Mišur, Marin On the mixed boundary value problem for semilinear elliptic equations. (English) Zbl 07318172 Math. Comput. Simul. 179, 162-177 (2021). MSC: 46 46E PDF BibTeX XML Cite \textit{M. Mišur}, Math. Comput. Simul. 179, 162--177 (2021; Zbl 07318172) Full Text: DOI
Cai, Haotao; An, Qiguang A fractional spectral collocation method for general Caputo two-point boundary value problems. (English) Zbl 07316835 Appl. Numer. Math. 163, 43-56 (2021). MSC: 35J 65 65R 65N 45E PDF BibTeX XML Cite \textit{H. Cai} and \textit{Q. An}, Appl. Numer. Math. 163, 43--56 (2021; Zbl 07316835) Full Text: DOI
Lan, Kunquan; Lin, Wei Steady-state solutions of one-dimensional competition models in an unstirred chemostat via the fixed point index theory. (English) Zbl 07316399 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 240-264 (2021). MSC: 45G15 34B18 47H10 47H30 92B05 PDF BibTeX XML Cite \textit{K. Lan} and \textit{W. Lin}, Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 240--264 (2021; Zbl 07316399) Full Text: DOI
Galeani, Sergio; Possieri, Corrado; Sassano, Mario Output tracking for a class of non-minimum phase nonlinear systems: a two-point boundary value problem formulation with a hybrid regulator. (English) Zbl 07315776 Eur. J. Control 58, 43-52 (2021). MSC: 93B52 93C10 93B55 PDF BibTeX XML Cite \textit{S. Galeani} et al., Eur. J. Control 58, 43--52 (2021; Zbl 07315776) Full Text: DOI
Li, Jiyong; Wang, Tingchun Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. (English) Zbl 07311184 Appl. Numer. Math. 162, 150-170 (2021). MSC: 81Q05 81R20 35Q55 65L12 35R20 81R05 35G30 81-10 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Wang}, Appl. Numer. Math. 162, 150--170 (2021; Zbl 07311184) Full Text: DOI
Jong, KumSong; Choi, HuiChol; Jang, KyongJun; Pak, SunAe A new approach for solving one-dimensional fractional boundary value problems via Haar wavelet collocation method. (English) Zbl 07310777 Appl. Numer. Math. 160, 313-330 (2021). MSC: 65L PDF BibTeX XML Cite \textit{K. Jong} et al., Appl. Numer. Math. 160, 313--330 (2021; Zbl 07310777) Full Text: DOI
Cianciaruso, Filomena; Pietramala, Paolamaria Semipositone nonlocal Neumann elliptic system depending on the gradient in exterior domains. (English) Zbl 07309705 J. Math. Anal. Appl. 494, No. 1, Article ID 124634, 17 p. (2021). MSC: 35J 34 PDF BibTeX XML Cite \textit{F. Cianciaruso} and \textit{P. Pietramala}, J. Math. Anal. Appl. 494, No. 1, Article ID 124634, 17 p. (2021; Zbl 07309705) Full Text: DOI
Liu, Yang; Cheng, Ai-Jie Two meshless methods for Dirichlet boundary optimal control problem governed by elliptic PDEs. (English) Zbl 07308006 Comput. Math. Appl. 82, 113-129 (2021). MSC: 65 49 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{A.-J. Cheng}, Comput. Math. Appl. 82, 113--129 (2021; Zbl 07308006) Full Text: DOI
Dolce, Michele; Donatelli, Donatella Artificial compressibility method for the Navier-Stokes-Maxwell-Stefan system. (English) Zbl 07307356 J. Dyn. Differ. Equations 33, No. 1, 35-62 (2021). MSC: 35Q35 76D05 76D99 76N15 35D30 65M22 65M60 65N30 92C30 92C50 PDF BibTeX XML Cite \textit{M. Dolce} and \textit{D. Donatelli}, J. Dyn. Differ. Equations 33, No. 1, 35--62 (2021; Zbl 07307356) Full Text: DOI
Pierson, Gaël; Kouitat-Njiwa, Richard; Bravetti, Pierre A boundary elements only solution method for 3D micropolar elasticity. (English) Zbl 07305281 Eng. Anal. Bound. Elem. 123, 84-92 (2021). MSC: 74 65 PDF BibTeX XML Cite \textit{G. Pierson} et al., Eng. Anal. Bound. Elem. 123, 84--92 (2021; Zbl 07305281) Full Text: DOI
Tuan, Nguyen Huy; Huynh, Le Nhat; Zhou, Yong Regularization of a backward problem for 2-D time-fractional diffusion equations with discrete random noise. (English) Zbl 07305249 Appl. Anal. 100, No. 2, 335-360 (2021). MSC: 35R25 35R11 35K20 47J06 47H10 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Anal. 100, No. 2, 335--360 (2021; Zbl 07305249) Full Text: DOI
Ling, Xuewei; Lin, Shou; He, Wei Point-countable covers and sequence-covering \(s\)-mappings at subsets. (English) Zbl 07305091 Topology Appl. 290, Article ID 107572, 18 p. (2021). MSC: 54E40 54C10 54D20 54D55 54E20 54E99 PDF BibTeX XML Cite \textit{X. Ling} et al., Topology Appl. 290, Article ID 107572, 18 p. (2021; Zbl 07305091) Full Text: DOI
Long, Haie; Han, Bo; Li, Li A fast two-point gradient method for solving non-smooth nonlinear ill-posed problems. (English) Zbl 07305051 J. Comput. Appl. Math. 384, Article ID 113114, 25 p. (2021). MSC: 65N21 65N20 65K10 65N12 65B99 65J20 35J61 PDF BibTeX XML Cite \textit{H. Long} et al., J. Comput. Appl. Math. 384, Article ID 113114, 25 p. (2021; Zbl 07305051) Full Text: DOI
Aharonov, Yakir; Behrndt, Jussi; Colombo, Fabrizio; Schlosser, Peter Green’s function for the Schrödinger equation with a generalized point interaction and stability of superoscillations. (English) Zbl 07303697 J. Differ. Equations 277, 153-190 (2021). MSC: 81Q05 35Q41 35J10 35J08 35A08 35L20 32A10 81S30 35B05 PDF BibTeX XML Cite \textit{Y. Aharonov} et al., J. Differ. Equations 277, 153--190 (2021; Zbl 07303697) Full Text: DOI
Patil, Jayashree; Hardan, Basel; Abdo, Mohammed S.; Chaudhari, Archana; Bachhav, Amol Generalized fractional differential equations by using a fixed point theorem for generalized contractive type. (English) Zbl 07302973 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 2, 77-88 (2021). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{J. Patil} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 2, 77--88 (2021; Zbl 07302973) Full Text: Link
Caballero, Josefa; Harjani, J.; Sadarangani, K. Existence and uniqueness of positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions. (English) Zbl 07302474 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 48, 12 p. (2021). MSC: 34A08 34B10 34B18 47N20 PDF BibTeX XML Cite \textit{J. Caballero} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 48, 12 p. (2021; Zbl 07302474) Full Text: DOI
Wang, Hui; Zhang, Lingling Uniqueness methods for the higher-order coupled fractional differential systems with multi-point boundary conditions. (English) Zbl 07300226 Bull. Sci. Math. 166, Article ID 102935, 31 p. (2021). Reviewer: Syed Abbas (Mandi) MSC: 34 26A33 34A34 34B10 47N20 PDF BibTeX XML Cite \textit{H. Wang} and \textit{L. Zhang}, Bull. Sci. Math. 166, Article ID 102935, 31 p. (2021; Zbl 07300226) Full Text: DOI
Liang, Ying; Xiang, Hua; Zhang, Shiyang; Zou, Jun Preconditioners and their analyses for edge element saddle-point systems arising from time-harmonic Maxwell’s equations. (English) Zbl 07298624 Numer. Algorithms 86, No. 1, 281-302 (2021). MSC: 65F10 65N22 65N30 PDF BibTeX XML Cite \textit{Y. Liang} et al., Numer. Algorithms 86, No. 1, 281--302 (2021; Zbl 07298624) Full Text: DOI
Hallaci, Ahmed; Boulares, Hamid; Ardjouni, Abdelouaheb; Chaoui, Abderrazak New existence results for fractional differential equations in a weighted Sobolev space. (English) Zbl 07297939 Rend. Mat. Appl., VII. Ser. 42, No. 1, 35-48 (2021). MSC: 34A08 34B15 47N20 PDF BibTeX XML Cite \textit{A. Hallaci} et al., Rend. Mat. Appl., VII. Ser. 42, No. 1, 35--48 (2021; Zbl 07297939) Full Text: Link
Li, Zhouxin; Liu, Ruishu Existence and concentration behavior of solutions to 1-Laplace equations on \(\mathbb{R}^N\). (English) Zbl 07285694 J. Differ. Equations 272, 399-432 (2021). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 58E05 35J65 PDF BibTeX XML Cite \textit{Z. Li} and \textit{R. Liu}, J. Differ. Equations 272, 399--432 (2021; Zbl 07285694) Full Text: DOI
Ding, Lei; Sun, Mingzheng; Tian, Rushun A remark on the Ambrosetti-Prodi type problem. (English) Zbl 1445.35178 Appl. Math. Lett. 111, Article ID 106648, 7 p. (2021). MSC: 35J91 35J61 35J20 35J25 49J45 58E05 PDF BibTeX XML Cite \textit{L. Ding} et al., Appl. Math. Lett. 111, Article ID 106648, 7 p. (2021; Zbl 1445.35178) Full Text: DOI
Rajendra Prasad, K.; Khuddush, Mahammad Denumerably many symmetric positive solutions for system of even order singular boundary value problems on time scales. (English) Zbl 07246083 Electron. J. Math. Analysis Appl. 9, No. 1, 151-168 (2021). MSC: 34B18 34N05 PDF BibTeX XML Cite \textit{K. Rajendra Prasad} and \textit{M. Khuddush}, Electron. J. Math. Analysis Appl. 9, No. 1, 151--168 (2021; Zbl 07246083) Full Text: Link
Yao, Xudong; Li, Zhujun A Morse index formula for minimax type saddle points by a Ljusternik-Schnirelman minimax algorithm and its application in computation of multiple solutions of semilinear elliptic equation. (English) Zbl 1447.58016 J. Comput. Appl. Math. 382, Article ID 113076, 20 p. (2021). MSC: 58E05 58E30 35J61 65N12 65N30 PDF BibTeX XML Cite \textit{X. Yao} and \textit{Z. Li}, J. Comput. Appl. Math. 382, Article ID 113076, 20 p. (2021; Zbl 1447.58016) Full Text: DOI
Noonan, Jack; Zhigljavsky, Anatoly Power of the MOSUM test for online detection of a transient change in mean. (English) Zbl 07316858 Sequential Anal. 39, No. 2, 269-293 (2020). MSC: 60G50 60G35 60G70 94C12 93E20 PDF BibTeX XML Cite \textit{J. Noonan} and \textit{A. Zhigljavsky}, Sequential Anal. 39, No. 2, 269--293 (2020; Zbl 07316858) Full Text: DOI
López, Rafael Gradient estimates for the constant mean curvature equation in hyperbolic space. (English) Zbl 07316378 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3216-3230 (2020). MSC: 35J62 35J25 35J93 35B38 53A10 PDF BibTeX XML Cite \textit{R. López}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3216--3230 (2020; Zbl 07316378) Full Text: DOI
Jammazi, Chaker; Belgacem, Ghada Ben On the finite-time stabilization of some hyperbolic control systems by boundary feedback laws: Lyapunov approach. (English) Zbl 07316000 Ammari, Kaïs (ed.) et al., Identification and control: some challenges. Summer school, Monastir, Tunisia, June 18–20, 2019. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5547-7/pbk; 978-1-4704-5696-2/ebook). Contemporary Mathematics 757, 137-160 (2020). MSC: 93D40 93D15 93C20 35L05 PDF BibTeX XML Cite \textit{C. Jammazi} and \textit{G. B. Belgacem}, Contemp. Math. 757, 137--160 (2020; Zbl 07316000) Full Text: DOI
Keimer, Alexander; Pflug, Lukas; Spinola, Michele Nonlocal balance laws. Results on existence, uniqueness and regularity. (English) Zbl 07315495 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 475-482 (2020). MSC: 35L03 35L65 65M25 35D30 PDF BibTeX XML Cite \textit{A. Keimer} et al., AIMS Ser. Appl. Math. 10, 475--482 (2020; Zbl 07315495)
Feng, Tao; Ni, Mingkang Internal layers for a quasi-linear singularly perturbed delay differential equation. (English) Zbl 07315431 J. Appl. Anal. Comput. 10, No. 4, 1666-1682 (2020). MSC: 34K26 34E20 34B15 PDF BibTeX XML Cite \textit{T. Feng} and \textit{M. Ni}, J. Appl. Anal. Comput. 10, No. 4, 1666--1682 (2020; Zbl 07315431) Full Text: DOI
Khan, Hasib; Tunc, Cemil; Khan, Aziz Stability results and existence theorems for nonlinear delay-fractional differential equations with \(\varphi_p^*\)-operator. (English) Zbl 07315111 J. Appl. Anal. Comput. 10, No. 2, 584-597 (2020). MSC: 34K37 34K10 34K27 47N20 PDF BibTeX XML Cite \textit{H. Khan} et al., J. Appl. Anal. Comput. 10, No. 2, 584--597 (2020; Zbl 07315111) Full Text: DOI
Vivek, D.; Baghani, Omid; Kanagarajan, K. Existence results for hybrid fractional differential equations with Hilfer fractional derivative. (English) Zbl 07314449 Casp. J. Math. Sci. 9, No. 2, 294-304 (2020). MSC: 26A33 34A08 34B18 PDF BibTeX XML Cite \textit{D. Vivek} et al., Casp. J. Math. Sci. 9, No. 2, 294--304 (2020; Zbl 07314449) Full Text: DOI
Derbazi, Choukri; Hammouche, Hadda Existence and uniqueness results for a class of nonlinear fractional differential equations with nonlocal boundary conditions. (English) Zbl 07314239 Jordan J. Math. Stat. 13, No. 3, 341-361 (2020). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{C. Derbazi} and \textit{H. Hammouche}, Jordan J. Math. Stat. 13, No. 3, 341--361 (2020; Zbl 07314239) Full Text: Link
Asaduzzaman, M.; Ali, M. Z. Existence of triple positive solutions for nonlinear second order arbitrary two-point boundary value problems. (English) Zbl 07314108 Malays. J. Math. Sci. 14, No. 3, 335-349 (2020). MSC: 34B15 34B18 47N20 PDF BibTeX XML Cite \textit{M. Asaduzzaman} and \textit{M. Z. Ali}, Malays. J. Math. Sci. 14, No. 3, 335--349 (2020; Zbl 07314108) Full Text: Link
Jadamba, Baasansuren; Khan, Akhtar A.; Richards, Michael; Sama, Miguel; Tammer, Christiane Analyzing the role of the inf-sup condition for parameter identification in saddle point problems with application in elasticity imaging. (English) Zbl 07313450 Optimization 69, No. 12, 2577-2610 (2020). MSC: 35R30 49N45 65J20 65J22 65M30 PDF BibTeX XML Cite \textit{B. Jadamba} et al., Optimization 69, No. 12, 2577--2610 (2020; Zbl 07313450) Full Text: DOI
Kadari, Halima; Nieto, Juan J.; Ouahab, Abdelghani; Oumansour, Abderrahamane Existence of solutions for implicit impulsive differential systems with coupled nonlocal conditions. (English) Zbl 07312924 Int. J. Difference Equ. 15, No. 2, 429-451 (2020). MSC: 34A07 34B37 47H30 PDF BibTeX XML Cite \textit{H. Kadari} et al., Int. J. Difference Equ. 15, No. 2, 429--451 (2020; Zbl 07312924) Full Text: Link
Boucherif, Abdelkader Nonlocal conditions for two-endpoint problems. (English) Zbl 07312917 Int. J. Difference Equ. 15, No. 2, 321-334 (2020). MSC: 34B10 34B15 34B27 PDF BibTeX XML Cite \textit{A. Boucherif}, Int. J. Difference Equ. 15, No. 2, 321--334 (2020; Zbl 07312917) Full Text: Link
Benmezai, Abdelhamid Positive solutions for second-order BVPs with an unintegrable weight and a singular nonlinearity. (English) Zbl 07312916 Int. J. Difference Equ. 15, No. 2, 309-320 (2020). MSC: 34B15 34B16 34B18 PDF BibTeX XML Cite \textit{A. Benmezai}, Int. J. Difference Equ. 15, No. 2, 309--320 (2020; Zbl 07312916) Full Text: Link
Avery, Richard Alternative fixed point method. (English) Zbl 07312915 Int. J. Difference Equ. 15, No. 2, 301-308 (2020). MSC: 47H10 39A10 PDF BibTeX XML Cite \textit{R. Avery}, Int. J. Difference Equ. 15, No. 2, 301--308 (2020; Zbl 07312915) Full Text: Link
Ahmad, Bashir; Alsaedi, Ahmed; Ntouyas, Sotiris K.; Alruwaily, Ymnah On a fractional integro-differential system involving Riemann-Liouville and Caputo derivatives with coupled multi-point boundary conditions. (English) Zbl 07312911 Int. J. Difference Equ. 15, No. 2, 209-241 (2020). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Int. J. Difference Equ. 15, No. 2, 209--241 (2020; Zbl 07312911) Full Text: Link
Prasad, K. R.; Khuddush, Mahammad; Vidyasagar, K. V. Denumerably many positive solutions for iterative systems of singular two-point boundary value problems on time scales. (English) Zbl 07312907 Int. J. Difference Equ. 15, No. 1, 153-172 (2020). MSC: 34N05 34B16 34B18 PDF BibTeX XML Cite \textit{K. R. Prasad} et al., Int. J. Difference Equ. 15, No. 1, 153--172 (2020; Zbl 07312907) Full Text: Link
Reiß, Markus; Schmidt-Hieber, Johannes Posterior contraction rates for support boundary recovery. (English) Zbl 07312343 Stochastic Processes Appl. 130, No. 11, 6638-6656 (2020). MSC: 62C10 62G05 60G55 42C40 PDF BibTeX XML Cite \textit{M. Reiß} and \textit{J. Schmidt-Hieber}, Stochastic Processes Appl. 130, No. 11, 6638--6656 (2020; Zbl 07312343) Full Text: DOI
Almalahi, M. A.; Abdo, M. S.; Panchal, S. K. Periodic boundary value problems for fractional implicit differential equations involving Hilfer fractional derivative. (English) Zbl 07311940 Probl. Anal. Issues Anal. 9(27), No. 2, 16-44 (2020). Reviewer: Syed Abbas (Mandi) MSC: 34A08 34B15 34D10 47H10 33E12 PDF BibTeX XML Cite \textit{M. A. Almalahi} et al., Probl. Anal. Issues Anal. 9(27), No. 2, 16--44 (2020; Zbl 07311940) Full Text: DOI MNR
Petrosyan, Garik Garikovich Antiperiodic boundary value problem for a semilinear differential equation of fractional order. (English) Zbl 07311845 Izv. Irkutsk. Gos. Univ., Ser. Mat. 34, 51-66 (2020). MSC: 34A08 34G20 34C25 47H08 47H10 PDF BibTeX XML Cite \textit{G. G. Petrosyan}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 34, 51--66 (2020; Zbl 07311845) Full Text: DOI Link
Arslan, Derya Stability and convergence analysis on Shishkin mesh for a nonlinear singularly perturbed problem with three-point boundary condition. (English) Zbl 07311135 Quaest. Math. 43, No. 11, 1527-1540 (2020). MSC: 65L10 65L11 65L12 65L15 65L20 65L70 34B10 PDF BibTeX XML Cite \textit{D. Arslan}, Quaest. Math. 43, No. 11, 1527--1540 (2020; Zbl 07311135) Full Text: DOI
Basov, V. V.; Iljin, Yu. A. On the Cauchy problem set on the boundary of the ordinary differential equation’s domain of definition. (English. Russian original) Zbl 07310907 Vestn. St. Petersbg. Univ., Math. 53, No. 4, 424-433 (2020); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 4, 636-648 (2020). MSC: 34A12 PDF BibTeX XML Cite \textit{V. V. Basov} and \textit{Yu. A. Iljin}, Vestn. St. Petersbg. Univ., Math. 53, No. 4, 424--433 (2020; Zbl 07310907); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 4, 636--648 (2020) Full Text: DOI
Song, Mingliang Existence of solutions for subquadratic convex or \(B\)-concave operator equations and applications to second order Hamiltonian systems. (English) Zbl 07307862 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 49, 19 p. (2020). MSC: 34B15 34C25 58E05 70H05 PDF BibTeX XML Cite \textit{M. Song}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 49, 19 p. (2020; Zbl 07307862) Full Text: DOI
Gao, Dongdong; Li, Jianli Infinitely many solutions for impulsive fractional differential equations through variational methods. (English) Zbl 07307597 Quaest. Math. 43, No. 9, 1285-1301 (2020). MSC: 34A08 34B37 58E05 PDF BibTeX XML Cite \textit{D. Gao} and \textit{J. Li}, Quaest. Math. 43, No. 9, 1285--1301 (2020; Zbl 07307597) Full Text: DOI
Musoke, Elle; Krauskopf, Bernd; Osinga, Hinke M. A surface of heteroclinic connections between two saddle slow manifolds in the Olsen model. (English) Zbl 07306767 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2030048, 33 p. (2020). MSC: 34C45 34C60 92C45 34E20 34C05 34C37 37M21 PDF BibTeX XML Cite \textit{E. Musoke} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2030048, 33 p. (2020; Zbl 07306767) Full Text: DOI
Bhal, Santosh Kumar; Danumjaya, P.; Fairweather, G. High-order orthogonal spline collocation methods for two-point boundary value problems with interfaces. (English) Zbl 1453.65190 Math. Comput. Simul. 174, 102-122 (2020). MSC: 65L60 65L10 PDF BibTeX XML Cite \textit{S. K. Bhal} et al., Math. Comput. Simul. 174, 102--122 (2020; Zbl 1453.65190) Full Text: DOI
Chen, Meng; Ling, Leevan Kernel-based collocation methods for heat transport on evolving surfaces. (English) Zbl 1453.65356 J. Comput. Phys. 405, Article ID 109166, 13 p. (2020). MSC: 65M70 35R01 35Q79 65Z05 PDF BibTeX XML Cite \textit{M. Chen} and \textit{L. Ling}, J. Comput. Phys. 405, Article ID 109166, 13 p. (2020; Zbl 1453.65356) Full Text: DOI
May, Ian C. T.; Haynes, Ronald D.; Ruuth, Steven J. Schwarz solvers and preconditioners for the closest point method. (English) Zbl 07301563 SIAM J. Sci. Comput. 42, No. 6, A3584-A3609 (2020). MSC: 65F10 65N22 65N55 PDF BibTeX XML Cite \textit{I. C. T. May} et al., SIAM J. Sci. Comput. 42, No. 6, A3584--A3609 (2020; Zbl 07301563) Full Text: DOI
Beigl, Alexander; Sogn, Jarle; Zulehner, Walter Robust preconditioners for multiple saddle point problems and applications to optimal control problems. (English) Zbl 07301501 SIAM J. Matrix Anal. Appl. 41, No. 4, 1590-1615 (2020). MSC: 49J20 49K20 65F08 65N22 PDF BibTeX XML Cite \textit{A. Beigl} et al., SIAM J. Matrix Anal. Appl. 41, No. 4, 1590--1615 (2020; Zbl 07301501) Full Text: DOI
Zhang, Yichen; Feng, Meiqiang A coupled \(p\)-Laplacian elliptic system: existence, uniqueness and asymptotic behavior. (English) Zbl 07300750 Electron Res. Arch. 28, No. 4, 1419-1438 (2020). MSC: 35J60 35J66 35J92 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{M. Feng}, Electron Res. Arch. 28, No. 4, 1419--1438 (2020; Zbl 07300750) Full Text: DOI
Gul, Rozi; Sarwar, Muhammad; Shah, Kamal; Abdeljawad, Thabet; Jarad, Fahd Qualitative analysis of implicit Dirichlet boundary value problem for Caputo-Fabrizio fractional differential equations. (English) Zbl 07300487 J. Funct. Spaces 2020, Article ID 4714032, 9 p. (2020). MSC: 35R11 35G30 PDF BibTeX XML Cite \textit{R. Gul} et al., J. Funct. Spaces 2020, Article ID 4714032, 9 p. (2020; Zbl 07300487) Full Text: DOI
Shammakh, Wafa; Alzumi, Hadeel Z.; AlQahtani, Bushra A. On more general fractional differential equations involving mixed generalized derivatives with nonlocal multipoint and generalized fractional integral boundary conditions. (English) Zbl 07300030 J. Funct. Spaces 2020, Article ID 3102142, 19 p. (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{W. Shammakh} et al., J. Funct. Spaces 2020, Article ID 3102142, 19 p. (2020; Zbl 07300030) Full Text: DOI
Caucao, Sergio; Gatica, Gabriel N.; Oyarzúa, Ricardo; Sánchez, Nestor A fully-mixed formulation for the steady double-diffusive convection system based upon Brinkman-Forchheimer equations. (English) Zbl 07299269 J. Sci. Comput. 85, No. 2, Paper No. 44, 36 p. (2020). MSC: 65N30 65N12 65N15 80A19 76S05 76R05 76R50 76D07 35B45 35A01 35A02 35Q79 35Q35 PDF BibTeX XML Cite \textit{S. Caucao} et al., J. Sci. Comput. 85, No. 2, Paper No. 44, 36 p. (2020; Zbl 07299269) Full Text: DOI
Qin, Xinqiang; Peng, Dayao; Hu, Gang Implicit radial point interpolation method for nonlinear space fractional advection-diffusion equations. (English) Zbl 07297924 Rocky Mt. J. Math. 50, No. 6, 2199-2212 (2020). MSC: 65M22 65M70 65D32 35R11 PDF BibTeX XML Cite \textit{X. Qin} et al., Rocky Mt. J. Math. 50, No. 6, 2199--2212 (2020; Zbl 07297924) Full Text: DOI Euclid
Ahmad, Bashir; Alghanmi, Madeaha; Alsaedi, Ahmed Existence results for a nonlinear coupled system involving both Caputo and Riemann-Liouville generalized fractional derivatives and coupled integral boundary conditions. (English) Zbl 07297902 Rocky Mt. J. Math. 50, No. 6, 1901-1922 (2020). Reviewer: Mohammed Kaabar (Gelugor) MSC: 34A08 34B10 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Rocky Mt. J. Math. 50, No. 6, 1901--1922 (2020; Zbl 07297902) Full Text: DOI Euclid
Tu, Xuemin; Wang, Bin; Zhang, Jinjin Analysis of BDDC algorithms for Stokes problems with hybridizable discontinuous Galerkin discretizations. (English) Zbl 07297614 ETNA, Electron. Trans. Numer. Anal. 52, 553-570 (2020). MSC: 65F10 65N30 65N55 PDF BibTeX XML Cite \textit{X. Tu} et al., ETNA, Electron. Trans. Numer. Anal. 52, 553--570 (2020; Zbl 07297614) Full Text: DOI Link
Bhuvaneswari, K.; Priyadharshini, J. Sheeba Diagnoses of medical image using nano digital topology. (English) Zbl 07296913 South East Asian J. Math. Math. Sci. 16, No. 1A, 31-40 (2020). MSC: 54A05 PDF BibTeX XML Cite \textit{K. Bhuvaneswari} and \textit{J. S. Priyadharshini}, South East Asian J. Math. Math. Sci. 16, No. 1A, 31--40 (2020; Zbl 07296913) Full Text: Link
Sun, Jinxian (ed.); Pan, Xing-Bin (ed.); Du, Yihong (ed.); Liu, Zhaoli (ed.); Zhang, Zhitao (ed.) Professor Dajun Guo: a true mathematician and educator. (English) Zbl 07296589 SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 37, 9 p. (2020). MSC: 47H07 47H10 47H11 34B18 34G20 35J61 01A25 PDF BibTeX XML Cite \textit{J. Sun} (ed.) et al., SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 37, 9 p. (2020; Zbl 07296589) Full Text: DOI
Georgiev, Svetlin Georgiev; Majdoub, Mohamed Existence of solutions for a class of IBVP for nonlinear hyperbolic equations. (English) Zbl 1452.35090 SN Partial Differ. Equ. Appl. 1, No. 4, Paper No. 22, 20 p. (2020). MSC: 35L20 35L70 47H10 58J20 PDF BibTeX XML Cite \textit{S. G. Georgiev} and \textit{M. Majdoub}, SN Partial Differ. Equ. Appl. 1, No. 4, Paper No. 22, 20 p. (2020; Zbl 1452.35090) Full Text: DOI
Li, Zhiyu; Bai, Zhanbing On \((n-1, 1)\) conjugate boundary value problems with dependence on fully nonlinearity. (English) Zbl 07295991 Math. Appl. 33, No. 3, 782-788 (2020). MSC: 34B18 PDF BibTeX XML Cite \textit{Z. Li} and \textit{Z. Bai}, Math. Appl. 33, No. 3, 782--788 (2020; Zbl 07295991)
Shen, Kaiyue; Zhou, Zongfu Positive solutions for fractional differential equations with integral and infinite-point boundary conditions. (English) Zbl 07295970 Math. Appl. 33, No. 3, 563-571 (2020). MSC: 34B18 34A08 PDF BibTeX XML Cite \textit{K. Shen} and \textit{Z. Zhou}, Math. Appl. 33, No. 3, 563--571 (2020; Zbl 07295970)
Zheng, Quan; Liu, Ying; Liu, Zhongli The hybrid finite difference schemes on the modified Bakhvalov-Shishkin mesh for the singularly perturbed problem. (Chinese. English summary) Zbl 07295948 J. Zhejiang Univ., Sci. Ed. 47, No. 4, 460-468 (2020). MSC: 65N06 65N15 PDF BibTeX XML Cite \textit{Q. Zheng} et al., J. Zhejiang Univ., Sci. Ed. 47, No. 4, 460--468 (2020; Zbl 07295948) Full Text: DOI
Zhang, Yali Existence of positive solutions for a class of second-order difference equation Dirichlet boundary problems with sign-changing weight function. (Chinese. English summary) Zbl 07295700 J. Sichuan Univ., Nat. Sci. Ed. 57, No. 3, 455-458 (2020). MSC: 34B18 39A05 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Sichuan Univ., Nat. Sci. Ed. 57, No. 3, 455--458 (2020; Zbl 07295700) Full Text: DOI
Li, Xiaolong Positive solutions of nonlinear fractional boundary value problems in ordered Banach spaces. (Chinese. English summary) Zbl 07295689 J. Sichuan Norm. Univ., Nat. Sci. 43, No. 4, 475-479 (2020). MSC: 34B18 34A08 PDF BibTeX XML Cite \textit{X. Li}, J. Sichuan Norm. Univ., Nat. Sci. 43, No. 4, 475--479 (2020; Zbl 07295689) Full Text: DOI
Wang, Tianxiang; Li, Yongxiang Existence and uniqueness of solutions for a class fourth-order periodic boundary value problems. (Chinese. English summary) Zbl 07295622 J. Shandong Univ., Nat. Sci. 55, No. 7, 16-21 (2020). MSC: 34B15 PDF BibTeX XML Cite \textit{T. Wang} and \textit{Y. Li}, J. Shandong Univ., Nat. Sci. 55, No. 7, 16--21 (2020; Zbl 07295622) Full Text: DOI
Wu, Shaohua; Liu, Lei Existence of solutions for a parabolic system modeling chemotaxis with memory term. (English) Zbl 07295599 J. Partial Differ. Equations 33, No. 2, 158-170 (2020). MSC: 35K51 35D30 PDF BibTeX XML Cite \textit{S. Wu} and \textit{L. Liu}, J. Partial Differ. Equations 33, No. 2, 158--170 (2020; Zbl 07295599) Full Text: DOI
Yang, He; Zhang, Yong Approximate controllability for a class of fractional evolution equations with nonlocal integral boundary conditions. (English) Zbl 07295580 J. Northwest Norm. Univ., Nat. Sci. 56, No. 4, 1-7 (2020). MSC: 93B05 37L05 26A33 PDF BibTeX XML Cite \textit{H. Yang} and \textit{Y. Zhang}, J. Northwest Norm. Univ., Nat. Sci. 56, No. 4, 1--7 (2020; Zbl 07295580) Full Text: DOI
Peng, Zhongqi; Li, Yuan; Xue, Yimin Two positive solutions of boundary value problem for a class of coupled system of nonlinear fractional differential equations. (Chinese. English summary) Zbl 07295401 J. Jilin Univ., Sci. 58, No. 4, 775-781 (2020). MSC: 34B18 34A08 PDF BibTeX XML Cite \textit{Z. Peng} et al., J. Jilin Univ., Sci. 58, No. 4, 775--781 (2020; Zbl 07295401) Full Text: DOI
Fu, Tongtong; Li, Yongxiang Existence of radial solutions for elliptic boundary value problem with gradient terms in exterior domains. (Chinese. English summary) Zbl 07295400 J. Jilin Univ., Sci. 58, No. 4, 768-774 (2020). MSC: 35J66 PDF BibTeX XML Cite \textit{T. Fu} and \textit{Y. Li}, J. Jilin Univ., Sci. 58, No. 4, 768--774 (2020; Zbl 07295400) Full Text: DOI
Li, Tingting; Lv, Jia On positive and unlabeled learning based on data fuzziness. (Chinese. English summary) Zbl 07295176 J. Beijing Norm. Univ., Nat. Sci. 56, No. 1, 45-51 (2020). MSC: 68T05 03E72 PDF BibTeX XML Cite \textit{T. Li} and \textit{J. Lv}, J. Beijing Norm. Univ., Nat. Sci. 56, No. 1, 45--51 (2020; Zbl 07295176) Full Text: DOI
Zhang, Yali Global structure of positive solutions for a class of third-order three-point boundary value problems. (English) Zbl 07295153 J. Anhui Norm. Univ., Nat. Sci. 43, No. 4, 321-328 (2020). MSC: 34B18 34B10 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Anhui Norm. Univ., Nat. Sci. 43, No. 4, 321--328 (2020; Zbl 07295153) Full Text: DOI
Xu, Jiafa Positive solutions for a system of boundary value problems of fractional difference equations involving semipositone nonlinearities. (Chinese. English summary) Zbl 07294842 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 1, 132-145 (2020). MSC: 34B18 39A05 26A33 PDF BibTeX XML Cite \textit{J. Xu}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 1, 132--145 (2020; Zbl 07294842)
Tran, Dinh-Ke; Lam, Tran-Phuong-Thuy Nonlocal final value problem governed by semilinear anomalous diffusion equations. (English) Zbl 07293777 Evol. Equ. Control Theory 9, No. 3, 891-914 (2020). MSC: 35R30 35K20 35R09 45D05 45K05 PDF BibTeX XML Cite \textit{D.-K. Tran} and \textit{T.-P.-T. Lam}, Evol. Equ. Control Theory 9, No. 3, 891--914 (2020; Zbl 07293777) Full Text: DOI
Akhtyamov, Azamat Mukhtarovich On the finite spectrum of three-point boundary value problems. (Russian. English summary) Zbl 07293394 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 2, 130-135 (2020). MSC: 34B09 34L05 PDF BibTeX XML Cite \textit{A. M. Akhtyamov}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 2, 130--135 (2020; Zbl 07293394) Full Text: DOI MNR
Erfani, S.; Javadi, S.; Babolian, E. An efficient collocation method with convergence rates based on Müntz spaces for solving nonlinear fractional two-point boundary value problems. (English) Zbl 07291005 Comput. Appl. Math. 39, No. 4, Paper No. 260, 23 p. (2020). MSC: 65L10 41A25 49M05 49M25 65K05 PDF BibTeX XML Cite \textit{S. Erfani} et al., Comput. Appl. Math. 39, No. 4, Paper No. 260, 23 p. (2020; Zbl 07291005) Full Text: DOI
Chalishajar, Dimplekumar N.; Ramesh, R. Fuzzy solutions to second order three point boundary value problem. (English) Zbl 07288658 Appl. Appl. Math. 15, No. 2, 916-927 (2020). Reviewer: Tatyana Komleva (Odessa) MSC: 34A07 34B10 47N20 PDF BibTeX XML Cite \textit{D. N. Chalishajar} and \textit{R. Ramesh}, Appl. Appl. Math. 15, No. 2, 916--927 (2020; Zbl 07288658) Full Text: Link
Cheviakov, A. F.; Dorodnitsyn, V. A.; Kaptsov, E. I. Invariant conservation law-preserving discretizations of linear and nonlinear wave equations. (English) Zbl 07287183 J. Math. Phys. 61, No. 8, 081504, 23 p. (2020). MSC: 65M06 65N06 65J08 37K10 37M15 17B81 74B20 PDF BibTeX XML Cite \textit{A. F. Cheviakov} et al., J. Math. Phys. 61, No. 8, 081504, 23 p. (2020; Zbl 07287183) Full Text: DOI
Bacuta, Constantin; Jacavage, Jacob Least squares preconditioning for mixed methods with nonconforming trial spaces. (English) Zbl 07286886 Appl. Anal. 99, No. 16, 2755-2775 (2020). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 74S05 74B05 65N22 65N55 PDF BibTeX XML Cite \textit{C. Bacuta} and \textit{J. Jacavage}, Appl. Anal. 99, No. 16, 2755--2775 (2020; Zbl 07286886) Full Text: DOI
Feng, Yuqiang; Wang, Yuanyuan; Li, Deyi Comparison theorem and solvability of the boundary value problem of a fractional differential equation. (English) Zbl 07286084 Mem. Differ. Equ. Math. Phys. 79, 57-68 (2020). MSC: 34A08 34B15 47N20 PDF BibTeX XML Cite \textit{Y. Feng} et al., Mem. Differ. Equ. Math. Phys. 79, 57--68 (2020; Zbl 07286084) Full Text: Link
Abdo, Mohammed S.; Ibrahim, Ahmed G.; Panchal, Satish K. Noncompact perturbation of nonconvex noncompact sweeping process with delay. (English) Zbl 07285999 Commentat. Math. Univ. Carol. 61, No. 2, 165-186 (2020). MSC: 34A60 34B15 47H10 PDF BibTeX XML Cite \textit{M. S. Abdo} et al., Commentat. Math. Univ. Carol. 61, No. 2, 165--186 (2020; Zbl 07285999) Full Text: DOI
Zerizer, Tahia An iterative method to solve a nonlinear three-time-scale discrete system. (English) Zbl 07285394 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 6, 421-430 (2020). MSC: 93C70 93C55 93C10 PDF BibTeX XML Cite \textit{T. Zerizer}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 6, 421--430 (2020; Zbl 07285394) Full Text: Link
Malaguti, Luisa; Yoshii, Kentarou Nonlocal solutions and controllability of Schrödinger evolution equation. (English) Zbl 07285151 Fixed Point Theory 21, No. 2, 657-684 (2020). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q41 34B10 35D35 93B05 47H10 35A09 35A01 35A02 PDF BibTeX XML Cite \textit{L. Malaguti} and \textit{K. Yoshii}, Fixed Point Theory 21, No. 2, 657--684 (2020; Zbl 07285151) Full Text: Link
Borisut, Piyachat; Kumam, Poom; Ahmed, Idris; Sitthithakerngkiet, Kanokwan Positive solution for nonlinear fractional differential equation with nonlocal multi-point condition. (English) Zbl 07285135 Fixed Point Theory 21, No. 2, 427-440 (2020). MSC: 34A08 34B15 47H10 PDF BibTeX XML Cite \textit{P. Borisut} et al., Fixed Point Theory 21, No. 2, 427--440 (2020; Zbl 07285135) Full Text: Link
Bnouhachem, Abdellah; Ansari, Qamrul Hasan; Yao, Jen-Chih An improvement of alternating direction method for solving variational inequality problems with separable structure. (English) Zbl 07282698 Fixed Point Theory 21, No. 1, 67-78 (2020). MSC: 49J40 65N30 47H10 PDF BibTeX XML Cite \textit{A. Bnouhachem} et al., Fixed Point Theory 21, No. 1, 67--78 (2020; Zbl 07282698) Full Text: Link
Prasad, Kapula Rajendra; Rashmita, Mahanty; Sreedhar, Namburi Solvability of higher order three-point iterative systems. (English) Zbl 07281919 Ufim. Mat. Zh. 12, No. 3, 109-124 (2020) and Ufa Math. J. 12, No. 3, 107-122 (2020). MSC: 34B18 34A40 34B15 PDF BibTeX XML Cite \textit{K. R. Prasad} et al., Ufim. Mat. Zh. 12, No. 3, 109--124 (2020; Zbl 07281919) Full Text: DOI MNR
Petrosyan, Garik Garikovich On antiperiodic boundary value problem for semilinear fractional differential inclusion with deviating argument in Banach space. (Russian. English summary) Zbl 07281916 Ufim. Mat. Zh. 12, No. 3, 71-82 (2020); translation in Ufa Math. J. 12, No. 3, 69-80 (2020). MSC: 34G25 34K09 34K37 47H04 47H08 47H10 PDF BibTeX XML Cite \textit{G. G. Petrosyan}, Ufim. Mat. Zh. 12, No. 3, 71--82 (2020; Zbl 07281916); translation in Ufa Math. J. 12, No. 3, 69--80 (2020) Full Text: DOI MNR
Allahverdiev, Bilender Paşaoğlu; Tuna, Hüseyin Existence of solutions for nonlinear singular \(q\)-Sturm-Liouville problems. (English) Zbl 07281893 Ufim. Mat. Zh. 12, No. 1, 92-103 (2020) and Ufa Math. J. 12, No. 1, 91-102 (2020). MSC: 39A13 34B15 34B16 34B40 PDF BibTeX XML Cite \textit{B. P. Allahverdiev} and \textit{H. Tuna}, Ufim. Mat. Zh. 12, No. 1, 92--103 (2020; Zbl 07281893) Full Text: DOI MNR
Altun, Ishak; Olgun, Murat An existence and uniqueness theorem for a fractional boundary value problem via new fixed point results on quasi metric spaces. (English) Zbl 1448.54025 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105462, 9 p. (2020). MSC: 54H25 47H10 34B18 26A33 PDF BibTeX XML Cite \textit{I. Altun} and \textit{M. Olgun}, Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105462, 9 p. (2020; Zbl 1448.54025) Full Text: DOI
Min, Dandan; Chen, Fangqi Three solutions for a class of fractional impulsive advection-dispersion equations with Sturm-Liouville boundary conditions via variational approach. (English) Zbl 07279041 Math. Methods Appl. Sci. 43, No. 15, 9151-9168 (2020). Reviewer: Jan Tomeček (Olomouc) MSC: 34A08 34B09 34B24 34B37 47J30 PDF BibTeX XML Cite \textit{D. Min} and \textit{F. Chen}, Math. Methods Appl. Sci. 43, No. 15, 9151--9168 (2020; Zbl 07279041) Full Text: DOI
Ren, Jing; Zhai, Chengbo Solvability for \(p\)-Laplacian generalized fractional coupled systems with two-sided memory effects. (English) Zbl 07279021 Math. Methods Appl. Sci. 43, No. 15, 8797-8822 (2020). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{J. Ren} and \textit{C. Zhai}, Math. Methods Appl. Sci. 43, No. 15, 8797--8822 (2020; Zbl 07279021) Full Text: DOI
Harikrishnan, S.; Shah, Kamal; Kanagarajan, K. Study of a boundary value problem for fractional order \(\psi\)-Hilfer fractional derivative. (English) Zbl 07274803 Arab. J. Math. 9, No. 3, 589-596 (2020). MSC: 34A08 34F05 34B15 47N20 PDF BibTeX XML Cite \textit{S. Harikrishnan} et al., Arab. J. Math. 9, No. 3, 589--596 (2020; Zbl 07274803) Full Text: DOI
Derbazi, Choukri; Hammouche, Hadda Boundary value problems for Caputo fractional differential equations with nonlocal and fractional integral boundary conditions. (English) Zbl 07274800 Arab. J. Math. 9, No. 3, 531-544 (2020). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{C. Derbazi} and \textit{H. Hammouche}, Arab. J. Math. 9, No. 3, 531--544 (2020; Zbl 07274800) Full Text: DOI
Haghshenas, Hadi; Afrouzi, Ghasem A. Existence results for a fourth-order elastic beam equation via the variational approach. (English) Zbl 07274487 Afr. Mat. 31, No. 7-8, 1379-1386 (2020). MSC: 34B15 58E05 PDF BibTeX XML Cite \textit{H. Haghshenas} and \textit{G. A. Afrouzi}, Afr. Mat. 31, No. 7--8, 1379--1386 (2020; Zbl 07274487) Full Text: DOI
Malik, Ishfaq Ahmad; Jalal, Tanweer Existence of solution for system of differential equations in \(c_0\) and \(\ell_1\) spaces. (English) Zbl 07274471 Afr. Mat. 31, No. 7-8, 1129-1143 (2020). MSC: 46A45 34K10 46E30 45B05 31B10 PDF BibTeX XML Cite \textit{I. A. Malik} and \textit{T. Jalal}, Afr. Mat. 31, No. 7--8, 1129--1143 (2020; Zbl 07274471) Full Text: DOI
Khaleghi Moghadam, Mohsen; Khalili, Yasser; Wieteska, Renata Existence of two solutions for a fourth-order difference problem with \(p(k)\) exponent. (English) Zbl 07274459 Afr. Mat. 31, No. 5-6, 959-970 (2020). MSC: 39A10 47A75 34B15 PDF BibTeX XML Cite \textit{M. Khaleghi Moghadam} et al., Afr. Mat. 31, No. 5--6, 959--970 (2020; Zbl 07274459) Full Text: DOI
Subramanian, Muthaiah; Manigandan, Murugesan; Gopal, Thangaraj Nandha Fractional differential equations involving Hadamard fractional derivatives with nonlocal multi-point boundary conditions. (English) Zbl 07274343 Discontin. Nonlinearity Complex. 9, No. 3, 421-431 (2020). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{M. Subramanian} et al., Discontin. Nonlinearity Complex. 9, No. 3, 421--431 (2020; Zbl 07274343) Full Text: DOI
Salem, Ahmed; Alnegga, Mohammad Fractional Langevin equations with multi-point and non-local integral boundary conditions. (English) Zbl 07273109 Cogent Math. Stat. 7, Article ID 1758361, 15 p. (2020). MSC: 26A33 34A08 34A12 PDF BibTeX XML Cite \textit{A. Salem} and \textit{M. Alnegga}, Cogent Math. Stat. 7, Article ID 1758361, 15 p. (2020; Zbl 07273109) Full Text: DOI
Cheng, Zhibo; Cui, Xiaoxiao Positive periodic solution for generalized Basener-Ross model. (English) Zbl 07272963 Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4361-4382 (2020). Reviewer: Haiyan Wang (Phoenix) MSC: 34C60 34B18 34C25 92D25 PDF BibTeX XML Cite \textit{Z. Cheng} and \textit{X. Cui}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4361--4382 (2020; Zbl 07272963) Full Text: DOI