Ferreira, Raúl; de Pablo, Arturo Blow-up for a fully fractional heat equation. (English) Zbl 07773449 Discrete Contin. Dyn. Syst. 44, No. 2, 569-584 (2024). MSC: 35B44 35R09 35R11 26A33 PDF BibTeX XML Cite \textit{R. Ferreira} and \textit{A. de Pablo}, Discrete Contin. Dyn. Syst. 44, No. 2, 569--584 (2024; Zbl 07773449) Full Text: DOI arXiv
Li, Xiaomeng Anisotropic singular Trudinger-Moser inequalities on the whole Euclidean space. (English) Zbl 07773444 Discrete Contin. Dyn. Syst. 44, No. 2, 462-490 (2024). MSC: 46E35 35A15 PDF BibTeX XML Cite \textit{X. Li}, Discrete Contin. Dyn. Syst. 44, No. 2, 462--490 (2024; Zbl 07773444) Full Text: DOI
Dodson, Benjamin A Liouville theorem for the Chern-Simons-Schrödinger equation. (English) Zbl 07773443 Discrete Contin. Dyn. Syst. 44, No. 2, 447-461 (2024). MSC: 35Q55 35Q41 35Q40 35Q51 35C08 35B44 35B53 35R09 81V80 PDF BibTeX XML Cite \textit{B. Dodson}, Discrete Contin. Dyn. Syst. 44, No. 2, 447--461 (2024; Zbl 07773443) Full Text: DOI arXiv
Carrillo, José A.; Peng, Yingping; Xiang, Zhaoyin Global existence and decay rates to a self-consistent chemotaxis-fluid system. (English) Zbl 07770126 Discrete Contin. Dyn. Syst. 44, No. 1, 116-153 (2024). MSC: 35B40 35K51 35K59 35Q35 92C17 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., Discrete Contin. Dyn. Syst. 44, No. 1, 116--153 (2024; Zbl 07770126) Full Text: DOI arXiv
Ding, Hang; Zhou, Jun Global solutions and blow-up for a coupled system of nonlinear hyperbolic equations with weak damping. (English) Zbl 07770121 Discrete Contin. Dyn. Syst., Ser. B 29, No. 1, 550-572 (2024). MSC: 35Q74 35A01 35B44 74H35 74K05 74K10 74H45 PDF BibTeX XML Cite \textit{H. Ding} and \textit{J. Zhou}, Discrete Contin. Dyn. Syst., Ser. B 29, No. 1, 550--572 (2024; Zbl 07770121) Full Text: DOI
Yang, Tong; Zhou, Yu-Long An explicit coercivity estimate of the linearized quantum Boltzmann operator without angular cutoff. (English) Zbl 07765657 J. Funct. Anal. 286, No. 1, Article ID 110197, 33 p. (2024). MSC: 35Q20 82C40 81V73 82C26 82C10 35B44 PDF BibTeX XML Cite \textit{T. Yang} and \textit{Y.-L. Zhou}, J. Funct. Anal. 286, No. 1, Article ID 110197, 33 p. (2024; Zbl 07765657) Full Text: DOI arXiv
Angeloni, Sabina; Esposito, Pierpaolo The quasi-linear Brezis-Nirenberg problem in low dimensions. (English) Zbl 07765644 J. Funct. Anal. 286, No. 1, Article ID 110176, 26 p. (2024). MSC: 35Jxx 35Bxx 58Jxx PDF BibTeX XML Cite \textit{S. Angeloni} and \textit{P. Esposito}, J. Funct. Anal. 286, No. 1, Article ID 110176, 26 p. (2024; Zbl 07765644) Full Text: DOI arXiv
Freire, Igor Leite Breakdown of pseudospherical surfaces determined by the Camassa-Holm equation. (English) Zbl 07765626 J. Differ. Equations 378, 339-359 (2024). MSC: 53A07 35A30 35A01 PDF BibTeX XML Cite \textit{I. L. Freire}, J. Differ. Equations 378, 339--359 (2024; Zbl 07765626) Full Text: DOI
Ferreira, Lucas C. F.; Machado, Daniel F. On the well-posedness in Besov-Herz spaces for the inhomogeneous incompressible Euler equations. (English) Zbl 07764844 Dyn. Partial Differ. Equ. 21, No. 1, 1-29 (2024). MSC: 35Q31 35Q35 35Q49 76B03 35B30 35B44 35B65 35A01 35A02 42B35 42B37 PDF BibTeX XML Cite \textit{L. C. F. Ferreira} and \textit{D. F. Machado}, Dyn. Partial Differ. Equ. 21, No. 1, 1--29 (2024; Zbl 07764844) Full Text: DOI arXiv
Jaiswal, Anjali; Tyagi, Jagmohan Finite time blow-up in a parabolic-elliptic Keller-Segel system with flux dependent chemotactic coefficient. (English) Zbl 07761671 Nonlinear Anal., Real World Appl. 75, Article ID 103985, 33 p. (2024). MSC: 35B44 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{A. Jaiswal} and \textit{J. Tyagi}, Nonlinear Anal., Real World Appl. 75, Article ID 103985, 33 p. (2024; Zbl 07761671) Full Text: DOI
Wu, Lina Simple blow-up solutions of singular Liouville equations. (English) Zbl 07757754 Proc. Am. Math. Soc. 152, No. 1, 345-356 (2024). MSC: 35J61 35J15 35J75 35A01 PDF BibTeX XML Cite \textit{L. Wu}, Proc. Am. Math. Soc. 152, No. 1, 345--356 (2024; Zbl 07757754) Full Text: DOI arXiv
Lv, Zequn; Győri, Ervin; He, Zhen; Salia, Nika; Tompkins, Casey; Varga, Kitti; Zhu, Xiutao Generalized Turán numbers for the edge blow-up of a graph. (English) Zbl 07756946 Discrete Math. 347, No. 1, Article ID 113682, 6 p. (2024). MSC: 05C35 05C30 PDF BibTeX XML Cite \textit{Z. Lv} et al., Discrete Math. 347, No. 1, Article ID 113682, 6 p. (2024; Zbl 07756946) Full Text: DOI arXiv
Feng, Baowei; Guo, Yanqiu; Rammaha, Mohammad A. Blow-up theorems for a structural acoustics model. (English) Zbl 1522.35104 J. Math. Anal. Appl. 529, No. 1, Article ID 127600, 26 p. (2024). MSC: 35B44 35L57 35L71 PDF BibTeX XML Cite \textit{B. Feng} et al., J. Math. Anal. Appl. 529, No. 1, Article ID 127600, 26 p. (2024; Zbl 1522.35104) Full Text: DOI arXiv
Torebek, Berikbol T. Critical exponents for the \(p\)-Laplace heat equations with combined nonlinearities. (English) Zbl 07773343 J. Evol. Equ. 23, No. 4, Paper No. 71, 15 p. (2023). MSC: 35K92 35B33 35B44 PDF BibTeX XML Cite \textit{B. T. Torebek}, J. Evol. Equ. 23, No. 4, Paper No. 71, 15 p. (2023; Zbl 07773343) Full Text: DOI arXiv
Massey, David B. Necessary codimension one components of the projection of the Jacobian blow-up. (English) Zbl 07773321 Bull. Braz. Math. Soc. (N.S.) 54, No. 4, Paper No. 58, 7 p. (2023). MSC: 32S25 32S05 32S30 32S50 PDF BibTeX XML Cite \textit{D. B. Massey}, Bull. Braz. Math. Soc. (N.S.) 54, No. 4, Paper No. 58, 7 p. (2023; Zbl 07773321) Full Text: DOI OA License
Gheraibia, Billel; Boumaza, Nouri Initial boundary value problem for a viscoelastic wave equation with Balakrishnan-Taylor damping and a delay term: decay estimates and blow-up result. (English) Zbl 07773189 Bound. Value Probl. 2023, Paper No. 93, 17 p. (2023). MSC: 35B40 35B44 35L20 35L72 35R09 PDF BibTeX XML Cite \textit{B. Gheraibia} and \textit{N. Boumaza}, Bound. Value Probl. 2023, Paper No. 93, 17 p. (2023; Zbl 07773189) Full Text: DOI OA License
Zhan, Huashui The fundamental solution and blow-up problem of an anisotropic parabolic equation. (English) Zbl 07773188 Bound. Value Probl. 2023, Paper No. 92, 19 p. (2023). MSC: 35A08 35B44 35K25 35K92 PDF BibTeX XML Cite \textit{H. Zhan}, Bound. Value Probl. 2023, Paper No. 92, 19 p. (2023; Zbl 07773188) Full Text: DOI OA License
Ben Ayed, Mohamed; El Mehdi, Khalil Nonexistence of interior bubbling solutions for slightly supercritical elliptic problems. (English) Zbl 07773186 Bound. Value Probl. 2023, Paper No. 90, 34 p. (2023). MSC: 35Jxx 35A15 35J20 35J25 PDF BibTeX XML Cite \textit{M. Ben Ayed} and \textit{K. El Mehdi}, Bound. Value Probl. 2023, Paper No. 90, 34 p. (2023; Zbl 07773186) Full Text: DOI OA License
Ming, Sen; Du, Jiayi; Ma, Yaxian; Su, Yeqin Formation of singularity of solution to a nonlinear shallow water equation. (English) Zbl 07772814 J. Inequal. Appl. 2023, Paper No. 37, 15 p. (2023). MSC: 37Kxx 35Qxx 35Gxx PDF BibTeX XML Cite \textit{S. Ming} et al., J. Inequal. Appl. 2023, Paper No. 37, 15 p. (2023; Zbl 07772814) Full Text: DOI
Chen, Kailun; Zhou, Jun Well-posedness and dynamical properties for extensible beams with nonlocal frictional damping and polynomial nonlinearity. (English) Zbl 07771779 Appl. Math. Optim. 88, No. 3, Paper No. 92, 35 p. (2023). MSC: 35B40 35B44 35L35 35L72 74K10 PDF BibTeX XML Cite \textit{K. Chen} and \textit{J. Zhou}, Appl. Math. Optim. 88, No. 3, Paper No. 92, 35 p. (2023; Zbl 07771779) Full Text: DOI
Ren, Guoqiang; Liu, Bin Boundedness in a three-dimensional chemotaxis-Stokes system involving a subcritical sensitivity and indirect signal production. (English) Zbl 07771476 Commun. Math. Sci. 21, No. 6, 1589-1607 (2023). MSC: 35K65 35K51 35K59 35Q35 92C17 PDF BibTeX XML Cite \textit{G. Ren} and \textit{B. Liu}, Commun. Math. Sci. 21, No. 6, 1589--1607 (2023; Zbl 07771476) Full Text: DOI
Dasgupta, Aparajita; Kumar, Vishvesh; Mondal, Shyam Swarup Nonlinear fractional damped wave equation on compact Lie groups. (English) Zbl 07770080 Asymptotic Anal. 134, No. 3-4, 485-511 (2023). MSC: 35Qxx PDF BibTeX XML Cite \textit{A. Dasgupta} et al., Asymptotic Anal. 134, No. 3--4, 485--511 (2023; Zbl 07770080) Full Text: DOI arXiv
Yin, Kexin Extremals for a Hardy-Trudinger-Moser inequality with remainder terms. (English) Zbl 07769092 Bull. Iran. Math. Soc. 49, No. 5, Paper No. 64, 15 p. (2023). MSC: 46E35 PDF BibTeX XML Cite \textit{K. Yin}, Bull. Iran. Math. Soc. 49, No. 5, Paper No. 64, 15 p. (2023; Zbl 07769092) Full Text: DOI
Matsui, Naoki Minimal-mass blow-up solutions for inhomogeneous nonlinear Schrödinger equations with growing potentials. (English) Zbl 07768175 Ark. Mat. 61, No. 2, 413-436 (2023). MSC: 35Q55 35Q41 35B44 35B65 35A01 35A02 81Q05 PDF BibTeX XML Cite \textit{N. Matsui}, Ark. Mat. 61, No. 2, 413--436 (2023; Zbl 07768175) Full Text: DOI arXiv
Seregin, G. Local regularity of axisymmetric solutions to the Navier-Stokes equations. Previously published in the journal Analysis and Mathematical Physics, Special issue: Harmonic analysis and partial differential equations 10, No. 4 (2020), 11, No. 1–4 (2021) and 12, No. 2 (2022). (English) Zbl 07767922 Golberg, Anatoly (ed.) et al., Harmonic analysis and partial differential equations. In honor of Vladimir Maz’ya. Selected papers based on the presentations at the international conference, Holon, Israel, May 26–31, 2019. Cham: Birkhäuser. 275-294 (2023). MSC: 35Q30 76D05 35B44 35B65 35B07 PDF BibTeX XML Cite \textit{G. Seregin}, in: Harmonic analysis and partial differential equations. In honor of Vladimir Maz'ya. Selected papers based on the presentations at the international conference, Holon, Israel, May 26--31, 2019. Cham: Birkhäuser. 275--294 (2023; Zbl 07767922) Full Text: DOI
Chase, Benjamin; Porter, David; Shen, Yijun; Smith, Vernon Complements and substitutes in a dynamic consumption-asset economy: a laboratory experiment. (English) Zbl 07767373 Discrete Contin. Dyn. Syst., Ser. S 16, No. 9, 2241-2278 (2023). MSC: 91-XX PDF BibTeX XML Cite \textit{B. Chase} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 9, 2241--2278 (2023; Zbl 07767373) Full Text: DOI
Wondo, Hosea Calabi symmetry and the continuity method. (English) Zbl 07766076 Int. J. Math. 34, No. 12, Article ID 2350076, 27 p. (2023). Reviewer: Masaya Kawamura (Nagoya) MSC: 53C55 32Q15 PDF BibTeX XML Cite \textit{H. Wondo}, Int. J. Math. 34, No. 12, Article ID 2350076, 27 p. (2023; Zbl 07766076) Full Text: DOI arXiv
Hong, Baojian; Zhou, Jiaxin; Zhu, Xingchen; Wang, Yiting Some novel optical solutions for the generalized \(M\)-fractional coupled NLS system. (English) Zbl 07764942 J. Funct. Spaces 2023, Article ID 8283092, 17 p. (2023). MSC: 35R11 35C08 35Q55 PDF BibTeX XML Cite \textit{B. Hong} et al., J. Funct. Spaces 2023, Article ID 8283092, 17 p. (2023; Zbl 07764942) Full Text: DOI
Jendrej, Jacek; Lawrie, Andrew Bubble decomposition for the harmonic map heat flow in the equivariant case. (English) Zbl 07764870 Calc. Var. Partial Differ. Equ. 62, No. 9, Paper No. 264, 36 p. (2023). MSC: 35B40 35B44 35K15 35K58 37K40 53C43 PDF BibTeX XML Cite \textit{J. Jendrej} and \textit{A. Lawrie}, Calc. Var. Partial Differ. Equ. 62, No. 9, Paper No. 264, 36 p. (2023; Zbl 07764870) Full Text: DOI arXiv OA License
Morisawa, Katsuaki; Sasaki, Takiko; Takamura, Hiroyuki Erratum to: “The combined effect in one space dimension beyond the general theory for nonlinear wave equations”. (English) Zbl 07764457 Commun. Pure Appl. Anal. 22, No. 10, 3200-3202 (2023). MSC: 35L71 35B44 PDF BibTeX XML Cite \textit{K. Morisawa} et al., Commun. Pure Appl. Anal. 22, No. 10, 3200--3202 (2023; Zbl 07764457) Full Text: DOI
Hamouda, Makram; Majdoub, Mohamed Existence and nonexistence of global solutions for time-dependent damped NLS equations. (English) Zbl 07764452 Commun. Pure Appl. Anal. 22, No. 10, 3083-3098 (2023). MSC: 35Q55 35Q41 35A01 35A02 35B30 35B44 PDF BibTeX XML Cite \textit{M. Hamouda} and \textit{M. Majdoub}, Commun. Pure Appl. Anal. 22, No. 10, 3083--3098 (2023; Zbl 07764452) Full Text: DOI arXiv
Duong, Giao Ky; Nouaili, Nejla; Zaag, Hatem Modulation theory for the flat blow-up solutions of nonlinear heat equation. (English) Zbl 07764447 Commun. Pure Appl. Anal. 22, No. 10, 2925-2959 (2023). MSC: 35B44 35B40 35K15 35K57 PDF BibTeX XML Cite \textit{G. K. Duong} et al., Commun. Pure Appl. Anal. 22, No. 10, 2925--2959 (2023; Zbl 07764447) Full Text: DOI arXiv
Painter, Kevin J.; Winkler, Michael Phenotype switching in chemotaxis aggregation models controls the spontaneous emergence of large densities. (English) Zbl 07763815 SIAM J. Appl. Math. 83, No. 5, 2096-2117 (2023). MSC: 35B44 35B36 35B45 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{K. J. Painter} and \textit{M. Winkler}, SIAM J. Appl. Math. 83, No. 5, 2096--2117 (2023; Zbl 07763815) Full Text: DOI arXiv
Martel, Yvan; Naumkin, Ivan Nonflat conformal blow-up profiles for the 1-dimensional critical nonlinear Schrödinger equation. (English) Zbl 07763149 Tunis. J. Math. 5, No. 3, 505-572 (2023). MSC: 35Q55 35Q41 35B44 35B40 35C08 37K40 PDF BibTeX XML Cite \textit{Y. Martel} and \textit{I. Naumkin}, Tunis. J. Math. 5, No. 3, 505--572 (2023; Zbl 07763149) Full Text: DOI
Donninger, Roland; Ostermann, Matthias A globally stable self-similar blowup profile in energy supercritical Yang-Mills theory. (English) Zbl 07762588 Commun. Partial Differ. Equations 48, No. 9, 1148-1213 (2023). MSC: 35B44 35C06 81T13 PDF BibTeX XML Cite \textit{R. Donninger} and \textit{M. Ostermann}, Commun. Partial Differ. Equations 48, No. 9, 1148--1213 (2023; Zbl 07762588) Full Text: DOI arXiv OA License
Xu, Guangyu Emergence of large densities in a chemotaxis system with signaling loops, nonlinear signal productions and competitions sources under nonradial symmetry case. (English) Zbl 07762486 Discrete Contin. Dyn. Syst. 43, No. 12, 4361-4392 (2023). MSC: 35B44 35B25 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{G. Xu}, Discrete Contin. Dyn. Syst. 43, No. 12, 4361--4392 (2023; Zbl 07762486) Full Text: DOI
Wu, Zhi Wei; Kang, Li Ying Turán number of the family consisting of a blow-up of a cycle and a blow-up of a star. (English) Zbl 07762014 Acta Math. Sin., Engl. Ser. 39, No. 10, 1980-1988 (2023). MSC: 05C30 05C35 PDF BibTeX XML Cite \textit{Z. W. Wu} and \textit{L. Y. Kang}, Acta Math. Sin., Engl. Ser. 39, No. 10, 1980--1988 (2023; Zbl 07762014) Full Text: DOI
Han, Fangyu; Tan, Zhong Asymptotic stability of explicit infinite energy blowup solutions of the 3D incompressible Navier-Stokes equations. (English) Zbl 07761598 Sci. China, Math. 66, No. 11, 2523-2544 (2023). MSC: 35Q30 35B35 35B40 35B44 76D05 35K55 PDF BibTeX XML Cite \textit{F. Han} and \textit{Z. Tan}, Sci. China, Math. 66, No. 11, 2523--2544 (2023; Zbl 07761598) Full Text: DOI
Marshall, Elliot; Oliynyk, Todd A. On the stability of relativistic perfect fluids with linear equations of state \(p=K\rho\) where \(1/3<K<1\). (English) Zbl 07761585 Lett. Math. Phys. 113, No. 5, Paper No. 102, 32 p. (2023). MSC: 35Q75 35Q07 35Q31 83F05 76Y05 35L45 35B35 35B20 35B40 35B44 35A01 35A02 65N06 65L06 65M12 PDF BibTeX XML Cite \textit{E. Marshall} and \textit{T. A. Oliynyk}, Lett. Math. Phys. 113, No. 5, Paper No. 102, 32 p. (2023; Zbl 07761585) Full Text: DOI arXiv OA License
Shahrouzi, Mohammad; Ferreira, Jorge; Tahamtani, Faramarz Global existence, asymptotic stability and blow up of solutions for a nonlinear viscoelastic plate equation involving \((p(x), q(x))\)-Laplacian operator. (English) Zbl 07761221 Z. Anal. Anwend. 42, No. 1-2, 91-115 (2023). MSC: 35B40 35B44 35L35 35L71 35R09 PDF BibTeX XML Cite \textit{M. Shahrouzi} et al., Z. Anal. Anwend. 42, No. 1--2, 91--115 (2023; Zbl 07761221) Full Text: DOI
Lai, Ning-An; Schiavone, Nico Michele Lifespan estimates for the compressible Euler equations with damping via Orlicz spaces techniques. (English) Zbl 07760686 J. Evol. Equ. 23, No. 4, Paper No. 65, 29 p. (2023). MSC: 35Q31 76N10 35L65 35L67 35B44 46E30 PDF BibTeX XML Cite \textit{N.-A. Lai} and \textit{N. M. Schiavone}, J. Evol. Equ. 23, No. 4, Paper No. 65, 29 p. (2023; Zbl 07760686) Full Text: DOI arXiv
Pan, Xiaolin; Zhou, Shouming; Qiao, Zhijun A generalized two-component Camassa-Holm system with complex nonlinear terms and Waltzing peakons. (English) Zbl 07759444 J. Nonlinear Math. Phys. 30, No. 3, 1153-1189 (2023). MSC: 35Q51 37K10 35Q35 35C08 PDF BibTeX XML Cite \textit{X. Pan} et al., J. Nonlinear Math. Phys. 30, No. 3, 1153--1189 (2023; Zbl 07759444) Full Text: DOI OA License
Hu, Zhihao; Shi, Qihong Blow-up solutions for the space-time fractional evolution equation. (English) Zbl 07759433 J. Nonlinear Math. Phys. 30, No. 3, 917-931 (2023). MSC: 35R11 35B44 26A33 PDF BibTeX XML Cite \textit{Z. Hu} and \textit{Q. Shi}, J. Nonlinear Math. Phys. 30, No. 3, 917--931 (2023; Zbl 07759433) Full Text: DOI OA License
Hamano, Masaru; Kikuchi, Hiroaki; Watanabe, Minami Threshold solutions for the 3D focusing cubic-quintic nonlinear Schrödinger equation at low frequencies. (English) Zbl 07759246 Dyn. Partial Differ. Equ. 20, No. 4, 263-297 (2023). MSC: 35B40 35B44 35Q55 35P25 PDF BibTeX XML Cite \textit{M. Hamano} et al., Dyn. Partial Differ. Equ. 20, No. 4, 263--297 (2023; Zbl 07759246) Full Text: DOI arXiv
Chen, Hebai; Zhang, Rui; Zhang, Xiang Dynamics of polynomial Rayleigh-Duffing system near infinity and its global phase portraits with a center. (English) Zbl 07759065 Adv. Math. 433, Article ID 109326, 37 p. (2023). MSC: 34C05 34C25 PDF BibTeX XML Cite \textit{H. Chen} et al., Adv. Math. 433, Article ID 109326, 37 p. (2023; Zbl 07759065) Full Text: DOI
Chae, Dongho On Liouville type theorems for the self-similar solutions to the generalized Euler equations. (English) Zbl 07759061 Adv. Math. 433, Article ID 109316, 10 p. (2023). MSC: 35Q31 76B03 86A05 35C06 35B53 35B10 35B44 PDF BibTeX XML Cite \textit{D. Chae}, Adv. Math. 433, Article ID 109316, 10 p. (2023; Zbl 07759061) Full Text: DOI
Donninger, Roland; Wallauch, David Optimal blowup stability for supercritical wave maps. (English) Zbl 07759049 Adv. Math. 433, Article ID 109291, 86 p. (2023). MSC: 35B44 35B35 35C06 35L71 PDF BibTeX XML Cite \textit{R. Donninger} and \textit{D. Wallauch}, Adv. Math. 433, Article ID 109291, 86 p. (2023; Zbl 07759049) Full Text: DOI arXiv
Zhang, Zhijun; Xia, Susu Existence of entire large convex radially solutions to a class of Hessian type equations with weights. (English) Zbl 07758542 J. Elliptic Parabol. Equ. 9, No. 2, 989-1002 (2023). MSC: 35B08 35B44 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{S. Xia}, J. Elliptic Parabol. Equ. 9, No. 2, 989--1002 (2023; Zbl 07758542) Full Text: DOI
Winkler, Michael Solutions to the Keller-Segel system with non-integrable behavior at spatial infinity. (English) Zbl 07758540 J. Elliptic Parabol. Equ. 9, No. 2, 919-959 (2023). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35K58 35B40 35B44 PDF BibTeX XML Cite \textit{M. Winkler}, J. Elliptic Parabol. Equ. 9, No. 2, 919--959 (2023; Zbl 07758540) Full Text: DOI OA License
Wan, Haitao; Shi, Yongxiu The optimal global estimates and boundary behavior for large solutions to the \(k\)-Hessian equation. (English) Zbl 07758520 Front. Math. (Berl./Heidelb.) 18, No. 2, 341-383 (2023). MSC: 35J60 35J96 35A01 35B40 PDF BibTeX XML Cite \textit{H. Wan} and \textit{Y. Shi}, Front. Math. (Berl./Heidelb.) 18, No. 2, 341--383 (2023; Zbl 07758520) Full Text: DOI arXiv
Muratori, Matteo; Petitt, Troy An inhomogeneous porous medium equation with large data: well-posedness. (English) Zbl 07758150 J. Differ. Equations 377, 712-758 (2023). MSC: 35K65 35A01 35A02 35A24 35B44 35B45 35B51 35D35 35K15 35K55 PDF BibTeX XML Cite \textit{M. Muratori} and \textit{T. Petitt}, J. Differ. Equations 377, 712--758 (2023; Zbl 07758150) Full Text: DOI arXiv
Ai, Chengfei; Tan, Zhong; Zhou, Jianfeng Global existence and decay estimate of solution to rate type viscoelastic fluids. (English) Zbl 07758136 J. Differ. Equations 377, 188-220 (2023). MSC: 35Q35 76A10 35B44 35D30 35A01 35A02 PDF BibTeX XML Cite \textit{C. Ai} et al., J. Differ. Equations 377, 188--220 (2023; Zbl 07758136) Full Text: DOI
Golding, William Unconditional regularity and trace results for the isentropic Euler equations with \(\gamma = 3\). (English) Zbl 07757957 SIAM J. Math. Anal. 55, No. 5, 5751-5781 (2023). MSC: 35B65 35L40 35L65 35Q31 PDF BibTeX XML Cite \textit{W. Golding}, SIAM J. Math. Anal. 55, No. 5, 5751--5781 (2023; Zbl 07757957) Full Text: DOI arXiv
Davies, Joseph P.; Koch, Gabriel S. Navier-Stokes blowup rates in certain Besov spaces whose regularity exceeds the critical value by \(\epsilon \in [1,2]\). (English) Zbl 07757946 SIAM J. Math. Anal. 55, No. 5, 5432-5444 (2023). MSC: 35Q30 76D05 35B44 35B65 42B25 PDF BibTeX XML Cite \textit{J. P. Davies} and \textit{G. S. Koch}, SIAM J. Math. Anal. 55, No. 5, 5432--5444 (2023; Zbl 07757946) Full Text: DOI arXiv
Barker, Tobias Localized quantitative estimates and potential blow-up rates for the Navier-Stokes equations. (English) Zbl 07757941 SIAM J. Math. Anal. 55, No. 5, 5221-5259 (2023). MSC: 35Q30 76D05 35K55 35B44 35B65 35D30 PDF BibTeX XML Cite \textit{T. Barker}, SIAM J. Math. Anal. 55, No. 5, 5221--5259 (2023; Zbl 07757941) Full Text: DOI arXiv
Zillinger, Christian On echo chains in the linearized Boussinesq equations around traveling waves. (English) Zbl 07757939 SIAM J. Math. Anal. 55, No. 5, 5127-5188 (2023). MSC: 35Q35 35Q79 76D05 35B40 35C07 35B44 35B05 35B65 PDF BibTeX XML Cite \textit{C. Zillinger}, SIAM J. Math. Anal. 55, No. 5, 5127--5188 (2023; Zbl 07757939) Full Text: DOI arXiv
Landoulsi, Oussama; Roudenko, Svetlana; Yang, Kai Interaction with an obstacle in the 2D focusing nonlinear Schrödinger equation. (English) Zbl 07757634 Adv. Comput. Math. 49, No. 5, Paper No. 71, 44 p. (2023). MSC: 35Q55 35Q41 58J32 58J37 65N06 65M06 35B40 35C08 35C07 35B44 35A01 35A23 35R09 PDF BibTeX XML Cite \textit{O. Landoulsi} et al., Adv. Comput. Math. 49, No. 5, Paper No. 71, 44 p. (2023; Zbl 07757634) Full Text: DOI arXiv
Tentarelli, Lorenzo A general review on the NLS equation with point-concentrated nonlinearity. (English) Zbl 07757596 Commun. Appl. Ind. Math. 14, No. 1, 62-84 (2023). MSC: 35Q40 35Q55 35R06 81Q99 PDF BibTeX XML Cite \textit{L. Tentarelli}, Commun. Appl. Ind. Math. 14, No. 1, 62--84 (2023; Zbl 07757596) Full Text: DOI arXiv OA License
Liu, Yang Nonexistence of global solutions for a class of nonlinear parabolic equations on graphs. (English) Zbl 07757202 Bull. Malays. Math. Sci. Soc. (2) 46, No. 6, Paper No. 189, 22 p. (2023). MSC: 35R02 35A01 35B44 35K58 35K92 PDF BibTeX XML Cite \textit{Y. Liu}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 6, Paper No. 189, 22 p. (2023; Zbl 07757202) Full Text: DOI
Li, Pengtao; Zhai, Zhichun Application of capacities to space-time fractional dissipative equations. I: Regularity and the blow-up set. (English) Zbl 07755503 Can. J. Math. 75, No. 6, 1904-1956 (2023). MSC: 26A33 35K05 31C15 PDF BibTeX XML Cite \textit{P. Li} and \textit{Z. Zhai}, Can. J. Math. 75, No. 6, 1904--1956 (2023; Zbl 07755503) Full Text: DOI OA License
Chae, Dongho; Wolf, Jörg On the discretely self-similar solutions to the Euler equations in \(\mathbb{R}^3\). (English) Zbl 07754903 J. Nonlinear Sci. 33, No. 6, Paper No. 115, 25 p. (2023). MSC: 35Q30 76D03 76D05 35C06 35B53 35B44 35B45 PDF BibTeX XML Cite \textit{D. Chae} and \textit{J. Wolf}, J. Nonlinear Sci. 33, No. 6, Paper No. 115, 25 p. (2023; Zbl 07754903) Full Text: DOI
Danielli, Donatella; Ognibene, Roberto On a weighted two-phase boundary obstacle problem. (English) Zbl 07754555 Indiana Univ. Math. J. 72, No. 4, 1627-1666 (2023). MSC: 35R35 35B40 35B44 35J25 35R11 PDF BibTeX XML Cite \textit{D. Danielli} and \textit{R. Ognibene}, Indiana Univ. Math. J. 72, No. 4, 1627--1666 (2023; Zbl 07754555) Full Text: DOI arXiv
Zhang, Jing; Mu, Chunlai; Tu, Xinyu Finite-time blow-up of solution for a chemotaxis model with singular sensitivity and logistic source. (English) Zbl 07754470 Z. Angew. Math. Phys. 74, No. 6, Paper No. 229, 27 p. (2023). MSC: 35B44 35B40 35K51 35K59 35K65 92C17 PDF BibTeX XML Cite \textit{J. Zhang} et al., Z. Angew. Math. Phys. 74, No. 6, Paper No. 229, 27 p. (2023; Zbl 07754470) Full Text: DOI
Sun, Xizheng; Liu, Bingchen Classification of initial energy to a pseudo-parabolic equation with \(p(x)\)-Laplacian. (English) Zbl 07753808 J. Dyn. Control Syst. 29, No. 3, 873-899 (2023). MSC: 35K70 35B44 35K67 35K92 PDF BibTeX XML Cite \textit{X. Sun} and \textit{B. Liu}, J. Dyn. Control Syst. 29, No. 3, 873--899 (2023; Zbl 07753808) Full Text: DOI
Li, Fengjie; Sun, Anqi Singular solutions in a \(p(x)\)-Laplace equation with multi-sources. (English) Zbl 07753797 J. Dyn. Control Syst. 29, No. 3, 625-645 (2023). MSC: 35K92 35B44 35K20 35K67 PDF BibTeX XML Cite \textit{F. Li} and \textit{A. Sun}, J. Dyn. Control Syst. 29, No. 3, 625--645 (2023; Zbl 07753797) Full Text: DOI
Bravetti, Alessandro; Jackman, Connor; Sloan, David Scaling symmetries, contact reduction and Poincaré’s dream. (English) Zbl 07753603 J. Phys. A, Math. Theor. 56, No. 43, Article ID 435203, 43 p. (2023). MSC: 37-XX 70-XX PDF BibTeX XML Cite \textit{A. Bravetti} et al., J. Phys. A, Math. Theor. 56, No. 43, Article ID 435203, 43 p. (2023; Zbl 07753603) Full Text: DOI arXiv OA License
Zhang, Dongxue; Zhou, Yonghui; Ji, Shuguan; Li, Xiaowan On the Cauchy problem for a weakly dissipative coupled Camassa-Holm system. (English) Zbl 07753449 Monatsh. Math. 202, No. 4, 857-873 (2023). MSC: 35B44 35G55 35Q35 PDF BibTeX XML Cite \textit{D. Zhang} et al., Monatsh. Math. 202, No. 4, 857--873 (2023; Zbl 07753449) Full Text: DOI
Umarov, Kh. G. Solution blow-up and global solvability of the Cauchy problem for the equation of moderately long longitudinal waves in a viscoelastic rod. (English. Russian original) Zbl 07752261 Comput. Math. Math. Phys. 63, No. 7, 1285-1299 (2023); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 7, 1177-1191 (2023). MSC: 35B44 35L30 74K10 PDF BibTeX XML Cite \textit{Kh. G. Umarov}, Comput. Math. Math. Phys. 63, No. 7, 1285--1299 (2023; Zbl 07752261); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 7, 1177--1191 (2023) Full Text: DOI
Korpusov, M. O.; Ovsyannikov, E. A. Local solvability, blow-up, and Hölder regularity of solutions to some Cauchy problems for nonlinear plasma wave equations. III: Cauchy problems. (English. Russian original) Zbl 07752257 Comput. Math. Math. Phys. 63, No. 7, 1218-1236 (2023); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 7, 1109-1127 (2023). MSC: 35B44 35B45 35L30 PDF BibTeX XML Cite \textit{M. O. Korpusov} and \textit{E. A. Ovsyannikov}, Comput. Math. Math. Phys. 63, No. 7, 1218--1236 (2023; Zbl 07752257); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 7, 1109--1127 (2023) Full Text: DOI
Liu, Mengyun; Wang, Chengbo The blow up of solutions to semilinear wave equations on asymptotically Euclidean manifolds. (English) Zbl 07751590 Discrete Contin. Dyn. Syst. 43, No. 11, 3987-4009 (2023). MSC: 35B44 35B09 35B33 35B40 35L15 35L71 58J45 PDF BibTeX XML Cite \textit{M. Liu} and \textit{C. Wang}, Discrete Contin. Dyn. Syst. 43, No. 11, 3987--4009 (2023; Zbl 07751590) Full Text: DOI arXiv
Hu, Yuxi; Racke, Reinhard Global existence versus blow-up for multidimensional hyperbolized compressible Navier-Stokes equations. (English) Zbl 07750776 SIAM J. Math. Anal. 55, No. 5, 4788-4815 (2023). MSC: 35L60 35B44 35Q30 76N06 PDF BibTeX XML Cite \textit{Y. Hu} and \textit{R. Racke}, SIAM J. Math. Anal. 55, No. 5, 4788--4815 (2023; Zbl 07750776) Full Text: DOI arXiv
Li, Haigang; Xu, Longjuan; Zhang, Peihao Stress blowup analysis when a suspending rigid particle approaches the boundary in Stokes flow: 2-dimensional case. (English) Zbl 07750767 SIAM J. Math. Anal. 55, No. 5, 4493-4536 (2023). MSC: 76D07 35B44 74G70 PDF BibTeX XML Cite \textit{H. Li} et al., SIAM J. Math. Anal. 55, No. 5, 4493--4536 (2023; Zbl 07750767) Full Text: DOI arXiv
Crin-Barat, Timothée; He, Qingyou; Shou, Ling-Yun The hyperbolic-parabolic chemotaxis system for vasculogenesis: global dynamics and relaxation limit toward a Keller-Segel model. (English) Zbl 07750766 SIAM J. Math. Anal. 55, No. 5, 4445-4492 (2023). MSC: 35Q92 35Q31 92C17 92C37 76N10 35B44 35B65 35A01 35A02 41A25 PDF BibTeX XML Cite \textit{T. Crin-Barat} et al., SIAM J. Math. Anal. 55, No. 5, 4445--4492 (2023; Zbl 07750766) Full Text: DOI arXiv
Dong, Jianwei; Zhang, Qiao; Yang, Yong Remarks on blowup of solutions for one-dimensional compressible Navier-Stokes equations with Maxwell’s law. (English) Zbl 07750728 Math. Nachr. 296, No. 10, 4523-4532 (2023). MSC: 35Q30 35Q35 76N10 76W05 35B44 PDF BibTeX XML Cite \textit{J. Dong} et al., Math. Nachr. 296, No. 10, 4523--4532 (2023; Zbl 07750728) Full Text: DOI
Zhong, Xin Singularity formation to the 2D Cauchy problem of nonbarotropic magnetohydrodynamic equations without heat conductivity. (English) Zbl 07749465 Math. Nachr. 296, No. 8, 3782-3801 (2023). MSC: 76W05 76N10 PDF BibTeX XML Cite \textit{X. Zhong}, Math. Nachr. 296, No. 8, 3782--3801 (2023; Zbl 07749465) Full Text: DOI
Bian, Shen; Wang, Quan; Li, Jing Critical mass capacity for two-dimensional Keller-Segel model with nonlocal reaction terms. (English) Zbl 07749166 Nonlinearity 36, No. 10, 5568-5608 (2023). MSC: 35B44 35B38 35K59 65M06 92C17 PDF BibTeX XML Cite \textit{S. Bian} et al., Nonlinearity 36, No. 10, 5568--5608 (2023; Zbl 07749166) Full Text: DOI
Wang, Shumao On blow up for a class of radial Hartree type equations. (English) Zbl 07748711 Calc. Var. Partial Differ. Equ. 62, No. 9, Paper No. 237, 30 p. (2023). MSC: 35Q55 35Q40 35B44 81V70 PDF BibTeX XML Cite \textit{S. Wang}, Calc. Var. Partial Differ. Equ. 62, No. 9, Paper No. 237, 30 p. (2023; Zbl 07748711) Full Text: DOI arXiv
Cheng, Jiazhuo; Wang, Qiru Global existence and finite time blowup for a fractional pseudo-parabolic \(p\)-Laplacian equation. (English) Zbl 1522.35101 Fract. Calc. Appl. Anal. 26, No. 4, 1916-1940 (2023). MSC: 35B44 35K70 35R11 35K20 35K55 PDF BibTeX XML Cite \textit{J. Cheng} and \textit{Q. Wang}, Fract. Calc. Appl. Anal. 26, No. 4, 1916--1940 (2023; Zbl 1522.35101) Full Text: DOI
Solís, Soveny; Vergara, Vicente Blow-up for a non-linear stable non-Gaussian process in fractional time. (English) Zbl 1522.60044 Fract. Calc. Appl. Anal. 26, No. 3, 1206-1237 (2023). MSC: 60G15 60G22 PDF BibTeX XML Cite \textit{S. Solís} and \textit{V. Vergara}, Fract. Calc. Appl. Anal. 26, No. 3, 1206--1237 (2023; Zbl 1522.60044) Full Text: DOI arXiv
Buckmaster, Tristan; Shkoller, Steve; Vicol, Vlad Formation of point shocks for 3D compressible Euler. (English) Zbl 07748331 Commun. Pure Appl. Math. 76, No. 9, 2073-2191 (2023). MSC: 35Q31 76L05 76N15 35B65 35B44 35B40 35A01 35C06 35A24 PDF BibTeX XML Cite \textit{T. Buckmaster} et al., Commun. Pure Appl. Math. 76, No. 9, 2073--2191 (2023; Zbl 07748331) Full Text: DOI arXiv
Buckmaster, Tristan; Shkoller, Steve; Vicol, Vlad Shock formation and vorticity creation for 3d Euler. (English) Zbl 07748330 Commun. Pure Appl. Math. 76, No. 9, 1965-2072 (2023). MSC: 35Q31 76L05 76N15 76Q05 76N30 35B65 35B44 35B40 35C06 PDF BibTeX XML Cite \textit{T. Buckmaster} et al., Commun. Pure Appl. Math. 76, No. 9, 1965--2072 (2023; Zbl 07748330) Full Text: DOI arXiv
Zhang, Xuemei; Feng, Meiqiang Boundary blow-up solutions to singular \(k\)-Hessian equations with gradient terms: sufficient and necessary conditions and asymptotic behavior. (English) Zbl 07748205 J. Differ. Equations 375, 475-513 (2023). MSC: 35J60 35J96 35B44 35B40 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{M. Feng}, J. Differ. Equations 375, 475--513 (2023; Zbl 07748205) Full Text: DOI
Melo, Wilberclay G.; Rocha, Natã Firmino New blow-up criteria for local solutions of the 3D generalized MHD equations in Lei-Lin-Gevrey spaces. (English) Zbl 07747219 Math. Nachr. 296, No. 2, 757-778 (2023). MSC: 35B44 35Q30 35A01 76D05 76W05 PDF BibTeX XML Cite \textit{W. G. Melo} and \textit{N. F. Rocha}, Math. Nachr. 296, No. 2, 757--778 (2023; Zbl 07747219) Full Text: DOI
Boudjeriou, Tahir Global well-posedness and finite time blow-up for a class of wave equation involving fractional \(p\)-Laplacian with logarithmic nonlinearity. (English) Zbl 07747136 Math. Nachr. 296, No. 3, 938-956 (2023). MSC: 35B44 35K20 35K59 35K92 35R11 PDF BibTeX XML Cite \textit{T. Boudjeriou}, Math. Nachr. 296, No. 3, 938--956 (2023; Zbl 07747136) Full Text: DOI
Kashkynbayev, Ardak; Suragan, Durvudkhan; Torebek, Berikbol T. Fisher-KPP equation on the Heisenberg group. (English) Zbl 07747118 Math. Nachr. 296, No. 6, 2395-2403 (2023). MSC: 35R03 35K57 PDF BibTeX XML Cite \textit{A. Kashkynbayev} et al., Math. Nachr. 296, No. 6, 2395--2403 (2023; Zbl 07747118) Full Text: DOI
Wang, Yamin A generalized mean field type flow on a closed Riemann surface. (English) Zbl 07747103 Math. Nachr. 296, No. 5, 2150-2166 (2023). MSC: 58J05 58J35 PDF BibTeX XML Cite \textit{Y. Wang}, Math. Nachr. 296, No. 5, 2150--2166 (2023; Zbl 07747103) Full Text: DOI
Rao, Sheng; Yang, Song; Yang, Xiangdong; Yu, Xun Hodge cohomology on blow-ups along subvarieties. (English) Zbl 07747072 Math. Nachr. 296, No. 7, 3003-3025 (2023). MSC: 14E05 14F43 PDF BibTeX XML Cite \textit{S. Rao} et al., Math. Nachr. 296, No. 7, 3003--3025 (2023; Zbl 07747072) Full Text: DOI arXiv
Mao, Xuan; Li, Yuxiang Critical mass for Keller-Segel systems with supercritical nonlinear sensitivity. (English) Zbl 07745995 Math. Models Methods Appl. Sci. 33, No. 11, 2395-2423 (2023). MSC: 35B33 35B40 35B44 35K51 35K65 92C17 PDF BibTeX XML Cite \textit{X. Mao} and \textit{Y. Li}, Math. Models Methods Appl. Sci. 33, No. 11, 2395--2423 (2023; Zbl 07745995) Full Text: DOI
Tao, Youshan (ed.); Winkler, Michael (ed.) Analysis of complex chemotaxis models. (English) Zbl 07745989 Math. Models Methods Appl. Sci. 33, No. 11, 2223-2225 (2023). MSC: 00B15 PDF BibTeX XML Cite \textit{Y. Tao} (ed.) and \textit{M. Winkler} (ed.), Math. Models Methods Appl. Sci. 33, No. 11, 2223--2225 (2023; Zbl 07745989) Full Text: DOI
Do, Tran Duc Variable-exponent reaction-diffusion equations with a special medium void and damping effects. (English) Zbl 07745857 Period. Math. Hung. 87, No. 1, 152-166 (2023). MSC: 35B44 35K20 35K59 PDF BibTeX XML Cite \textit{T. D. Do}, Period. Math. Hung. 87, No. 1, 152--166 (2023; Zbl 07745857) Full Text: DOI
Dozzi, Marco; Kolkovska, Ekaterina T.; López-Mimbela, José A.; Touibi, Rim Large time behaviour of semilinear stochastic partial differential equations perturbed by a mixture of Brownian and fractional Brownian motions. (English) Zbl 07745493 Stochastics 95, No. 7, 1192-1217 (2023). MSC: 60H15 60G22 35R60 35B40 35B44 35K58 PDF BibTeX XML Cite \textit{M. Dozzi} et al., Stochastics 95, No. 7, 1192--1217 (2023; Zbl 07745493) Full Text: DOI arXiv
Li, You; Liu, Yannan; Zhang, Wanwan Blowup of solutions for a transport equation with nonlocal velocity and damping. (English) Zbl 1521.35150 J. Math. Phys. 64, No. 9, Article ID 091503, 24 p. (2023). MSC: 35Q49 35B44 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Math. Phys. 64, No. 9, Article ID 091503, 24 p. (2023; Zbl 1521.35150) Full Text: DOI
Jin, Tianling; Xiong, Jingang Bubbling and extinction for some fast diffusion equations in bounded domains. (English) Zbl 07745206 Trans. Am. Math. Soc., Ser. B 10, 1287-1332 (2023). MSC: 35B40 35K20 35K57 35K65 53C21 PDF BibTeX XML Cite \textit{T. Jin} and \textit{J. Xiong}, Trans. Am. Math. Soc., Ser. B 10, 1287--1332 (2023; Zbl 07745206) Full Text: DOI arXiv
Lin, Hongyan; Li, Fengjie; Nie, Ziqi Blowup property of solutions in the parabolic equation with \(p\)-Laplacian operator and multi-nonlinearities. (English) Zbl 07744457 Appl. Anal. 102, No. 14, 3842-3860 (2023). MSC: 35B44 35B33 35B40 35K20 35K92 PDF BibTeX XML Cite \textit{H. Lin} et al., Appl. Anal. 102, No. 14, 3842--3860 (2023; Zbl 07744457) Full Text: DOI
Ding, Juntang; Pang, Wenjun Blow-up behavior for a degenerate parabolic systems subject to Neumann boundary conditions. (English) Zbl 07744454 Appl. Anal. 102, No. 13, 3795-3811 (2023). MSC: 35B44 35K51 35K59 35K65 PDF BibTeX XML Cite \textit{J. Ding} and \textit{W. Pang}, Appl. Anal. 102, No. 13, 3795--3811 (2023; Zbl 07744454) Full Text: DOI
Palmieri, Alessandro Lifespan estimates for local solutions to the semilinear wave equation in Einstein-de Sitter Spacetime. (English) Zbl 07744443 Appl. Anal. 102, No. 13, 3577-3608 (2023). MSC: 35B44 35L15 35L71 33C10 PDF BibTeX XML Cite \textit{A. Palmieri}, Appl. Anal. 102, No. 13, 3577--3608 (2023; Zbl 07744443) Full Text: DOI arXiv
Rahmoune, Abita Lower and upper bounds for the blow-up time to a viscoelastic Petrovsky wave equation with variable sources and memory term. (English) Zbl 07744440 Appl. Anal. 102, No. 12, 3503-3531 (2023). MSC: 35B44 35L35 35L71 35R09 74D10 PDF BibTeX XML Cite \textit{A. Rahmoune}, Appl. Anal. 102, No. 12, 3503--3531 (2023; Zbl 07744440) Full Text: DOI
Su, Yeqin; Lai, Shaoyong; Ming, Sen; Fan, Xiongmei Lifespan estimates of solutions to semilinear wave equations with damping term on the exterior domain. (English) Zbl 07744434 Appl. Anal. 102, No. 12, 3398-3417 (2023). MSC: 35B44 35L20 35L71 PDF BibTeX XML Cite \textit{Y. Su} et al., Appl. Anal. 102, No. 12, 3398--3417 (2023; Zbl 07744434) Full Text: DOI
Song, Haijing; Fu, Ying Local and global analyticity for the \(\mu\)-Novikov equation. (English) Zbl 07744433 Appl. Anal. 102, No. 12, 3374-3397 (2023). Reviewer: Giuseppe Maria Coclite (Bari) MSC: 35A20 35B30 35B44 35G31 PDF BibTeX XML Cite \textit{H. Song} and \textit{Y. Fu}, Appl. Anal. 102, No. 12, 3374--3397 (2023; Zbl 07744433) Full Text: DOI
Duruk Mutlubas, Nilay; Freire, Igor Leite The Cauchy problem and continuation of periodic solutions for a generalized Camassa-Holm equation. (English) Zbl 07744424 Appl. Anal. 102, No. 12, 3209-3222 (2023). MSC: 35F25 35B10 35B44 35B60 PDF BibTeX XML Cite \textit{N. Duruk Mutlubas} and \textit{I. L. Freire}, Appl. Anal. 102, No. 12, 3209--3222 (2023; Zbl 07744424) Full Text: DOI arXiv