit{J. Liu} and \textit{J. Wang}, J. Math. Fluid Mech. 24, No. 3, Paper No. 76, 15 p. (2022; Zbl 07559961) Full Text: DOI OpenURL
Wang, Jing Na; Alsaedi, Ahmed; Ahmad, Bashir; Zhou, Yong Well-posedness and blow-up results for a class of nonlinear fractional Rayleigh-Stokes problem. (English) Zbl 07559936 Adv. Nonlinear Anal. 11, 1579-1597 (2022). MSC: 26A33 35E15 35R11 76D03 PDF BibTeX XML Cite \textit{J. N. Wang} et al., Adv. Nonlinear Anal. 11, 1579--1597 (2022; Zbl 07559936) Full Text: DOI OpenURL
Marras, M.; Vernier-Piro, S.; Yokota, T. Blow-up phenomena for a chemotaxis system with flux limitation. (English) Zbl 07559889 J. Math. Anal. Appl. 515, No. 1, Article ID 126376, 13 p. (2022). MSC: 35Kxx 35Bxx 92Cxx PDF BibTeX XML Cite \textit{M. Marras} et al., J. Math. Anal. Appl. 515, No. 1, Article ID 126376, 13 p. (2022; Zbl 07559889) Full Text: DOI OpenURL
Cardoso, Mykael; Farah, Luiz Gustavo Blow-up of non-radial solutions for the \(L^2\) critical inhomogeneous NLS equation. (English) Zbl 07559748 Nonlinearity 35, No. 8, 4426-4436 (2022). MSC: 35Q55 35B44 PDF BibTeX XML Cite \textit{M. Cardoso} and \textit{L. G. Farah}, Nonlinearity 35, No. 8, 4426--4436 (2022; Zbl 07559748) Full Text: DOI OpenURL
Lakshmipriya, N.; Gnanavel, S.; Balachandran, K.; Ma, Yong-Ki Existence and blow-up of weak solutions of a pseudo-parabolic equation with logarithmic nonlinearity. (English) Zbl 07556244 Bound. Value Probl. 2022, Paper No. 30, 17 p. (2022). MSC: 35D30 35B44 35K70 35K92 PDF BibTeX XML Cite \textit{N. Lakshmipriya} et al., Bound. Value Probl. 2022, Paper No. 30, 17 p. (2022; Zbl 07556244) Full Text: DOI OpenURL
Bin Sultan, Areej; Jleli, Mohamed; Samet, Bessem; Vetro, Calogero On the critical behavior for time-fractional pseudo-parabolic-type equations with combined nonlinearities. (English) Zbl 07556233 Bound. Value Probl. 2022, Paper No. 19, 20 p. (2022). MSC: 35K70 35D30 35B33 35B44 35R11 34K37 PDF BibTeX XML Cite \textit{A. Bin Sultan} et al., Bound. Value Probl. 2022, Paper No. 19, 20 p. (2022; Zbl 07556233) Full Text: DOI OpenURL
Bachar, Imed; Aljarallah, Entesar Existence and asymptotic properties of singular solutions of nonlinear elliptic equations in \(\mathbb{R}^n\backslash\{0\}\). (English) Zbl 07556218 Bound. Value Probl. 2022, Paper No. 4, 19 p. (2022). MSC: 35J60 35B40 PDF BibTeX XML Cite \textit{I. Bachar} and \textit{E. Aljarallah}, Bound. Value Probl. 2022, Paper No. 4, 19 p. (2022; Zbl 07556218) Full Text: DOI OpenURL
Shi, Yongxiu; Wan, Haitao Pointwise boundary behavior of large solutions to \(\infty\)-Laplacian equations. (English) Zbl 07556055 Rocky Mt. J. Math. 52, No. 3, 1047-1061 (2022). MSC: 35B40 35B45 35D40 35J25 35J62 35J67 PDF BibTeX XML Cite \textit{Y. Shi} and \textit{H. Wan}, Rocky Mt. J. Math. 52, No. 3, 1047--1061 (2022; Zbl 07556055) Full Text: DOI Link OpenURL
Jin, Hai-Yang; Wang, Zhi-An; Wu, Leyun Global dynamics of a three-species spatial food chain model. (English) Zbl 07555104 J. Differ. Equations 333, 144-183 (2022). MSC: 35B40 35B44 35B51 35K57 35Q92 92C17 PDF BibTeX XML Cite \textit{H.-Y. Jin} et al., J. Differ. Equations 333, 144--183 (2022; Zbl 07555104) Full Text: DOI OpenURL
Shen, Ruixin; Xiang, Mingqi; Rădulescu, Vicenţiu D. Time-space fractional diffusion problems: existence, decay estimates and blow-up of solutions. (English) Zbl 07550231 Milan J. Math. 90, No. 1, 103-129 (2022). MSC: 35R11 35B40 35B44 35K20 35K59 PDF BibTeX XML Cite \textit{R. Shen} et al., Milan J. Math. 90, No. 1, 103--129 (2022; Zbl 07550231) Full Text: DOI OpenURL
Liang, Fei; Zhao, Shuangshuang Global existence and finite time blow-up for a stochastic non-local reaction-diffusion equation. (English) Zbl 07549982 J. Geom. Phys. 178, Article ID 104577, 21 p. (2022). MSC: 60H15 35B50 35R60 35K57 35B09 PDF BibTeX XML Cite \textit{F. Liang} and \textit{S. Zhao}, J. Geom. Phys. 178, Article ID 104577, 21 p. (2022; Zbl 07549982) Full Text: DOI OpenURL
Takayasu, Akitoshi; Lessard, Jean-Philippe; Jaquette, Jonathan; Okamoto, Hisashi Rigorous numerics for nonlinear heat equations in the complex plane of time. (English) Zbl 07549404 Numer. Math. 151, No. 3, 693-750 (2022). MSC: 65-XX 35A20 35B40 35B44 35K55 65G40 65M15 65M70 PDF BibTeX XML Cite \textit{A. Takayasu} et al., Numer. Math. 151, No. 3, 693--750 (2022; Zbl 07549404) Full Text: DOI OpenURL
Boudjeriou, Tahir Global existence and blow-up of solutions for a parabolic equation involving the fractional \(p(x)\)-Laplacian. (English) Zbl 07548874 Appl. Anal. 101, No. 8, 2903-2921 (2022). MSC: 35R11 35B40 35B41 35B44 35K92 PDF BibTeX XML Cite \textit{T. Boudjeriou}, Appl. Anal. 101, No. 8, 2903--2921 (2022; Zbl 07548874) Full Text: DOI OpenURL
Takimoto, Kazuhiro Exact principal blowup rate near the boundary of boundary blowup solutions to \(k\)-curvature equation. (English) Zbl 07545393 Manuscr. Math. 168, No. 3-4, 351-369 (2022). MSC: 35J60 35B44 35B40 35J96 PDF BibTeX XML Cite \textit{K. Takimoto}, Manuscr. Math. 168, No. 3--4, 351--369 (2022; Zbl 07545393) Full Text: DOI OpenURL
Zheng, Peiwen Existence and finite time blow-up for nonlinear Schrödinger equations in the Bopp-Podolsky electrodynamics. (English) Zbl 07545075 J. Math. Anal. Appl. 514, No. 2, Article ID 126346, 18 p. (2022). MSC: 35Qxx 35Bxx 35Jxx PDF BibTeX XML Cite \textit{P. Zheng}, J. Math. Anal. Appl. 514, No. 2, Article ID 126346, 18 p. (2022; Zbl 07545075) Full Text: DOI OpenURL
Lu, Heqian; Zhang, Zhengce The Cauchy problem for a parabolic \(p\)-Laplacian equation with combined nonlinearities. (English) Zbl 07545066 J. Math. Anal. Appl. 514, No. 2, Article ID 126329, 40 p. (2022). MSC: 35B44 35B33 35K15 35K92 PDF BibTeX XML Cite \textit{H. Lu} and \textit{Z. Zhang}, J. Math. Anal. Appl. 514, No. 2, Article ID 126329, 40 p. (2022; Zbl 07545066) Full Text: DOI OpenURL
Ding, Hang; Zhou, Jun Well-posedness of solutions for the dissipative Boussinesq equation with logarithmic nonlinearity. (English) Zbl 07544588 Nonlinear Anal., Real World Appl. 67, Article ID 103587, 29 p. (2022). MSC: 35B40 35B44 35Q35 PDF BibTeX XML Cite \textit{H. Ding} and \textit{J. Zhou}, Nonlinear Anal., Real World Appl. 67, Article ID 103587, 29 p. (2022; Zbl 07544588) Full Text: DOI OpenURL
Bellomo, N.; Outada, N.; Soler, J.; Tao, Y.; Winkler, M. Chemotaxis and cross-diffusion models in complex environments: models and analytic problems toward a multiscale vision. (English) Zbl 07544554 Math. Models Methods Appl. Sci. 32, No. 4, 713-792 (2022). MSC: 35B36 35B40 35B44 35K51 35K57 35Q35 92C17 91D10 PDF BibTeX XML Cite \textit{N. Bellomo} et al., Math. Models Methods Appl. Sci. 32, No. 4, 713--792 (2022; Zbl 07544554) Full Text: DOI OpenURL
Felli, Veronica; Siclari, Giovanni Unique continuation from a crack’s tip under Neumann boundary conditions. (English) Zbl 07544228 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 113002, 36 p. (2022). MSC: 35B60 35B44 35C20 35J25 74A45 PDF BibTeX XML Cite \textit{V. Felli} and \textit{G. Siclari}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 113002, 36 p. (2022; Zbl 07544228) Full Text: DOI OpenURL
Zhanpeisov, Erbol Blow-up rate of sign-changing solutions to nonlinear parabolic systems in domains. (English) Zbl 07544219 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112975, 16 p. (2022). MSC: 35B44 35B40 35K51 35K58 PDF BibTeX XML Cite \textit{E. Zhanpeisov}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112975, 16 p. (2022; Zbl 07544219) Full Text: DOI OpenURL
Agresti, Antonio; Veraar, Mark Nonlinear parabolic stochastic evolution equations in critical spaces. II: Blow-up criteria and instantaneous regularization. (English) Zbl 07542703 J. Evol. Equ. 22, No. 2, Paper No. 56, 96 p. (2022). MSC: 60H15 35B65 35K59 35K90 35R60 35B44 35A01 58D25 PDF BibTeX XML Cite \textit{A. Agresti} and \textit{M. Veraar}, J. Evol. Equ. 22, No. 2, Paper No. 56, 96 p. (2022; Zbl 07542703) Full Text: DOI OpenURL
Jleli, Mohamed; Samet, Bessem Nonexistence for nonlinear hyperbolic inequalities in an annulus. (English) Zbl 07541284 Anal. Math. Phys. 12, No. 4, Paper No. 90, 18 p. (2022). MSC: 35R45 35L20 35L71 35B44 35B33 PDF BibTeX XML Cite \textit{M. Jleli} and \textit{B. Samet}, Anal. Math. Phys. 12, No. 4, Paper No. 90, 18 p. (2022; Zbl 07541284) Full Text: DOI OpenURL
Li, Jing; Li, Kuijie The defocusing energy-supercritical nonlinear Schrödinger equation in high dimensions. (English) Zbl 07541185 SIAM J. Math. Anal. 54, No. 3, 3253-3274 (2022). MSC: 35Q55 35Q41 35P25 35B44 35B65 35B10 35A01 35A02 PDF BibTeX XML Cite \textit{J. Li} and \textit{K. Li}, SIAM J. Math. Anal. 54, No. 3, 3253--3274 (2022; Zbl 07541185) Full Text: DOI OpenURL
Fuest, Mario On the optimality of upper estimates near blow-up in quasilinear Keller-Segel systems. (English) Zbl 07540664 Appl. Anal. 101, No. 9, 3515-3534 (2022). MSC: 35B45 35B40 35B44 35K51 35K59 35K65 92C17 PDF BibTeX XML Cite \textit{M. Fuest}, Appl. Anal. 101, No. 9, 3515--3534 (2022; Zbl 07540664) Full Text: DOI OpenURL
Cheung, Ka Luen; Wong, Sen On finite-time blowup mechanism of irrotational compressible Euler equations with time-dependent damping. (English) Zbl 07540661 Appl. Anal. 101, No. 9, 3465-3478 (2022). MSC: 35Q31 76N10 35B44 35L67 35B30 PDF BibTeX XML Cite \textit{K. L. Cheung} and \textit{S. Wong}, Appl. Anal. 101, No. 9, 3465--3478 (2022; Zbl 07540661) Full Text: DOI OpenURL
Luo, Zhaonan; Qiao, Zhijun; Yin, Zhaoyang Global existence and blow-up phenomena for a periodic modified Camassa-Holm equation (MOCH). (English) Zbl 07540659 Appl. Anal. 101, No. 9, 3432-3444 (2022). MSC: 35Q53 35B30 35B44 35A01 35R25 PDF BibTeX XML Cite \textit{Z. Luo} et al., Appl. Anal. 101, No. 9, 3432--3444 (2022; Zbl 07540659) Full Text: DOI OpenURL
Zhang, Hongwei; Li, Donghao; Zhang, Wenxiu; Hu, Qingying Asymptotic stability and blow-up for the wave equation with degenerate nonlocal nonlinear damping and source terms. (English) Zbl 07540645 Appl. Anal. 101, No. 9, 3170-3181 (2022). MSC: 35B40 35B44 35L20 35L71 35R09 PDF BibTeX XML Cite \textit{H. Zhang} et al., Appl. Anal. 101, No. 9, 3170--3181 (2022; Zbl 07540645) Full Text: DOI OpenURL
Svirshchevskii, S. R. Exact solutions of a nonlinear diffusion equation on polynomial invariant subspace of maximal dimension. (English) Zbl 07540480 Commun. Nonlinear Sci. Numer. Simul. 112, Article ID 106515, 18 p. (2022). MSC: 35C05 35B06 35B44 35K59 35K65 PDF BibTeX XML Cite \textit{S. R. Svirshchevskii}, Commun. Nonlinear Sci. Numer. Simul. 112, Article ID 106515, 18 p. (2022; Zbl 07540480) Full Text: DOI OpenURL
Pistoia, Angela; Vaira, Giusi Nodal solutions of the Brezis-Nirenberg problem in dimension 6. (English) Zbl 07538523 Anal. Theory Appl. 38, No. 1, 1-25 (2022). MSC: 35B44 58C15 PDF BibTeX XML Cite \textit{A. Pistoia} and \textit{G. Vaira}, Anal. Theory Appl. 38, No. 1, 1--25 (2022; Zbl 07538523) Full Text: DOI OpenURL
Manita, Larisa; Ronzhina, Mariya Optimal spiral-like solutions near a singular extremal in a two-input control problem. (English) Zbl 07536449 Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 3325-3343 (2022). MSC: 49J10 49N60 93C05 PDF BibTeX XML Cite \textit{L. Manita} and \textit{M. Ronzhina}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 3325--3343 (2022; Zbl 07536449) Full Text: DOI OpenURL
Mukiawa, Soh Edwin; Enyi, Cyril Dennis Existence and blow-up result for wave equation with variable exponent. (English) Zbl 07536071 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 3, 169-190 (2022). MSC: 35B44 35B33 35D30 35L20 35L72 PDF BibTeX XML Cite \textit{S. E. Mukiawa} and \textit{C. D. Enyi}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 3, 169--190 (2022; Zbl 07536071) Full Text: Link OpenURL
Carrillo, José A.; Chen, Lin; Wang, Qi An optimal mass transport method for random genetic drift. (English) Zbl 07534665 SIAM J. Numer. Anal. 60, No. 3, 940-969 (2022). MSC: 65M06 49M15 92D25 92D20 35B40 35B44 35R60 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., SIAM J. Numer. Anal. 60, No. 3, 940--969 (2022; Zbl 07534665) Full Text: DOI OpenURL
Bona, Jerry; Hong, Youngjoon Numerical study of the generalized Korteweg-de Vries equations with oscillating nonlinearities and boundary conditions. (English) Zbl 07534369 Water Waves 4, No. 1, 109-137 (2022). MSC: 35Qxx 65Mxx 35Bxx PDF BibTeX XML Cite \textit{J. Bona} and \textit{Y. Hong}, Water Waves 4, No. 1, 109--137 (2022; Zbl 07534369) Full Text: DOI OpenURL
Zheng, Pan On a generalized volume-filling chemotaxis system with nonlinear signal production. (English) Zbl 07534068 Monatsh. Math. 198, No. 1, 211-231 (2022). MSC: 35B44 35B40 35B35 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{P. Zheng}, Monatsh. Math. 198, No. 1, 211--231 (2022; Zbl 07534068) Full Text: DOI OpenURL
Zhong, Liyan; Shen, Jianhe Degenerate transcritical bifurcation point can be an attractor: a case study in a slow-fast modified Leslie-Gower model. (English) Zbl 07533981 Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 76, 11 p. (2022). MSC: 34E15 34C05 34C23 34D45 92D25 PDF BibTeX XML Cite \textit{L. Zhong} and \textit{J. Shen}, Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 76, 11 p. (2022; Zbl 07533981) Full Text: DOI OpenURL
Chuong, Quach Van; Nhan, Le Cong; Truong, Le Xuan Existence and non-existence of global solutions of pseudo-parabolic equations involving \(p(x)\)-Laplacian and logarithmic nonlinearity. (English) Zbl 07531957 J. Elliptic Parabol. Equ. 8, No. 1, 483-512 (2022). MSC: 35K70 35A01 35B40 35B44 35K92 PDF BibTeX XML Cite \textit{Q. Van Chuong} et al., J. Elliptic Parabol. Equ. 8, No. 1, 483--512 (2022; Zbl 07531957) Full Text: DOI OpenURL
Chrouda, Mohamed Ben; Hassine, Kods Existence and asymptotic behaviour of entire large solutions for \(k\)-Hessian equations. (English) Zbl 07531956 J. Elliptic Parabol. Equ. 8, No. 1, 469-481 (2022). MSC: 35B08 35A24 35B09 35B40 35B44 35A01 35J60 35J96 PDF BibTeX XML Cite \textit{M. B. Chrouda} and \textit{K. Hassine}, J. Elliptic Parabol. Equ. 8, No. 1, 469--481 (2022; Zbl 07531956) Full Text: DOI OpenURL
Argun, R. L.; Volkov, V. T.; Lukyanenko, D. V. Numerical simulation of front dynamics in a nonlinear singularly perturbed reaction-diffusion problem. (English) Zbl 07531725 J. Comput. Appl. Math. 412, Article ID 114294, 15 p. (2022). MSC: 35B25 35B44 35C20 35K20 35K57 PDF BibTeX XML Cite \textit{R. L. Argun} et al., J. Comput. Appl. Math. 412, Article ID 114294, 15 p. (2022; Zbl 07531725) Full Text: DOI OpenURL
Singh, Abhishek Kumar; Singh, Ajeet Kumar Dynamic stress concentration of a smooth moving punch influenced by a shear wave in an initially stressed dry sandy layer. (English) Zbl 07531662 Acta Mech. 233, No. 5, 1757-1768 (2022). MSC: 74M15 74H35 74L10 74H10 PDF BibTeX XML Cite \textit{A. K. Singh} and \textit{A. K. Singh}, Acta Mech. 233, No. 5, 1757--1768 (2022; Zbl 07531662) Full Text: DOI OpenURL
Wu, Hongmei; Ou, Zhiying The scattering of SH-waves by a nano arc-shaped hole on a half-plane. (English) Zbl 07531655 Acta Mech. 233, No. 4, 1649-1662 (2022). MSC: 74J20 74B99 74H35 74H10 74H15 PDF BibTeX XML Cite \textit{H. Wu} and \textit{Z. Ou}, Acta Mech. 233, No. 4, 1649--1662 (2022; Zbl 07531655) Full Text: DOI OpenURL
Wang, X.; Zhang, X. P. Dynamic stress concentration of a non-circular cavern in a viscoelastic medium subjected to a plane P-wave. (English) Zbl 07531647 Acta Mech. 233, No. 4, 1455-1466 (2022). MSC: 74L10 74J10 74H35 74D05 74S70 74H10 86A15 PDF BibTeX XML Cite \textit{X. Wang} and \textit{X. P. Zhang}, Acta Mech. 233, No. 4, 1455--1466 (2022; Zbl 07531647) Full Text: DOI OpenURL
Suen, Anthony Global regularity for the 3D compressible magnetohydrodynamics with general pressure. (English) Zbl 07528599 Discrete Contin. Dyn. Syst. 42, No. 6, 2927-2943 (2022). MSC: 35Q35 76W05 76N10 35B65 35B44 PDF BibTeX XML Cite \textit{A. Suen}, Discrete Contin. Dyn. Syst. 42, No. 6, 2927--2943 (2022; Zbl 07528599) Full Text: DOI OpenURL
Deng, Wenjie; Yin, Zhaoyang On the Cauchy problem for a Camassa-Holm type equation with cubic and quartic nonlinearities. (English) Zbl 07528114 Monatsh. Math. 198, No. 2, 289-310 (2022). MSC: 35Q53 35A01 35A02 35B44 35B65 35R25 PDF BibTeX XML Cite \textit{W. Deng} and \textit{Z. Yin}, Monatsh. Math. 198, No. 2, 289--310 (2022; Zbl 07528114) Full Text: DOI OpenURL
Kon’kov, Andrej A. On the absence of global solutions of a system of ordinary differential equations. (English. Russian original) Zbl 07528023 Sb. Math. 213, No. 3, 319-340 (2022); translation from Mat. Sb. 213, No. 3, 41-63 (2022). MSC: 34C11 34A12 PDF BibTeX XML Cite \textit{A. A. Kon'kov}, Sb. Math. 213, No. 3, 319--340 (2022; Zbl 07528023); translation from Mat. Sb. 213, No. 3, 41--63 (2022) Full Text: DOI OpenURL
Delarue, François; Nadtochiy, Sergey; Shkolnikov, Mykhaylo Global solutions to the supercooled Stefan problem with blow-ups: regularity and uniqueness. (English) Zbl 07527326 Probab. Math. Phys. 3, No. 1, 171-213 (2022). MSC: 35R35 35B05 35B44 60H30 80A22 PDF BibTeX XML Cite \textit{F. Delarue} et al., Probab. Math. Phys. 3, No. 1, 171--213 (2022; Zbl 07527326) Full Text: DOI OpenURL
Hu, Ke Blow-up of classical solutions to the isentropic compressible barotropic Navier-Stokes-Langevin-Korteweg equations. (English) Zbl 07526998 J. Partial Differ. Equations 35, No. 1, 78-86 (2022). MSC: 35Q35 35B44 PDF BibTeX XML Cite \textit{K. Hu}, J. Partial Differ. Equations 35, No. 1, 78--86 (2022; Zbl 07526998) Full Text: DOI OpenURL
Liao, Menglan The lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity. (English) Zbl 1487.35122 Evol. Equ. Control Theory 11, No. 3, 781-792 (2022). MSC: 35B44 35L20 35L71 35R09 PDF BibTeX XML Cite \textit{M. Liao}, Evol. Equ. Control Theory 11, No. 3, 781--792 (2022; Zbl 1487.35122) Full Text: DOI OpenURL
Hajaiej, Hichem; Stefanov, Atanas G. On the instability of the Ruf-Sani solitons for the NLS with exponential nonlinearity. (English) Zbl 07523633 Appl. Math. Lett. 130, Article ID 107988, 8 p. (2022). MSC: 35Q55 35Q41 35C08 35B44 49M41 PDF BibTeX XML Cite \textit{H. Hajaiej} and \textit{A. G. Stefanov}, Appl. Math. Lett. 130, Article ID 107988, 8 p. (2022; Zbl 07523633) Full Text: DOI OpenURL
Mazari, Idriss; Nadin, Grégoire; Privat, Yannick Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate. (English) Zbl 07523453 Commun. Partial Differ. Equations 47, No. 4, 797-828 (2022). MSC: 35Q92 92D25 92D40 49J30 49Q10 49M41 35B44 35B36 PDF BibTeX XML Cite \textit{I. Mazari} et al., Commun. Partial Differ. Equations 47, No. 4, 797--828 (2022; Zbl 07523453) Full Text: DOI OpenURL
Shen, Xuhui; Wu, Dandan Blow-up phenomena in reaction-diffusion problems with nonlocal and gradient terms. (English) Zbl 07523263 Discrete Dyn. Nat. Soc. 2022, Article ID 8364982, 12 p. (2022). MSC: 35B44 35K55 35K57 35B40 PDF BibTeX XML Cite \textit{X. Shen} and \textit{D. Wu}, Discrete Dyn. Nat. Soc. 2022, Article ID 8364982, 12 p. (2022; Zbl 07523263) Full Text: DOI OpenURL
Iagar, Razvan Gabriel; Sánchez, Ariel Self-similar blow-up profiles for a reaction-diffusion equation with critically strong weighted reaction. (English) Zbl 1487.35119 J. Dyn. Differ. Equations 34, No. 2, 1139-1172 (2022). MSC: 35B44 35B33 35B40 35C06 35K15 35K59 PDF BibTeX XML Cite \textit{R. G. Iagar} and \textit{A. Sánchez}, J. Dyn. Differ. Equations 34, No. 2, 1139--1172 (2022; Zbl 1487.35119) Full Text: DOI OpenURL
Toyota, Yohei Blow-up analysis for Neri’s mean field equation in 2D-turbulence. (English) Zbl 07518234 Appl. Anal. 101, No. 6, 2316-2341 (2022). MSC: 35J61 35B44 35B40 PDF BibTeX XML Cite \textit{Y. Toyota}, Appl. Anal. 101, No. 6, 2316--2341 (2022; Zbl 07518234) Full Text: DOI OpenURL
Shafir, R. S. Solvability and blow-up of weak solutions of Cauchy problems for \((3+1)\)-dimensional equations of drift waves in a plasma. (English. Russian original) Zbl 07518135 Math. Notes 111, No. 3, 484-497 (2022); translation from Mat. Zametki 111, No. 3, 459-475 (2022). MSC: 35Qxx 35Bxx 76-XX 35-XX PDF BibTeX XML Cite \textit{R. S. Shafir}, Math. Notes 111, No. 3, 484--497 (2022; Zbl 07518135); translation from Mat. Zametki 111, No. 3, 459--475 (2022) Full Text: DOI OpenURL
Khuddush, Mahammad; Prasad, K. Rajendra; Bharathi, B. Global existence and blowup of solutions for a semilinear Klein-Gordon equation with the product of logarithmic and power-type nonlinearity. (English) Zbl 07517801 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 68, No. 1, 187-201 (2022). MSC: 35B40 35B44 35L20 35L71 PDF BibTeX XML Cite \textit{M. Khuddush} et al., Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 68, No. 1, 187--201 (2022; Zbl 07517801) Full Text: DOI OpenURL
Huicheng, Yin; Lu, Zhu Formation and construction of a multidimensional shock wave for the first-order hyperbolic conservation law with smooth initial data. (English) Zbl 1487.35251 SIAM J. Math. Anal. 54, No. 2, 2587-2610 (2022). MSC: 35L67 35D30 35B44 35L45 35L65 PDF BibTeX XML Cite \textit{Y. Huicheng} and \textit{Z. Lu}, SIAM J. Math. Anal. 54, No. 2, 2587--2610 (2022; Zbl 1487.35251) Full Text: DOI OpenURL
Chen, Robin Ming; Hu, Tianqiao; Liu, Yue The shallow-water models with cubic nonlinearity. (English) Zbl 07514300 J. Math. Fluid Mech. 24, No. 2, Paper No. 49, 31 p. (2022). MSC: 35Q35 35Q31 76B15 35C20 35B40 35B44 35G25 PDF BibTeX XML Cite \textit{R. M. Chen} et al., J. Math. Fluid Mech. 24, No. 2, Paper No. 49, 31 p. (2022; Zbl 07514300) Full Text: DOI OpenURL
Li, Zijin; Pan, Xinghong One component regularity criteria for the axially symmetric MHD-Boussinesq system. (English) Zbl 07513973 Discrete Contin. Dyn. Syst. 42, No. 5, 2333-2353 (2022). MSC: 35Q35 76D03 76W05 35B65 35B07 35B44 35D35 PDF BibTeX XML Cite \textit{Z. Li} and \textit{X. Pan}, Discrete Contin. Dyn. Syst. 42, No. 5, 2333--2353 (2022; Zbl 07513973) Full Text: DOI OpenURL
Ma, Li Comparative analysis on the blow-up occurrence of solutions to Hadamard type fractional differential systems. (English) Zbl 07513116 Int. J. Comput. Math. 99, No. 5, 895-908 (2022). MSC: 26A33 74H35 PDF BibTeX XML Cite \textit{L. Ma}, Int. J. Comput. Math. 99, No. 5, 895--908 (2022; Zbl 07513116) Full Text: DOI OpenURL
Shi, Jincheng; Zhang, Yan; Cai, Zihan; Liu, Yan Semilinear viscous Moore-Gibson-Thompson equation with the derivative-type nonlinearity: global existence versus blow-up. (English) Zbl 1485.35076 AIMS Math. 7, No. 1, 247-257 (2022). MSC: 35B44 35A01 35B40 35G25 PDF BibTeX XML Cite \textit{J. Shi} et al., AIMS Math. 7, No. 1, 247--257 (2022; Zbl 1485.35076) Full Text: DOI OpenURL
Messaoudi, Salim A.; Talahmeh, Ala A. Blow up of negative initial-energy solutions of a system of nonlinear wave equations with variable-exponent nonlinearities. (English) Zbl 1487.35124 Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1233-1245 (2022). MSC: 35B44 35D30 35B40 35L53 35L71 PDF BibTeX XML Cite \textit{S. A. Messaoudi} and \textit{A. A. Talahmeh}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1233--1245 (2022; Zbl 1487.35124) Full Text: DOI OpenURL
Quittner, Pavol Liouville theorems for parabolic systems with homogeneous nonlinearities and gradient structure. (English) Zbl 1487.35142 SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 26, 16 p. (2022). MSC: 35B53 35B40 35B44 35B45 35K61 35K58 PDF BibTeX XML Cite \textit{P. Quittner}, SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 26, 16 p. (2022; Zbl 1487.35142) Full Text: DOI OpenURL
Souplet, Philippe On refined blowup estimates for the exponential reaction-diffusion equation. (English) Zbl 1487.35128 SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 16, 9 p. (2022). MSC: 35B44 35B40 35K20 35K58 PDF BibTeX XML Cite \textit{P. Souplet}, SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 16, 9 p. (2022; Zbl 1487.35128) Full Text: DOI OpenURL
Zhao, Zhiwen Asymptotic analysis for the electric field concentration with geometry of the core-shell structure. (English) Zbl 1487.78015 Commun. Pure Appl. Anal. 21, No. 4, 1109-1137 (2022). MSC: 78A48 35B44 35C20 35B65 35J25 78M35 35Q60 PDF BibTeX XML Cite \textit{Z. Zhao}, Commun. Pure Appl. Anal. 21, No. 4, 1109--1137 (2022; Zbl 1487.78015) Full Text: DOI OpenURL
Luo, Yongming Sharp scattering for the cubic-quintic nonlinear Schrödinger equation in the focusing-focusing regime. (English) Zbl 07510678 J. Funct. Anal. 283, No. 1, Article ID 109489, 34 p. (2022). MSC: 35Q55 35Q40 35P25 35C08 35B44 PDF BibTeX XML Cite \textit{Y. Luo}, J. Funct. Anal. 283, No. 1, Article ID 109489, 34 p. (2022; Zbl 07510678) Full Text: DOI OpenURL
Yan, Kai; Liu, Yue The initial-value problem to the modified two-component Euler-Poincaré equations. (English) Zbl 07510648 SIAM J. Math. Anal. 54, No. 2, 2006-2039 (2022). MSC: 35Q31 35Q35 35G25 35B44 35B53 35A01 35D35 35L65 PDF BibTeX XML Cite \textit{K. Yan} and \textit{Y. Liu}, SIAM J. Math. Anal. 54, No. 2, 2006--2039 (2022; Zbl 07510648) Full Text: DOI OpenURL
Ye, Yaojun; Zhu, Qianqian Existence and nonexistence of global solutions for logarithmic hyperbolic equation. (English) Zbl 1486.35082 Electron Res. Arch. 30, No. 3, 1035-1051 (2022). MSC: 35B44 35L20 35L72 PDF BibTeX XML Cite \textit{Y. Ye} and \textit{Q. Zhu}, Electron Res. Arch. 30, No. 3, 1035--1051 (2022; Zbl 1486.35082) Full Text: DOI OpenURL
Noguera, Norman; Pastor, Ademir Blow-up solutions for a system of Schrödinger equations with general quadratic-type nonlinearities in dimensions five and six. (English) Zbl 07510390 Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 111, 35 p. (2022). MSC: 35Q55 35B44 35A01 35J50 PDF BibTeX XML Cite \textit{N. Noguera} and \textit{A. Pastor}, Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 111, 35 p. (2022; Zbl 07510390) Full Text: DOI OpenURL
Jiang, Bo A blow-up result for the periodic solutions to an integrable dispersive Hunter-Saxton equation. (English) Zbl 1486.35076 J. Nonlinear Math. Phys. 29, No. 1, 115-123 (2022). MSC: 35B44 35B10 35Q51 PDF BibTeX XML Cite \textit{B. Jiang}, J. Nonlinear Math. Phys. 29, No. 1, 115--123 (2022; Zbl 1486.35076) Full Text: DOI OpenURL
Zeng, Fugeng; Deng, Qigang; Wang, Dongxiu Global existence and blow-up for the pseudo-parabolic \(p(x)\)-Laplacian equation with logarithmic nonlinearity. (English) Zbl 1486.35283 J. Nonlinear Math. Phys. 29, No. 1, 41-57 (2022). MSC: 35K92 35K59 35K55 35B40 PDF BibTeX XML Cite \textit{F. Zeng} et al., J. Nonlinear Math. Phys. 29, No. 1, 41--57 (2022; Zbl 1486.35283) Full Text: DOI OpenURL
Liu, Xuan; Zhang, Ting Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. (English) Zbl 07506990 Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2721-2757 (2022). MSC: 35Q55 35Q41 35L71 35B30 35B44 35A01 35A01 PDF BibTeX XML Cite \textit{X. Liu} and \textit{T. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2721--2757 (2022; Zbl 07506990) Full Text: DOI OpenURL
Yagasaki, Kazuyuki Existence of finite time blow-up solutions in a normal form of the subcritical Hopf bifurcation with time-delayed feedback for small initial functions. (English) Zbl 07506985 Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2621-2634 (2022). Reviewer: Bernhard Lani-Wayda (Gießen) MSC: 34K12 34K18 34K13 34K20 34K33 PDF BibTeX XML Cite \textit{K. Yagasaki}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2621--2634 (2022; Zbl 07506985) Full Text: DOI OpenURL
Zhang, Gengen Time splitting combined with exponential wave integrator Fourier pseudospectral method for quantum Zakharov system. (English) Zbl 07506983 Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2587-2606 (2022). MSC: 35Q55 35Q40 81Q50 35B44 35B36 35C08 65T50 65M06 65M70 65M12 PDF BibTeX XML Cite \textit{G. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2587--2606 (2022; Zbl 07506983) Full Text: DOI OpenURL
Kecker, Thomas; Filipuk, Galina Regularising transformations for complex differential equations with movable algebraic singularities. (English) Zbl 07506357 Math. Phys. Anal. Geom. 25, No. 1, Paper No. 9, 43 p. (2022). Reviewer: Shun Shimomura (Yokohama) MSC: 34M35 34M55 PDF BibTeX XML Cite \textit{T. Kecker} and \textit{G. Filipuk}, Math. Phys. Anal. Geom. 25, No. 1, Paper No. 9, 43 p. (2022; Zbl 07506357) Full Text: DOI OpenURL
Kamache, Houria; Boumaza, Nouri; Gheraibia, Billel General decay and blow up of solutions for the Kirchhoff plate equation with dynamic boundary conditions, delay and source terms. (English) Zbl 1486.35054 Z. Angew. Math. Phys. 73, No. 2, Paper No. 76, 23 p. (2022). MSC: 35B40 35B44 35L35 35L77 74K20 PDF BibTeX XML Cite \textit{H. Kamache} et al., Z. Angew. Math. Phys. 73, No. 2, Paper No. 76, 23 p. (2022; Zbl 1486.35054) Full Text: DOI OpenURL
Antontsev, Stanislav Nikolaevich; Aitzhanov, Serik Ersultanovich; Ashurova, Guzel Rashitkhuzhakyzy An inverse problem for the pseudo-parabolic equation with p-Laplacian. (English) Zbl 1486.35459 Evol. Equ. Control Theory 11, No. 2, 399-414 (2022). MSC: 35R30 35K70 35K92 35B44 35B40 PDF BibTeX XML Cite \textit{S. N. Antontsev} et al., Evol. Equ. Control Theory 11, No. 2, 399--414 (2022; Zbl 1486.35459) Full Text: DOI OpenURL
Li, Fengjie; Sun, Xizheng; Zhang, Jingli Qualitative study in a parabolic equation with nonstandard growth conditions and singular medium void. (English) Zbl 1486.35279 Bull. Iran. Math. Soc. 48, No. 2, 479-506 (2022). MSC: 35K67 35K20 35K58 35B40 35B44 35B33 PDF BibTeX XML Cite \textit{F. Li} et al., Bull. Iran. Math. Soc. 48, No. 2, 479--506 (2022; Zbl 1486.35279) Full Text: DOI OpenURL
Tu, Xi; Yin, Zhaoyang The existence of global weak solutions for a generalized Camassa-Holm equation. (English) Zbl 07496981 Appl. Anal. 101, No. 3, 810-823 (2022). MSC: 35Q53 35A01 35B44 35B65 35D30 35D35 PDF BibTeX XML Cite \textit{X. Tu} and \textit{Z. Yin}, Appl. Anal. 101, No. 3, 810--823 (2022; Zbl 07496981) Full Text: DOI OpenURL
Huzak, Renato Cyclicity of canard cycles with hyperbolic saddles located away from the critical curve. (English) Zbl 07496404 J. Differ. Equations 320, 479-509 (2022). MSC: 34E17 34C07 34C23 34C05 34E15 34C26 PDF BibTeX XML Cite \textit{R. Huzak}, J. Differ. Equations 320, 479--509 (2022; Zbl 07496404) Full Text: DOI OpenURL
Duyckaerts, Thomas; Kenig, Carlos; Martel, Yvan; Merle, Frank Soliton resolution for critical co-rotational wave maps and radial cubic wave equation. (English) Zbl 07496341 Commun. Math. Phys. 391, No. 2, 779-871 (2022). Reviewer: Dongbing Zha (Shanghai) MSC: 35L71 35B40 35B44 35L15 35Q55 PDF BibTeX XML Cite \textit{T. Duyckaerts} et al., Commun. Math. Phys. 391, No. 2, 779--871 (2022; Zbl 07496341) Full Text: DOI OpenURL
Agarwal, Ravi P.; Alghamdi, Ahmad M. A.; Gala, Sadek; Ragusa, Maria Alessandra On the continuation principle of local smooth solution for the Hall-MHD equations. (English) Zbl 07495656 Appl. Anal. 101, No. 2, 545-553 (2022). MSC: 35Q35 76W05 35B65 35B44 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Appl. Anal. 101, No. 2, 545--553 (2022; Zbl 07495656) Full Text: DOI OpenURL
Chen, Wenhui; D’Abbicco, Marcello; Girardi, Giovanni Global small data solutions for semilinear waves with two dissipative terms. (English) Zbl 07495347 Ann. Mat. Pura Appl. (4) 201, No. 2, 529-560 (2022). MSC: 35L71 35B33 35B40 35B44 35L71 PDF BibTeX XML Cite \textit{W. Chen} et al., Ann. Mat. Pura Appl. (4) 201, No. 2, 529--560 (2022; Zbl 07495347) Full Text: DOI OpenURL
Lu, Heqian; Hu, Bei; Zhang, Zhengce Blowup time estimates for the heat equation with a nonlocal boundary condition. (English) Zbl 1485.35074 Z. Angew. Math. Phys. 73, No. 2, Paper No. 60, 15 p. (2022). MSC: 35B44 35C15 35K05 35K60 PDF BibTeX XML Cite \textit{H. Lu} et al., Z. Angew. Math. Phys. 73, No. 2, Paper No. 60, 15 p. (2022; Zbl 1485.35074) Full Text: DOI OpenURL
Gala, Sadek; Galakhov, Eugeny; Ragusa, Maria Alessandra; Salieva, Olga Beale-Kato-Majda regularity criterion of smooth solutions for the Hall-MHD equations with zero viscosity. (English) Zbl 1485.35094 Bull. Braz. Math. Soc. (N.S.) 53, No. 1, 229-241 (2022). MSC: 35B65 35B44 35Q35 76W05 PDF BibTeX XML Cite \textit{S. Gala} et al., Bull. Braz. Math. Soc. (N.S.) 53, No. 1, 229--241 (2022; Zbl 1485.35094) Full Text: DOI OpenURL
Wang, Hao; Luo, Ting; Fu, Ying; Qu, Changzheng Blow-up and peakons for a higher-order \(\mu\)-Camassa-Holm equation. (English) Zbl 1485.35078 J. Evol. Equ. 22, No. 1, Paper No. 13, 33 p. (2022). MSC: 35B44 35C07 35G25 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Evol. Equ. 22, No. 1, Paper No. 13, 33 p. (2022; Zbl 1485.35078) Full Text: DOI OpenURL
Ipocoana, Erica; Rebucci, Annalaura Pointwise estimates for degenerate Kolmogorov equations with \(L^p\)-source term. (English) Zbl 1487.35134 J. Evol. Equ. 22, No. 1, Paper No. 2, 25 p. (2022). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 35B45 35B44 35K70 35K65 35B65 PDF BibTeX XML Cite \textit{E. Ipocoana} and \textit{A. Rebucci}, J. Evol. Equ. 22, No. 1, Paper No. 2, 25 p. (2022; Zbl 1487.35134) Full Text: DOI arXiv OpenURL
Dai, Mimi; Friedlander, Susan Dyadic models for ideal MHD. (English) Zbl 07488930 J. Math. Fluid Mech. 24, No. 1, Paper No. 21, 18 p. (2022). MSC: 35Q35 76B03 76W05 76B25 35D30 35B44 35A01 35A02 PDF BibTeX XML Cite \textit{M. Dai} and \textit{S. Friedlander}, J. Math. Fluid Mech. 24, No. 1, Paper No. 21, 18 p. (2022; Zbl 07488930) Full Text: DOI arXiv OpenURL
Barsukow, Wasilij; Klingenberg, Christian Exact solution and the multidimensional Godunov scheme for the acoustic equations. (English) Zbl 07488296 ESAIM, Math. Model. Numer. Anal. 56, No. 1, 317-347 (2022). MSC: 35Qxx 35B08 35B44 35C05 35E05 35E15 35F40 35L03 35Q35 65M08 PDF BibTeX XML Cite \textit{W. Barsukow} and \textit{C. Klingenberg}, ESAIM, Math. Model. Numer. Anal. 56, No. 1, 317--347 (2022; Zbl 07488296) Full Text: DOI arXiv OpenURL
Iagar, Razvan Gabriel; Muñoz, Ana Isabel; Sánchez, Ariel Self-similar blow-up patterns for a reaction-diffusion equation with weighted reaction in general dimension. (English) Zbl 1484.35108 Commun. Pure Appl. Anal. 21, No. 3, 891-925 (2022). MSC: 35C06 35A24 35B44 35K57 35K65 PDF BibTeX XML Cite \textit{R. G. Iagar} et al., Commun. Pure Appl. Anal. 21, No. 3, 891--925 (2022; Zbl 1484.35108) Full Text: DOI arXiv OpenURL
Wang, Qi; Zhang, Yanyan Asymptotic and quenching behaviors of semilinear parabolic systems with singular nonlinearities. (English) Zbl 1484.35067 Commun. Pure Appl. Anal. 21, No. 3, 797-816 (2022). MSC: 35B40 35B44 35K51 35K58 53C35 PDF BibTeX XML Cite \textit{Q. Wang} and \textit{Y. Zhang}, Commun. Pure Appl. Anal. 21, No. 3, 797--816 (2022; Zbl 1484.35067) Full Text: DOI OpenURL
Cai, Yongli; Cao, Qian; Wang, Zhi-An Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis. (English) Zbl 1484.35046 Appl. Anal. 101, No. 1, 81-99 (2022). MSC: 35B40 35B36 35B44 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{Y. Cai} et al., Appl. Anal. 101, No. 1, 81--99 (2022; Zbl 1484.35046) Full Text: DOI OpenURL