Buriol, Celene; Delatorre, L. G.; Gonzalez Martinez, Victor Hugo; Soares, D. C.; Tavares, E. H. G. Asymptotic stability for a generalized nonlinear Klein-Gordon system. (English) Zbl 07319441 J. Differ. Equations 280, 517-545 (2021). MSC: 35L53 35L71 35B40 93B07 PDF BibTeX XML Cite \textit{C. Buriol} et al., J. Differ. Equations 280, 517--545 (2021; Zbl 07319441) Full Text: DOI
Hajaiej, Hichem; Ibrahim, Slim; Masmoudi, Nader Ground state solutions of the complex Gross Pitaevskii equation associated to exciton-polariton Bose-Einstein condensates. (English. French summary) Zbl 07319309 J. Math. Pures Appl. (9) 148, 1-23 (2021). MSC: 35J25 35A15 35J20 35B20 35J60 PDF BibTeX XML Cite \textit{H. Hajaiej} et al., J. Math. Pures Appl. (9) 148, 1--23 (2021; Zbl 07319309) Full Text: DOI
Ding, Pengyan; Yang, Zhijian Longtime behavior for an extensible beam equation with rotational inertia and structural nonlinear damping. (English) Zbl 07316097 J. Math. Anal. Appl. 496, No. 1, Article ID 124785, 26 p. (2021). MSC: 35B41 35L35 35L77 35R09 35R11 74K10 PDF BibTeX XML Cite \textit{P. Ding} and \textit{Z. Yang}, J. Math. Anal. Appl. 496, No. 1, Article ID 124785, 26 p. (2021; Zbl 07316097) Full Text: DOI
Hassine, Fathi; Souayeh, Nadia Stability for coupled waves with locally disturbed Kelvin-Voigt damping. (English) Zbl 07310711 Semigroup Forum 102, No. 1, 134-159 (2021). MSC: 35L57 35B35 PDF BibTeX XML Cite \textit{F. Hassine} and \textit{N. Souayeh}, Semigroup Forum 102, No. 1, 134--159 (2021; Zbl 07310711) Full Text: DOI
Mustafa, Muhammad I. The control of Timoshenko beams by memory-type boundary conditions. (English) Zbl 07305246 Appl. Anal. 100, No. 2, 290-301 (2021). MSC: 35B40 74D99 93D15 93D20 PDF BibTeX XML Cite \textit{M. I. Mustafa}, Appl. Anal. 100, No. 2, 290--301 (2021; Zbl 07305246) Full Text: DOI
Li, Chan; Liang, Jin; Xiao, Ti-Jun Asymptotic behaviours of solutions for wave equations with damped Wentzell boundary conditions but no interior damping. (English) Zbl 07283576 J. Differ. Equations 271, 76-106 (2021). Reviewer: Giuseppe Maria Coclite (Bari) MSC: 35L05 35Q74 47D06 93D15 74D10 35B35 35B30 74M05 PDF BibTeX XML Cite \textit{C. Li} et al., J. Differ. Equations 271, 76--106 (2021; Zbl 07283576) Full Text: DOI
Li, Chan; Liang, Jin; Xiao, Ti-Jun Long-term dynamical behavior of the wave model with locally distributed frictional and viscoelastic damping. (English) Zbl 1452.35104 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105472, 22 p. (2021). MSC: 35L71 35B40 35L20 35R09 PDF BibTeX XML Cite \textit{C. Li} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105472, 22 p. (2021; Zbl 1452.35104) Full Text: DOI
Fino, Ahmad Z.; Chen, Wenhui A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. (English) Zbl 07326985 Commun. Pure Appl. Anal. 19, No. 12, 5387-5411 (2020). MSC: 35A01 35L20 35L71 PDF BibTeX XML Cite \textit{A. Z. Fino} and \textit{W. Chen}, Commun. Pure Appl. Anal. 19, No. 12, 5387--5411 (2020; Zbl 07326985) Full Text: DOI
Cavalcanti, Marcelo M.; Delatorre, Leonel G.; Soares, Daiane C.; Martinez, Victor Hugo Gonzalez; Zanchetta, Janaina P. Uniform stabilization of the Klein-Gordon system. (English) Zbl 07326929 Commun. Pure Appl. Anal. 19, No. 11, 5131-5156 (2020). MSC: 35L53 35L71 35B40 93B07 PDF BibTeX XML Cite \textit{M. M. Cavalcanti} et al., Commun. Pure Appl. Anal. 19, No. 11, 5131--5156 (2020; Zbl 07326929) Full Text: DOI
Ming, Sen; Lai, Shaoyong; Fan, Xiongmei Lifespan estimates of solutions to quasilinear wave equations with scattering damping. (English) Zbl 07322818 J. Math. Anal. Appl. 492, No. 1, Article ID 124441, 15 p. (2020). MSC: 35L72 35L20 35B44 PDF BibTeX XML Cite \textit{S. Ming} et al., J. Math. Anal. Appl. 492, No. 1, Article ID 124441, 15 p. (2020; Zbl 07322818) Full Text: DOI
Alaeddine, Draifia Blow-up of solutions for a system viscoelastic equation with Balakrishnan-Taylor damping and nonlinear source of polynomial type. (English) Zbl 07322726 Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 102, 31 p. (2020). MSC: 35B44 35L53 35L72 74D10 93D15 PDF BibTeX XML Cite \textit{D. Alaeddine}, Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 102, 31 p. (2020; Zbl 07322726) Full Text: DOI
Yushkov, M. P. Formulation and solution of a generalized Chebyshev problem. II. (English. Russian original) Zbl 07310911 Vestn. St. Petersbg. Univ., Math. 53, No. 4, 459-472 (2020); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 4, 714-733 (2020). MSC: 93C15 70Q05 70F25 PDF BibTeX XML Cite \textit{M. P. Yushkov}, Vestn. St. Petersbg. Univ., Math. 53, No. 4, 459--472 (2020; Zbl 07310911); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 4, 714--733 (2020) Full Text: DOI
Gheraibia, Billel; Boumaza, Nouri General decay result of solutions for viscoelastic wave equation with Balakrishnan-Taylor damping and a delay term. (English) Zbl 07298434 Z. Angew. Math. Phys. 71, No. 6, Paper No. 198, 12 p. (2020). Reviewer: Igor Bock (Bratislava) MSC: 35L05 35B40 35L20 35L70 PDF BibTeX XML Cite \textit{B. Gheraibia} and \textit{N. Boumaza}, Z. Angew. Math. Phys. 71, No. 6, Paper No. 198, 12 p. (2020; Zbl 07298434) Full Text: DOI
Liu, Lishan; Sun, Fenglong; Wu, Yonghong Finite time blow-up for a nonlinear viscoelastic Petrovsky equation with high initial energy. (English) Zbl 07296582 SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 31, 18 p. (2020). Reviewer: Igor Bock (Bratislava) MSC: 35L70 65M60 PDF BibTeX XML Cite \textit{L. Liu} et al., SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 31, 18 p. (2020; Zbl 07296582) Full Text: DOI
Shi, Yuan; Ren, Yonghua Global attractor for the Cahn-Hilliard equation with inertial term and damping term. (Chinese. English summary) Zbl 07295968 Math. Appl. 33, No. 3, 539-549 (2020). MSC: 35B41 35G31 PDF BibTeX XML Cite \textit{Y. Shi} and \textit{Y. Ren}, Math. Appl. 33, No. 3, 539--549 (2020; Zbl 07295968)
Liu, Jiankang; Li, Huanhuan Semi-discretized approximation for uniformly exponential stability of wave equation with damped Robin boundary. (Chinese. English summary) Zbl 07295818 J. Syst. Sci. Math. Sci. 40, No. 4, 599-611 (2020). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{J. Liu} and \textit{H. Li}, J. Syst. Sci. Math. Sci. 40, No. 4, 599--611 (2020; Zbl 07295818)
Wei, Jie; He, Li; Hu, Jinsong A decoupled linearized difference scheme for the SRLW equation with damping term. (Chinese. English summary) Zbl 07295722 J. Sichuan Univ., Nat. Sci. Ed. 57, No. 5, 847-851 (2020). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{J. Wei} et al., J. Sichuan Univ., Nat. Sci. Ed. 57, No. 5, 847--851 (2020; Zbl 07295722) Full Text: DOI
Hayek, Alaa; Nicaise, Serge; Salloum, Zaynab; Wehbe, Ali A transmission problem of a system of weakly coupled wave equations with Kelvin-Voigt dampings and non-smooth coefficient at the interface. (English) Zbl 1455.35143 S\(\vec{\text{e}}\)MA J. 77, No. 3, 305-338 (2020). MSC: 35L53 35B35 PDF BibTeX XML Cite \textit{A. Hayek} et al., S\(\vec{\text{e}}\)MA J. 77, No. 3, 305--338 (2020; Zbl 1455.35143) Full Text: DOI
Lucente, Sandra Large data solutions for semilinear higher order equations. (English) Zbl 1455.35151 Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3525-3533 (2020). MSC: 35L76 35L35 35L82 35B40 35B45 PDF BibTeX XML Cite \textit{S. Lucente}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3525--3533 (2020; Zbl 1455.35151) Full Text: DOI
Aloui, Lassaad; Arama, Amal Diffusion phenomenon for indirectly damped hyperbolic systems coupled by velocities in exterior domains. (English) Zbl 1455.35141 J. Hyperbolic Differ. Equ. 17, No. 3, 475-500 (2020). MSC: 35L53 35B40 93D15 35K05 PDF BibTeX XML Cite \textit{L. Aloui} and \textit{A. Arama}, J. Hyperbolic Differ. Equ. 17, No. 3, 475--500 (2020; Zbl 1455.35141) Full Text: DOI
Akil, Mohammad; Chitour, Yacine; Ghader, Mouhammad; Wehbe, Ali Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary. (English) Zbl 1452.35205 Asymptotic Anal. 119, No. 3-4, 221-280 (2020). MSC: 35Q74 35B35 93B05 35R11 26A33 PDF BibTeX XML Cite \textit{M. Akil} et al., Asymptotic Anal. 119, No. 3--4, 221--280 (2020; Zbl 1452.35205) Full Text: DOI
Mitra, Sourav Local existence of strong solutions of a fluid-structure interaction model. (English) Zbl 1452.35154 J. Math. Fluid Mech. 22, No. 4, Paper No. 60, 37 p. (2020). MSC: 35Q35 35Q74 76N10 74F10 74K10 74D99 35R37 35D35 35B65 PDF BibTeX XML Cite \textit{S. Mitra}, J. Math. Fluid Mech. 22, No. 4, Paper No. 60, 37 p. (2020; Zbl 1452.35154) Full Text: DOI
Boulaaras, Salah; Mezouar, Nadia Global existence and decay of solutions of a singular nonlocal viscoelastic system with a nonlinear source term, nonlocal boundary condition, and localized damping term. (English) Zbl 1452.35094 Math. Methods Appl. Sci. 43, No. 10, 6140-6164 (2020). MSC: 35L53 35L71 35L81 35B40 35R09 74D05 PDF BibTeX XML Cite \textit{S. Boulaaras} and \textit{N. Mezouar}, Math. Methods Appl. Sci. 43, No. 10, 6140--6164 (2020; Zbl 1452.35094) Full Text: DOI
Shahrouzi, Mohammad Blow up of solutions to a class of damped viscoelastic inverse source problem. (English) Zbl 1451.35263 Differ. Equ. Dyn. Syst. 28, No. 4, 889-899 (2020). MSC: 35R30 35L72 35L20 35B44 74D05 PDF BibTeX XML Cite \textit{M. Shahrouzi}, Differ. Equ. Dyn. Syst. 28, No. 4, 889--899 (2020; Zbl 1451.35263) Full Text: DOI
Lu, Yige; Zhang, Chunguo Stability of a class of memory damping Timoshenko beams with dynamic boundaries. (Chinese. English summary) Zbl 07266422 Appl. Math., Ser. A (Chin. Ed.) 35, No. 1, 62-72 (2020). MSC: 74H55 74K10 PDF BibTeX XML Cite \textit{Y. Lu} and \textit{C. Zhang}, Appl. Math., Ser. A (Chin. Ed.) 35, No. 1, 62--72 (2020; Zbl 07266422) Full Text: DOI
Liu, Wenjun; Zhu, Biqing; Li, Gang Upper and lower bounds for the blow-up time for a viscoelastic wave equation with dynamic boundary conditions. (English) Zbl 1450.35082 Quaest. Math. 43, No. 8, 999-1017 (2020). MSC: 35B44 35L20 35L71 PDF BibTeX XML Cite \textit{W. Liu} et al., Quaest. Math. 43, No. 8, 999--1017 (2020; Zbl 1450.35082) Full Text: DOI
Tebou, Louis Exponential stability of a mixture of two elastic solids with a degenerate weak damping mechanism. (English) Zbl 1450.35069 J. Math. Anal. Appl. 491, No. 2, Article ID 124336, 13 p. (2020). MSC: 35B40 35B35 35L53 35Q74 PDF BibTeX XML Cite \textit{L. Tebou}, J. Math. Anal. Appl. 491, No. 2, Article ID 124336, 13 p. (2020; Zbl 1450.35069) Full Text: DOI
Ghisi, Marina; Gobbino, Massimo Critical counterexamples for linear wave equations with time-dependent propagation speed. (English) Zbl 1452.35108 J. Differ. Equations 269, No. 12, 11435-11460 (2020). Reviewer: Luigi Rodino (Torino) MSC: 35L90 35L20 35B30 35B65 PDF BibTeX XML Cite \textit{M. Ghisi} and \textit{M. Gobbino}, J. Differ. Equations 269, No. 12, 11435--11460 (2020; Zbl 1452.35108) Full Text: DOI
Bouhoufani, Oulia; Hamchi, Ilhem Coupled system of nonlinear hyperbolic equations with variable-exponents: global existence and stability. (English) Zbl 1450.35167 Mediterr. J. Math. 17, No. 5, Paper No. 166, 15 p. (2020). MSC: 35L53 35B40 35L71 93D20 PDF BibTeX XML Cite \textit{O. Bouhoufani} and \textit{I. Hamchi}, Mediterr. J. Math. 17, No. 5, Paper No. 166, 15 p. (2020; Zbl 1450.35167) Full Text: DOI
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Özsarı, Türker; Sepúlveda, Mauricio; Véjar-Asem, Rodrigo Exponential stability for the nonlinear Schrödinger equation with locally distributed damping. (English) Zbl 1448.35462 Commun. Partial Differ. Equations 45, No. 9, 1134-1167 (2020). MSC: 35Q55 35B35 35A01 65N08 PDF BibTeX XML Cite \textit{M. M. Cavalcanti} et al., Commun. Partial Differ. Equations 45, No. 9, 1134--1167 (2020; Zbl 1448.35462) Full Text: DOI
Kafini, Mohammad; Al-Omari, Shadi Damped Bresse system with infinite memories. (English) Zbl 1447.35057 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 4, 245-267 (2020). MSC: 35B40 35L53 74H40 93D20 93D15 PDF BibTeX XML Cite \textit{M. Kafini} and \textit{S. Al-Omari}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 4, 245--267 (2020; Zbl 1447.35057) Full Text: Link
Shi, Dongyang; Wu, Yanmi Nonconforming quadrilateral finite element method for nonlinear Kirchhoff-type equation with damping. (English) Zbl 1452.65248 Math. Methods Appl. Sci. 43, No. 5, 2558-2576 (2020). MSC: 65M60 65M22 65N30 65N12 65N15 35Q74 PDF BibTeX XML Cite \textit{D. Shi} and \textit{Y. Wu}, Math. Methods Appl. Sci. 43, No. 5, 2558--2576 (2020; Zbl 1452.65248) Full Text: DOI
Dallos Santos, Dionicio Pastor Multiple solutions for mixed boundary value problems with \(\varphi\)-Laplacian operators. (English) Zbl 07244086 Electron. J. Differ. Equ. 2020, Paper No. 67, 8 p. (2020). MSC: 34B15 47H10 47N20 PDF BibTeX XML Cite \textit{D. P. Dallos Santos}, Electron. J. Differ. Equ. 2020, Paper No. 67, 8 p. (2020; Zbl 07244086) Full Text: Link
Cavalcanti, Marcelo Moreira; Domingos Cavalcanti, Valéria Neves; Frota, Cícero Lopes; Vicente, André Stability for semilinear wave equation in an inhomogeneous medium with frictional localized damping and acoustic boundary conditions. (English) Zbl 1445.35237 SIAM J. Control Optim. 58, No. 4, 2411-2445 (2020). MSC: 35L20 35L71 35B35 PDF BibTeX XML Cite \textit{M. M. Cavalcanti} et al., SIAM J. Control Optim. 58, No. 4, 2411--2445 (2020; Zbl 1445.35237) Full Text: DOI
Messaoudi, Salim A. On the decay of solutions of a damped quasilinear wave equation with variable-exponent nonlinearities. (English) Zbl 1445.35068 Math. Methods Appl. Sci. 43, No. 8, 5114-5126 (2020). MSC: 35B40 35L20 35L72 PDF BibTeX XML Cite \textit{S. A. Messaoudi}, Math. Methods Appl. Sci. 43, No. 8, 5114--5126 (2020; Zbl 1445.35068) Full Text: DOI
Song, Ruili; Wang, Shubin Local existence and global nonexistence theorems for a viscous damped quasi-linear wave equations. (English) Zbl 1449.35309 Math. Appl. 33, No. 1, 91-99 (2020). MSC: 35L71 35L05 35B44 PDF BibTeX XML Cite \textit{R. Song} and \textit{S. Wang}, Math. Appl. 33, No. 1, 91--99 (2020; Zbl 1449.35309)
Hajjej, Zayd; Messaoudi, Salim A. Stability of a suspension bridge with structural damping. (English) Zbl 1445.35061 Ann. Pol. Math. 125, No. 1, 59-70 (2020). MSC: 35B40 35L35 35L76 74K20 PDF BibTeX XML Cite \textit{Z. Hajjej} and \textit{S. A. Messaoudi}, Ann. Pol. Math. 125, No. 1, 59--70 (2020; Zbl 1445.35061) Full Text: DOI
Freitas, Mirelson M. Pullback attractors for non-autonomous porous elastic system with nonlinear damping and sources terms. (English) Zbl 1445.35078 Math. Methods Appl. Sci. 43, No. 2, 658-681 (2020). MSC: 35B41 35L53 37B55 37L30 74H40 PDF BibTeX XML Cite \textit{M. M. Freitas}, Math. Methods Appl. Sci. 43, No. 2, 658--681 (2020; Zbl 1445.35078) Full Text: DOI
Narciso, Vando On a Kirchhoff wave model with nonlocal nonlinear damping. (English) Zbl 1442.35269 Evol. Equ. Control Theory 9, No. 2, 487-508 (2020). MSC: 35L72 35B40 35B41 35L20 35R09 74K10 93D20 PDF BibTeX XML Cite \textit{V. Narciso}, Evol. Equ. Control Theory 9, No. 2, 487--508 (2020; Zbl 1442.35269) Full Text: DOI
Allouni, Hayet; Kesri, Mhamed; Benaissa, Abbes On the asymptotic behaviour of two coupled strings through a fractional joint damper. (English) Zbl 1447.93277 Rend. Circ. Mat. Palermo (2) 69, No. 2, 613-640 (2020). MSC: 93D15 35B40 93C80 PDF BibTeX XML Cite \textit{H. Allouni} et al., Rend. Circ. Mat. Palermo (2) 69, No. 2, 613--640 (2020; Zbl 1447.93277) Full Text: DOI
Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Gonzalez Martinez, V. H.; Peralta, V. A.; Vicente, A. Stability for semilinear hyperbolic coupled system with frictional and viscoelastic localized damping. (English) Zbl 1453.35022 J. Differ. Equations 269, No. 10, 8212-8268 (2020). Reviewer: Jin Liang (Shanghai) MSC: 35B35 35B40 35L53 35L71 35B60 PDF BibTeX XML Cite \textit{M. M. Cavalcanti} et al., J. Differ. Equations 269, No. 10, 8212--8268 (2020; Zbl 1453.35022) Full Text: DOI
Hao, Jianghao; Lv, Mengxian Stability of wave equation with locally viscoelastic damping and nonlinear boundary source. (English) Zbl 1441.35039 J. Math. Anal. Appl. 490, No. 1, Article ID 124230, 19 p. (2020). MSC: 35B35 35L20 35L71 35R09 PDF BibTeX XML Cite \textit{J. Hao} and \textit{M. Lv}, J. Math. Anal. Appl. 490, No. 1, Article ID 124230, 19 p. (2020; Zbl 1441.35039) Full Text: DOI
Vargas, Darlyn H. Stability of a hybrid system with tip load damped. (English) Zbl 1441.35057 J. Differ. Equations 269, No. 9, 7042-7058 (2020). MSC: 35B40 74K10 35L20 47D06 PDF BibTeX XML Cite \textit{D. H. Vargas}, J. Differ. Equations 269, No. 9, 7042--7058 (2020; Zbl 1441.35057) Full Text: DOI
Mezouar, Nadia; Piṣkin, Erhan Decay rate and blow up solutions for coupled quasilinear system. (English) Zbl 1441.35160 Bol. Soc. Mat. Mex., III. Ser. 26, No. 2, 499-519 (2020). MSC: 35L57 35B40 35L77 35B44 PDF BibTeX XML Cite \textit{N. Mezouar} and \textit{E. Piṣkin}, Bol. Soc. Mat. Mex., III. Ser. 26, No. 2, 499--519 (2020; Zbl 1441.35160) Full Text: DOI
Liu, Zhuangyi; Rao, Bopeng; Zhang, Qiong Polynomial stability of the Rao-Nakra beam with a single internal viscous damping. (English) Zbl 1440.35011 J. Differ. Equations 269, No. 7, 6125-6162 (2020). MSC: 35B35 35B40 35L53 35L71 74K10 93D20 PDF BibTeX XML Cite \textit{Z. Liu} et al., J. Differ. Equations 269, No. 7, 6125--6162 (2020; Zbl 1440.35011) Full Text: DOI
Khemmoudj, Ammar; Djaidja, Imane General decay for a viscoelastic rotating Euler-Bernoulli beam. (English) Zbl 1439.35064 Commun. Pure Appl. Anal. 19, No. 7, 3531-3557 (2020). MSC: 35B40 35L53 35L71 35R09 93D15 93D20 PDF BibTeX XML Cite \textit{A. Khemmoudj} and \textit{I. Djaidja}, Commun. Pure Appl. Anal. 19, No. 7, 3531--3557 (2020; Zbl 1439.35064) Full Text: DOI
Zhang, Yongchao; Qian, Yanxia; Mei, Liquan Discontinuous Galerkin methods for the Stokes equations with nonlinear damping term on general meshes. (English) Zbl 1437.65206 Comput. Math. Appl. 79, No. 8, 2258-2275 (2020). MSC: 65N30 65N15 76D07 35Q35 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Comput. Math. Appl. 79, No. 8, 2258--2275 (2020; Zbl 1437.65206) Full Text: DOI
Horsin, Thierry; Jendoubi, Mohamed Ali An extension of a Lyapunov approach to the stabilization of second order coupled systems. (English) Zbl 1441.35052 ESAIM, Control Optim. Calc. Var. 26, Paper No. 19, 16 p. (2020). Reviewer: Kaïs Ammari (Monastir) MSC: 35B40 35L90 35L53 49J15 49J20 PDF BibTeX XML Cite \textit{T. Horsin} and \textit{M. A. Jendoubi}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 19, 16 p. (2020; Zbl 1441.35052) Full Text: DOI
Ji, Bingquan; Zhang, Luming A dissipative finite difference Fourier pseudo-spectral method for the Klein-Gordon-Schrödinger equations with damping mechanism. (English) Zbl 07197525 Appl. Math. Comput. 376, Article ID 125148, 16 p. (2020). MSC: 35Q99 65M06 65M12 74A50 PDF BibTeX XML Cite \textit{B. Ji} and \textit{L. Zhang}, Appl. Math. Comput. 376, Article ID 125148, 16 p. (2020; Zbl 07197525) Full Text: DOI
Ma, To Fu; Seminario-Huertas, Paulo Nicanor Attractors for semilinear wave equations with localized damping and external forces. (English) Zbl 1441.35062 Commun. Pure Appl. Anal. 19, No. 4, 2219-2233 (2020). MSC: 35B41 35L71 35L20 35B33 35B40 PDF BibTeX XML Cite \textit{T. F. Ma} and \textit{P. N. Seminario-Huertas}, Commun. Pure Appl. Anal. 19, No. 4, 2219--2233 (2020; Zbl 1441.35062) Full Text: DOI
Ji, Bingquan; Zhang, Luming; Sun, Qihang A dissipative finite difference Fourier pseudo-spectral method for the symmetric regularized long wave equation with damping mechanism. (English) Zbl 1437.65101 Appl. Numer. Math. 154, 90-103 (2020). MSC: 65M06 65N35 65M12 65M15 35C08 35Q35 PDF BibTeX XML Cite \textit{B. Ji} et al., Appl. Numer. Math. 154, 90--103 (2020; Zbl 1437.65101) Full Text: DOI
Wang, Yu; Wu, Furong; Yang, Yanbing Arbitrarily positive initial energy blowup and blowup time for some fourth-order viscous wave equation. (English) Zbl 1441.35075 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111776, 8 p. (2020). MSC: 35B44 35L76 35L35 PDF BibTeX XML Cite \textit{Y. Wang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111776, 8 p. (2020; Zbl 1441.35075) Full Text: DOI
Lian, Jiali Global well-posedness of the free-interface incompressible Euler equations with damping. (English) Zbl 1437.35560 Discrete Contin. Dyn. Syst. 40, No. 4, 2061-2087 (2020). MSC: 35Q31 35L60 35Q35 35R35 76B03 76B15 76B45 76T06 35A01 35A02 PDF BibTeX XML Cite \textit{J. Lian}, Discrete Contin. Dyn. Syst. 40, No. 4, 2061--2087 (2020; Zbl 1437.35560) Full Text: DOI
Peyravi, Amir General stability and exponential growth for a class of semi-linear wave equations with logarithmic source and memory terms. (English) Zbl 1441.35041 Appl. Math. Optim. 81, No. 2, 545-561 (2020). MSC: 35B35 35B40 35L71 35L20 74D10 93D20 PDF BibTeX XML Cite \textit{A. Peyravi}, Appl. Math. Optim. 81, No. 2, 545--561 (2020; Zbl 1441.35041) Full Text: DOI
Apalara, Tijani A.; Raposo, Carlos A.; Nonato, Carlos A. S. Exponential stability for laminated beams with a frictional damping. (English) Zbl 1435.35236 Arch. Math. 114, No. 4, 471-480 (2020). MSC: 35L53 74K10 35B40 93D15 93D20 PDF BibTeX XML Cite \textit{T. A. Apalara} et al., Arch. Math. 114, No. 4, 471--480 (2020; Zbl 1435.35236) Full Text: DOI
Ngo, Van-Sang Damping effects in boundary layers for rotating fluids with small viscosity. (English) Zbl 1434.76025 Z. Angew. Math. Phys. 71, No. 2, Paper No. 64, 23 p. (2020). MSC: 76D03 76D05 76U05 PDF BibTeX XML Cite \textit{V.-S. Ngo}, Z. Angew. Math. Phys. 71, No. 2, Paper No. 64, 23 p. (2020; Zbl 1434.76025) Full Text: DOI
Ammari, Kaïs; Liu, Zhuangyi; Shel, Farhat Stability of the wave equations on a tree with local Kelvin-Voigt damping. (English) Zbl 1433.35388 Semigroup Forum 100, No. 2, 364-382 (2020). MSC: 35Q74 35B30 35B35 35L20 PDF BibTeX XML Cite \textit{K. Ammari} et al., Semigroup Forum 100, No. 2, 364--382 (2020; Zbl 1433.35388) Full Text: DOI
Feng, Baowei; Soufyane, Abdelaziz New general decay results for a von Karman plate equation with memory-type boundary conditions. (English) Zbl 1441.35049 Discrete Contin. Dyn. Syst. 40, No. 3, 1757-1774 (2020). MSC: 35B40 35L35 35L76 93D15 74K20 93D20 PDF BibTeX XML Cite \textit{B. Feng} and \textit{A. Soufyane}, Discrete Contin. Dyn. Syst. 40, No. 3, 1757--1774 (2020; Zbl 1441.35049) Full Text: DOI
Prasad, Chandra Shekhar; Pešek, Luděk Efficient prediction of classical flutter stability of turbomachinery blade using the boundary element type numerical method. (English) Zbl 07173381 Eng. Anal. Bound. Elem. 113, 328-345 (2020). MSC: 76 74 PDF BibTeX XML Cite \textit{C. S. Prasad} and \textit{L. Pešek}, Eng. Anal. Bound. Elem. 113, 328--345 (2020; Zbl 07173381) Full Text: DOI
Di, Huafei; Shang, Yadong; Song, Zefang Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity. (English) Zbl 1439.35313 Nonlinear Anal., Real World Appl. 51, Article ID 102968, 22 p. (2020). MSC: 35L20 35L71 35B40 35B44 PDF BibTeX XML Cite \textit{H. Di} et al., Nonlinear Anal., Real World Appl. 51, Article ID 102968, 22 p. (2020; Zbl 1439.35313) Full Text: DOI
Ammari, Kaïs; Chentouf, Boumediène Further results on the long-time behavior of a 2D overhead crane with a boundary delay: exponential convergence. (English) Zbl 1433.70004 Appl. Math. Comput. 365, Article ID 124698, 17 p. (2020). MSC: 70B15 35B40 35L20 70Q05 93D15 93C20 PDF BibTeX XML Cite \textit{K. Ammari} and \textit{B. Chentouf}, Appl. Math. Comput. 365, Article ID 124698, 17 p. (2020; Zbl 1433.70004) Full Text: DOI
Luong, Vu Trong; Tung, Nguyen Thanh Exponential decay for elastic systems with structural damping and infinite delay. (English) Zbl 1432.34094 Appl. Anal. 99, No. 1, 13-28 (2020). MSC: 34K20 47H08 47H10 34K10 47N20 35R10 34K25 PDF BibTeX XML Cite \textit{V. T. Luong} and \textit{N. T. Tung}, Appl. Anal. 99, No. 1, 13--28 (2020; Zbl 1432.34094) Full Text: DOI
Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Mansouri, S.; Gonzalez Martinez, V. H.; Hajjej, Z.; Astudillo Rojas, M. R. Asymptotic stability for a strongly coupled Klein-Gordon system in an inhomogeneous medium with locally distributed damping. (English) Zbl 1429.35156 J. Differ. Equations 268, No. 2, 447-489 (2020). Reviewer: Denis Borisov (Ufa) MSC: 35L53 35B40 93B07 35L71 35B35 PDF BibTeX XML Cite \textit{M. M. Cavalcanti} et al., J. Differ. Equations 268, No. 2, 447--489 (2020; Zbl 1429.35156) Full Text: DOI
Sirajuddin, David; Hitchon, William N. G. A truly forward semi-Lagrangian WENO scheme for the Vlasov-Poisson system. (English) Zbl 1452.76162 J. Comput. Phys. 392, 619-665 (2019). MSC: 76M20 76X05 35Q83 65M06 65M12 PDF BibTeX XML Cite \textit{D. Sirajuddin} and \textit{W. N. G. Hitchon}, J. Comput. Phys. 392, 619--665 (2019; Zbl 1452.76162) Full Text: DOI
Yushkov, M. P. Formulation and solution of a generalized Chebyshev problem. I. (English. Russian original) Zbl 07276530 Vestn. St. Petersbg. Univ., Math. 52, No. 4, 436-451 (2019); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 6(64), No. 4, 680-701 (2019). MSC: PDF BibTeX XML Cite \textit{M. P. Yushkov}, Vestn. St. Petersbg. Univ., Math. 52, No. 4, 436--451 (2019; Zbl 07276530); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 6(64), No. 4, 680--701 (2019) Full Text: DOI
Qiu, Hailong; Mei, Liquan Two-grid MFEAs for the incompressible Stokes type variational inequality with damping. (English) Zbl 1443.65367 Comput. Math. Appl. 78, No. 8, 2772-2788 (2019). MSC: 65N30 65K15 65N15 PDF BibTeX XML Cite \textit{H. Qiu} and \textit{L. Mei}, Comput. Math. Appl. 78, No. 8, 2772--2788 (2019; Zbl 1443.65367) Full Text: DOI
Hao, Jianghao; Wang, Fei General decay rate for weak viscoelastic wave equation with Balakrishnan-Taylor damping and time-varying delay. (English) Zbl 1443.35095 Comput. Math. Appl. 78, No. 8, 2632-2640 (2019). MSC: 35L35 35B40 35L75 PDF BibTeX XML Cite \textit{J. Hao} and \textit{F. Wang}, Comput. Math. Appl. 78, No. 8, 2632--2640 (2019; Zbl 1443.35095) Full Text: DOI
Benaissa, Abbes; Gaouar, Soumia Asymptotic stability for the Lamé system with fractional boundary damping. (English) Zbl 1442.35249 Comput. Math. Appl. 77, No. 5, 1331-1346 (2019). MSC: 35L53 35B30 35Q74 PDF BibTeX XML Cite \textit{A. Benaissa} and \textit{S. Gaouar}, Comput. Math. Appl. 77, No. 5, 1331--1346 (2019; Zbl 1442.35249) Full Text: DOI
Li, Ai-jun; Liu, Yong; Li, Hua-jun New analytical solutions to water wave radiation by vertical truncated cylinders through multi-term Galerkin method. (English) Zbl 1442.76023 Meccanica 54, No. 3, 429-450 (2019). MSC: 76B15 65M60 76M10 PDF BibTeX XML Cite \textit{A.-j. Li} et al., Meccanica 54, No. 3, 429--450 (2019; Zbl 1442.76023) Full Text: DOI
Wang, Jianping; Ye, Yaojun; Ye, Ziqing Global existence and exponential decay of solutions for a class of high-order nonlinear wave equations. (Chinese. English summary) Zbl 1449.35311 Math. Pract. Theory 49, No. 22, 214-220 (2019). MSC: 35L75 35L35 35B44 PDF BibTeX XML Cite \textit{J. Wang} et al., Math. Pract. Theory 49, No. 22, 214--220 (2019; Zbl 1449.35311)
Li, Donghao; Zhang, Hongwei; Hu, Qingying General energy decay of solutions for a wave equation with nonlocal damping and nonlinear boundary damping. (English) Zbl 1449.35071 J. Partial Differ. Equations 32, No. 4, 369-380 (2019). MSC: 35B40 35L05 PDF BibTeX XML Cite \textit{D. Li} et al., J. Partial Differ. Equations 32, No. 4, 369--380 (2019; Zbl 1449.35071) Full Text: DOI
Wang, Xi; Zhang, Hong; Hu, Jinsong A linearized difference method for generalized SRLW equation with damping term. (Chinese. English summary) Zbl 1449.65202 J. Sichuan Univ., Nat. Sci. Ed. 56, No. 6, 1009-1013 (2019). MSC: 65M06 65M12 35Q53 PDF BibTeX XML Cite \textit{X. Wang} et al., J. Sichuan Univ., Nat. Sci. Ed. 56, No. 6, 1009--1013 (2019; Zbl 1449.65202) Full Text: DOI
Timokha, A. N.; Tkachenko, E. M. Resonant steady-state sloshing in upright tanks performing a three-dimensional periodic motion. (English) Zbl 1449.76010 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 1, 214-217 (2019). MSC: 76B10 76D27 76B45 PDF BibTeX XML Cite \textit{A. N. Timokha} and \textit{E. M. Tkachenko}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 1, 214--217 (2019; Zbl 1449.76010)
Timokha, A. N.; Lahodzinskyi, O. E. Steady-state sloshing in an orbitally-forced square-base tank. (English) Zbl 1449.76009 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 1, 210-213 (2019). MSC: 76B10 76D27 PDF BibTeX XML Cite \textit{A. N. Timokha} and \textit{O. E. Lahodzinskyi}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 1, 210--213 (2019; Zbl 1449.76009)
Monteghetti, Florian; Haine, Ghislain; Matignon, Denis Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions. (English) Zbl 1437.35085 Math. Control Relat. Fields 9, No. 4, 759-791 (2019). MSC: 35B40 35L05 35L20 PDF BibTeX XML Cite \textit{F. Monteghetti} et al., Math. Control Relat. Fields 9, No. 4, 759--791 (2019; Zbl 1437.35085) Full Text: DOI
Han, Zhong-Jie; Liu, Zhuangyi Regularity and stability of coupled plate equations with indirect structural or Kelvin-Voigt damping. (English) Zbl 1437.35655 ESAIM, Control Optim. Calc. Var. 25, Paper No. 51, 14 p. (2019). MSC: 35Q74 74D05 35B35 35B65 74S25 65N25 74K20 PDF BibTeX XML Cite \textit{Z.-J. Han} and \textit{Z. Liu}, ESAIM, Control Optim. Calc. Var. 25, Paper No. 51, 14 p. (2019; Zbl 1437.35655) Full Text: DOI
Yang, Chuanmeng; Jin, Guoyong; Zhang, Yantao; Liu, Zhigang A unified three-dimensional method for vibration analysis of the frequency-dependent sandwich shallow shells with general boundary conditions. (English) Zbl 07183370 Appl. Math. Modelling 66, 59-76 (2019). MSC: 74 35 PDF BibTeX XML Cite \textit{C. Yang} et al., Appl. Math. Modelling 66, 59--76 (2019; Zbl 07183370) Full Text: DOI
Pashayev, Asif F. Nonexistence of global solutions of the mixed problem for a system of nonlinear wave equations with \(q\)-Laplacian operators. (English) Zbl 1441.35074 Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 39, No. 4, Math., 166-174 (2019). MSC: 35B44 35L53 35L72 PDF BibTeX XML Cite \textit{A. F. Pashayev}, Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 39, No. 4, Math., 166--174 (2019; Zbl 1441.35074) Full Text: Link
Rahmoune, Abita Existence and asymptotic stability for the semilinear wave equation with variable-exponent nonlinearities. (English) Zbl 1435.35256 J. Math. Phys. 60, No. 12, 122701, 23 p. (2019). MSC: 35L71 35B40 35L20 PDF BibTeX XML Cite \textit{A. Rahmoune}, J. Math. Phys. 60, No. 12, 122701, 23 p. (2019; Zbl 1435.35256) Full Text: DOI
Chatziioannou, Vasileios Structure preserving algorithms for simulation of linearly damped acoustic systems. (English) Zbl 1433.65155 JNAIAM, J. Numer. Anal. Ind. Appl. Math. 13, No. 3-4, 33-54 (2019). MSC: 65M06 65P10 65Z05 76Q05 PDF BibTeX XML Cite \textit{V. Chatziioannou}, JNAIAM, J. Numer. Anal. Ind. Appl. Math. 13, No. 3--4, 33--54 (2019; Zbl 1433.65155) Full Text: Link
D’Abbicco, Marcello; Ikehata, Ryo; Takeda, Hiroshi Critical exponent for semi-linear wave equations with double damping terms in exterior domains. (English) Zbl 1435.35251 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 6, Paper No. 56, 25 p. (2019). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 35L71 35B40 35B33 35B44 35L20 PDF BibTeX XML Cite \textit{M. D'Abbicco} et al., NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 6, Paper No. 56, 25 p. (2019; Zbl 1435.35251) Full Text: DOI
Granero-Belinchón, Rafael; Scrobogna, Stefano Models for damped water waves. (English) Zbl 1431.35126 SIAM J. Appl. Math. 79, No. 6, 2530-2550 (2019). MSC: 35Q35 35R35 35Q31 35B40 76D33 PDF BibTeX XML Cite \textit{R. Granero-Belinchón} and \textit{S. Scrobogna}, SIAM J. Appl. Math. 79, No. 6, 2530--2550 (2019; Zbl 1431.35126) Full Text: DOI arXiv
Jiao, Zhe; Xu, Yong Global existence and stability for semilinear wave equations damped by time-dependent boundary frictions. (English) Zbl 1428.35226 Appl. Math. Comput. 354, 282-295 (2019). MSC: 35L71 35B35 35B40 35L20 PDF BibTeX XML Cite \textit{Z. Jiao} and \textit{Y. Xu}, Appl. Math. Comput. 354, 282--295 (2019; Zbl 1428.35226) Full Text: DOI
Feng, Baowei; Kang, Yong Han Decay rates for a viscoelastic wave equation with Balakrishnan-Taylor and frictional dampings. (English) Zbl 1437.35071 Topol. Methods Nonlinear Anal. 54, No. 1, 321-343 (2019). MSC: 35B40 35L20 35L72 35R09 74D05 93D20 PDF BibTeX XML Cite \textit{B. Feng} and \textit{Y. H. Kang}, Topol. Methods Nonlinear Anal. 54, No. 1, 321--343 (2019; Zbl 1437.35071) Full Text: DOI Euclid
Yanbing, Yang; Ahmed, Md Salik; Lanlan, Qin; Runzhang, Xu Global well-posedness of a class of fourth-order strongly damped nonlinear wave equations. (English) Zbl 1437.35454 Opusc. Math. 39, No. 2, 297-313 (2019). MSC: 35L35 35L76 35B44 PDF BibTeX XML Cite \textit{Y. Yanbing} et al., Opusc. Math. 39, No. 2, 297--313 (2019; Zbl 1437.35454) Full Text: DOI
Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Sepúlveda, Mauricio A.; Asem, Rodrigo Véjar Finite difference scheme for a high order nonlinear Schrödinger equation with localized damping. (English) Zbl 1438.35385 Stud. Univ. Babeş-Bolyai, Math. 64, No. 2, 161-172 (2019). MSC: 35Q55 65M06 PDF BibTeX XML Cite \textit{M. M. Cavalcanti} et al., Stud. Univ. Babeş-Bolyai, Math. 64, No. 2, 161--172 (2019; Zbl 1438.35385) Full Text: DOI
Ahn, Jaewook; Choi, Jung-Il; Kang, Kyungkeun; Kim, Jae-Myoung Analysis of localized damping effects in channel flows with arbitrary rough boundary. (English) Zbl 1428.35271 Appl. Anal. 98, No. 13, 2359-2377 (2019). MSC: 35Q30 76D10 35B10 76D05 76D03 PDF BibTeX XML Cite \textit{J. Ahn} et al., Appl. Anal. 98, No. 13, 2359--2377 (2019; Zbl 1428.35271) Full Text: DOI
Oquendo, Higidio Portillo; Astudillo, María Optimal decay for plates with rotational inertia and memory. (English) Zbl 1428.35044 Math. Nachr. 292, No. 8, 1800-1810 (2019). MSC: 35B40 35Q74 47D03 74K20 35L35 35R09 35R11 PDF BibTeX XML Cite \textit{H. P. Oquendo} and \textit{M. Astudillo}, Math. Nachr. 292, No. 8, 1800--1810 (2019; Zbl 1428.35044) Full Text: DOI
Akil, Mohammad; Wehbe, Ali Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions. (English) Zbl 1426.35025 Math. Control Relat. Fields 9, No. 1, 97-116 (2019). MSC: 35B35 93B52 93C20 35L20 35L05 47D06 35R11 PDF BibTeX XML Cite \textit{M. Akil} and \textit{A. Wehbe}, Math. Control Relat. Fields 9, No. 1, 97--116 (2019; Zbl 1426.35025) Full Text: DOI
Hastir, Anthony; Califano, Federico; Zwart, Hans Well-posedness of infinite-dimensional linear systems with nonlinear feedback. (English) Zbl 1425.93106 Syst. Control Lett. 128, 19-25 (2019). MSC: 93B52 93C20 93C05 PDF BibTeX XML Cite \textit{A. Hastir} et al., Syst. Control Lett. 128, 19--25 (2019; Zbl 1425.93106) Full Text: DOI
Khoa, Vo Anh; Ngoc, Le Thi Phuong; Long, Nguyen Thanh Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. (English) Zbl 1426.35149 Evol. Equ. Control Theory 8, No. 2, 359-395 (2019). MSC: 35L53 35L71 35B40 35B44 PDF BibTeX XML Cite \textit{V. A. Khoa} et al., Evol. Equ. Control Theory 8, No. 2, 359--395 (2019; Zbl 1426.35149) Full Text: DOI arXiv
Ji, Min; Qi, Weiwei; Shen, Zhongwei; Yi, Yingfei Existence of periodic probability solutions to Fokker-Planck equations with applications. (English) Zbl 1428.35600 J. Funct. Anal. 277, No. 11, Article ID 108281, 41 p. (2019). MSC: 35Q84 35J25 37B25 60J60 82C31 60H15 PDF BibTeX XML Cite \textit{M. Ji} et al., J. Funct. Anal. 277, No. 11, Article ID 108281, 41 p. (2019; Zbl 1428.35600) Full Text: DOI
Hosseini, Rasool; Tatari, Mehdi Some splitting methods for hyperbolic PDEs. (English) Zbl 07106402 Appl. Numer. Math. 146, 361-378 (2019). MSC: 65M06 35B50 35Q53 PDF BibTeX XML Cite \textit{R. Hosseini} and \textit{M. Tatari}, Appl. Numer. Math. 146, 361--378 (2019; Zbl 07106402) Full Text: DOI
D’Abbicco, M.; Girardi, G.; Liang, Jinju \(L^1-L^1\) estimates for the strongly damped plate equation. (English) Zbl 1437.35117 J. Math. Anal. Appl. 478, No. 2, 476-498 (2019). MSC: 35B45 74K20 35L35 PDF BibTeX XML Cite \textit{M. D'Abbicco} et al., J. Math. Anal. Appl. 478, No. 2, 476--498 (2019; Zbl 1437.35117) Full Text: DOI
Berkani, Amirouche; Tatar, Nasser-Eddine Stabilization of a viscoelastic Timoshenko beam fixed into a moving base. (English) Zbl 1447.35215 Math. Model. Nat. Phenom. 14, No. 5, Paper No. 501, 29 p. (2019). MSC: 35L53 74K10 93D15 93D20 PDF BibTeX XML Cite \textit{A. Berkani} and \textit{N.-E. Tatar}, Math. Model. Nat. Phenom. 14, No. 5, Paper No. 501, 29 p. (2019; Zbl 1447.35215) Full Text: DOI
Sun, Fenglong; Liu, Lishan; Wu, Yonghong Blow-up of solutions for a nonlinear viscoelastic wave equation with initial data at arbitrary energy level. (English) Zbl 1447.35077 Appl. Anal. 98, No. 12, 2308-2327 (2019). MSC: 35B44 35L71 35L20 35R09 PDF BibTeX XML Cite \textit{F. Sun} et al., Appl. Anal. 98, No. 12, 2308--2327 (2019; Zbl 1447.35077) Full Text: DOI
Guo, Yanqiu Global well-posedness for nonlinear wave equations with supercritical source and damping terms. (English) Zbl 1437.35499 J. Math. Anal. Appl. 477, No. 2, 1087-1113 (2019). MSC: 35L71 35L20 PDF BibTeX XML Cite \textit{Y. Guo}, J. Math. Anal. Appl. 477, No. 2, 1087--1113 (2019; Zbl 1437.35499) Full Text: DOI arXiv
Boulaaras, Salah; Draifia, Alaeddin; Alnegga, Mohammad Polynomial decay rate for Kirchhoff type in viscoelasticity with logarithmic nonlinearity and not necessarily decreasing kernel. (English) Zbl 1416.35156 Symmetry 11, No. 2, Paper No. 226, 24 p. (2019). MSC: 35L35 35A01 35Q74 PDF BibTeX XML Cite \textit{S. Boulaaras} et al., Symmetry 11, No. 2, Paper No. 226, 24 p. (2019; Zbl 1416.35156) Full Text: DOI
Di, Yana; Fan, Yuwei; Kou, Zhenzhong; Li, Ruo; Wang, Yanli Filtered hyperbolic moment method for the Vlasov equation. (English) Zbl 1444.35137 J. Sci. Comput. 79, No. 2, 969-991 (2019). MSC: 35Q83 65M70 PDF BibTeX XML Cite \textit{Y. Di} et al., J. Sci. Comput. 79, No. 2, 969--991 (2019; Zbl 1444.35137) Full Text: DOI arXiv
Qiu, Hailong; Mei, Liquan Multi-level stabilized algorithms for the stationary incompressible Navier-Stokes equations with damping. (English) Zbl 1419.65120 Appl. Numer. Math. 143, 188-202 (2019). MSC: 76M10 65N30 35Q30 76D05 65N15 PDF BibTeX XML Cite \textit{H. Qiu} and \textit{L. Mei}, Appl. Numer. Math. 143, 188--202 (2019; Zbl 1419.65120) Full Text: DOI