×

MIB Galerkin method for elliptic interface problems. (English) Zbl 1294.65103

Summary: Material interfaces are omnipresent in the real-world structures and devices. Mathematical modeling of material interfaces often leads to elliptic partial differential equations (PDEs) with discontinuous coefficients and singular sources, which are commonly called elliptic interface problems. The development of high-order numerical schemes for elliptic interface problems has become a well defined field in applied and computational mathematics and attracted much attention in the past decades. Despite of significant advances, challenges remain in the construction of high-order schemes for nonsmooth interfaces, i.e., interfaces with geometric singularities, such as tips, cusps and sharp edges. The challenge of geometric singularities is amplified when they are associated with low solution regularities, e.g., tip-geometry effects in many fields.
The present work introduces a matched interface and boundary (MIB) Galerkin method for solving two-dimensional (2D) elliptic PDEs with complex interfaces, geometric singularities and low solution regularities. The Cartesian grid based triangular elements are employed to avoid the time consuming mesh generation procedure. Consequently, the interface cuts through elements. To ensure the continuity of classic basis functions across the interface, two sets of overlapping elements, called MIB elements, are defined near the interface. As a result, differentiation can be computed near the interface as if there is no interface. Interpolation functions are constructed on MIB element spaces to smoothly extend function values across the interface. A set of lowest order interface jump conditions is enforced on the interface, which in turn, determines the interpolation functions. The performance of the proposed MIB Galerkin finite element method is validated by numerical experiments with a wide range of interface geometries, geometric singularities, low regularity solutions and grid resolutions. Extensive numerical studies confirm the designed second order convergence of the MIB Galerkin method in the \(L_\infty\) and \(L_2\) errors. Some of the best results are obtained in the present work when the interface is \(C^1\) or Lipschitz continuous and the solution is \(C^2\) continuous.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
35R05 PDEs with low regular coefficients and/or low regular data
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

Software:

MIBPB
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fadlun, E. A.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys., 161, 1, 35-60 (2000) · Zbl 0972.76073
[2] Francois, M.; Shyy, W., Computations of drop dynamics with the immersed boundary method, part 2: drop impact and heat transfer, Numer. Heat Transfer B, 44 (2003)
[3] Francois, M.; Uzgoren, E.; Jackson, J.; Shyy, W., Multigrid computations with the immersed boundary technique for multiphase flows, Int. J. Numer. Methods Heat Fluid Flow, 14, 98-115 (2004) · Zbl 1064.76081
[4] Iaccarino, G.; Verzicco, R., Immersed boundary technique for turbulent flow simulations, Appl. Mech. Rev., 56, 331-347 (2003)
[5] Mittal, M.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 236-261 (2005) · Zbl 1117.76049
[6] Lee, Long; LeVeque, Randall J., An immersed interface method for incompressible navier-stokes equations, SIAM J. Sci. Comput., 25, 3, 832-856 (2003) · Zbl 1163.65322
[7] Li, Zhilin; Lubkin, Sharon R., Numerical analysis of interfacial two-dimensional stokes flow with discontinuous viscosity and variable surface tension, Internat. J. Numer. Methods Fluids, 37, 5, 525-540 (2001) · Zbl 0996.76068
[8] Layton, A. T., Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces, Comput. Fluids, 38, 266-272 (2009) · Zbl 1237.76123
[9] Hadley, G. R., High-accuracy finite-difference equations for dielectric waveguide analysis i: uniform regions and dielectric interfaces, J. Lightwave Technol., 20, 1210-1218 (2002)
[10] Hesthaven, J. S., High-order accurate methods in time-domain computational electromagnetics. a review, Adv. Imaging Electron Phys., 127, 59-123 (2003)
[11] Kafafy, R.; Lin, T.; Lin, Y.; Wang, J., Three-dimensional immersed finite element methods for electric field simulation in composite materials, Internat. J. Numer. Methods Engrg., 64, 940-972 (2005) · Zbl 1122.78018
[12] Kandilarov, Juri D., Immersed interface method for a reaction-diffusion equation with a moving own concentrated source, (NMA ’02: Revised Papers from the 5th International Conference on Numerical Methods and Applications (2003), Springer-Verlag: Springer-Verlag London, UK), 506-513 · Zbl 1032.65093
[13] Zhao, Shan; Wei, G. W., High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces, J. Comput. Phys., 200, 1, 60-103 (2004) · Zbl 1050.78018
[14] Zhao, S., High order matched interface and boundary methods for the Helmholtz equation in media with arbitrarily curved interfaces, J. Comput. Phys., 229, 3155-3170 (2010) · Zbl 1187.78044
[15] Horikis, T. P.; Kath, W. L., Modal analysis of circular bragg fibers with arbitrary index profiles, Opt. Lett., 31, 3417-3419 (2006)
[16] Hou, T. Y.; Li, Z. L.; Osher, S.; Zhao, H. K., A hybrid method for moving interface problems with application to the heleshaw flow, J. Comput. Phys., 134, 2, 236-252 (1997) · Zbl 0888.76067
[17] Liu, W. K.; Liu, Y.; Farrell, D.; Zhang, L.; Wang, X.; Fukui, Y.; Patankar, N.; Zhang, Y.; Bajaj, C.; Chen, X.; Hsu, H., Immersed finite element method and its applications to biological systems, Comput. Methods Appl. Mech. Engrg., 195, 1722-1749 (2006) · Zbl 1178.76232
[18] Zhou, Y. C.; Feig, M.; Wei, G. W., Highly accurate biomolecular electrostatics in continuum dielectric environments, J. Comput. Chem., 29, 87-97 (2008)
[19] Yu, S. N.; Geng, W. H.; Wei, G. W., Treatment of geometric singularities in implicit solvent models, J. Chem. Phys., 126, 244108 (2007)
[20] Geng, Weihua; Yu, Sining; Wei, G. W., Treatment of charge singularities in implicit solvent models, J. Chem. Phys., 127, 114106 (2007)
[21] Chen, Duan; Chen, Zhan; Chen, Changjun; Geng, W. H.; Wei, G. W., MIBPB: a software package for electrostatic analysis, J. Comput. Chem., 32, 657-670 (2011)
[22] Ameur, Hend Ben; Burger, Martin; Hackl, Benjamin, Level set methods for geometric inverse problems in linear elasticity, Inverse Problems, 20, 3, 673-696 (2004) · Zbl 1086.35117
[23] Berthelsen, Petter Andreas, A decomposed immersed interface method for variable coefficient elliptic equations with non-smooth and discontinuous solutions, J. Comput. Phys., 197, 1, 364-386 (2004) · Zbl 1052.65100
[24] Biros, George; Ying, Lexing; Zorin, Denis, A fast solver for the Stokes equations with distributed forces in complex geometries, J. Comput. Phys., 193, 1, 317-348 (2004) · Zbl 1047.76065
[25] Dumett, Miguel A.; Keener, James P., An immersed interface method for solving anisotropic elliptic boundary value problems in three dimensions, SIAM J. Sci. Comput., 25, 1, 348-367 (2003) · Zbl 1071.65137
[26] Fogelson, Aaron L.; Keener, James P., Immersed interface methods for neumann and related problems in two and three dimensions, SIAM J. Sci. Comput., 22, 5, 1630-1654 (2001) · Zbl 0982.65112
[27] Gibou, Frdric; Fedkiw, Ronald, A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem, J. Comput. Phys., 202, 2, 577-601 (2005) · Zbl 1061.65079
[28] Hou, Songming; Liu, Xu-Dong, A numerical method for solving variable coefficient elliptic equation with interfaces, J. Comput. Phys., 202, 2, 411-445 (2005) · Zbl 1061.65123
[29] Huang, H.; Li, Z. L., Convergence analysis of the immersed interface method, IMA J. Numer. Anal., 19, 4, 583-608 (1999) · Zbl 0940.65114
[30] Hunter, John K.; Li, Z. L.; Zhao, Hongkai, Reactive autophobic spreading of drops, J. Comput. Phys., 183, 2, 335-366 (2002) · Zbl 1046.76036
[31] Jin, Shi; Wang, Xuelei, Robust numerical simulation of porosity evolution in chemical vapor infiltration: II. two-dimensional anisotropic fronts, J. Comput. Phys., 179, 2, 557-577 (2002) · Zbl 1130.76385
[32] Johansen, Hans; Colella, Phillip, A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains, J. Comput. Phys., 147, 1, 60-85 (1998) · Zbl 0923.65079
[33] Li, Zhilin; Wang, Wei-Cheng; Chern, I-Liang; Lai, Ming-Chih, New formulations for interface problems in polar coordinates, SIAM J. Sci. Comput., 25, 1, 224-245 (2003) · Zbl 1040.65087
[34] Linnick, Mark N.; Fasel, Hermann F., A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains, J. Comput. Phys., 204, 1, 157-192 (2005) · Zbl 1143.76538
[35] Lombard, Bruno; Piraux, Joël, How to incorporate the spring-mass conditions in finite-difference schemes, SIAM J. Sci. Comput., 24, 4, 1379-1407 (2003) · Zbl 1035.35062
[36] Schulz, Martin; Steinebach, Gerd, Two-dimensional modelling of the river Rhine, J. Comput. Appl. Math., 145, 1, 11-20 (2002) · Zbl 1072.86001
[37] Sethian, J. A., Evolution, implementation, and application of level set and fast marching methods for advancing fronts, J. Comput. Phys., 169, 2, 503-555 (2001) · Zbl 0988.65095
[38] Tornberg, Anna-Karin; Engquist, Bjrn, Numerical approximations of singular source terms in differential equations, J. Comput. Phys., 200, 2, 462-488 (2004) · Zbl 1115.76392
[39] Vande Voorde, J. John; Vierendeels, Jan; Dick, Erik, Flow simulations in rotary volumetric pumps and compressors with the fictitious domain method, J. Comput. Appl. Math., 168, 1-2, 491-499 (2004) · Zbl 1058.76052
[40] Morgenthal, G.; Walther, J. H., An immersed interface method for the vortex-in-cell algorithm, Comput. Struct., 85, 11-14, 712-726 (2007)
[41] Wiegmann, Andreas; Bube, Kenneth P., The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions, SIAM J. Numer. Anal., 37, 3, 827-862 (2000) · Zbl 0948.65107
[42] Cai, W.; Deng, S. Z., An upwinding embedded boundary method for Maxwell’s equations in media with material interfaces: 2d case, J. Comput. Phys., 190, 159-183 (2003) · Zbl 1031.78005
[43] Beale, J. T.; Layton, A. T., On the accuracy of finite difference methods for elliptic problems with interfaces, Commun. Appl. Math. Comput. Sci., 1, 91-119 (2006) · Zbl 1153.35319
[44] Griffith, B. E.; Peskin, C. S., On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J. Comput. Phys., 208, 75-105 (2005) · Zbl 1115.76386
[45] Lai, M. C.; Peskin, C. S., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys., 160, 705-719 (2000) · Zbl 0954.76066
[46] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 3, 220-252 (1977) · Zbl 0403.76100
[47] Mayo, A., The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Numer. Anal., 21, 285-299 (1984) · Zbl 1131.65303
[48] McKenney, A.; Greengard, L.; Mayo, A., A fast Poisson solver for complex geometries, J. Comput. Phys., 118, 348-355 (1995) · Zbl 0823.65115
[49] LeVeque, R. J.; Li, Z. L., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 1019-1044 (1994) · Zbl 0811.65083
[50] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457-492 (1999) · Zbl 0957.76052
[51] Liu, X. D.; Fedkiw, R. P.; Kang, M., A boundary condition capturing method for Poisson’s equation on irregular domains, J. Comput. Phys., 160, 151-178 (2000) · Zbl 0958.65105
[52] Chen, T.; Strain, J., Piecewise-polynomial discretization and Krylov-accelerated multigrid for elliptic interface problems, J. Comput. Phys., 16, 7503-7542 (2008) · Zbl 1157.65064
[53] Hellrung, J. L.; Wang, L. M.; Sifakis, E.; Teran, J. M., A second order virtual node method for elliptic problems with interfaces and irregular domains in three dimensions, J. Comput. Phys., 231, 2015-2048 (2012) · Zbl 1408.65078
[54] Yu, S. N.; Zhou, Y. C.; Wei, G. W., Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces, J. Comput. Phys., 224, 2, 729-756 (2007) · Zbl 1120.65333
[55] Yu, S. N.; Wei, G. W., Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities, J. Comput. Phys., 227, 602-632 (2007) · Zbl 1128.65103
[56] Zhou, Y. C.; Zhao, Shan; Feig, Michael; Wei, G. W., High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources, J. Comput. Phys., 213, 1, 1-30 (2006) · Zbl 1089.65117
[57] Zhou, Y. C.; Wei, G. W., On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method, J. Comput. Phys., 219, 1, 228-246 (2006) · Zbl 1105.65108
[58] Xia, K. L.; Zhan, Meng; Wei, Guo-Wei, The matched interface and boundary (MIB) method for multi-domain elliptic interface problems, J. Comput. Phys., 230, 8231-8258 (2011)
[59] Zhao, S., Full-vectorial matched interface and boundary (MIB) method for the modal analysis of dielectric waveguides, IEEE/OSA J. Lightw. Technol., 26, 2251-2259 (2008)
[60] Zhou, Y. C.; Liu, J. G.; Harry, D. L., A matched interface and boundary method for solving multi-flow navier-stokes equations with applications to geodynamics, J. Comput. Phys., 231, 223-242 (2012) · Zbl 1426.76586
[61] Babuška, I., The finite element method for elliptic equations with discontinuous coefficients, Computing, 5, 207-213 (1970) · Zbl 0199.50603
[62] Ewing, R. E.; Li, Z. L.; Lin, T.; Lin, Y. P., The immersed finite volume element methods for the elliptic interface problems, Math. Comput. Simul., 50, 63-76 (1999) · Zbl 1027.65155
[63] Ramiere, I., Convergence analysis of the \(q_1\)-finite element method for elliptic problems with non-boundary-fitted meshes, Internat. J. Numer. Methods Engrg., 75, 1007-1052 (2008) · Zbl 1195.65154
[64] He, Xiaoming; Lin, Tao; Lin, Yanping, Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient, J. Syst. Sci. Complexity, 23, 467-483 (2010) · Zbl 1205.35010
[65] Cai, Zhiqiang; Ye, Xiu; Zhang, Shun, Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations, SIAM J. Numer. Anal., 49, 1761-1787 (2011) · Zbl 1232.65142
[66] Dryjaa, M.; Galvisb, J.; Sarkisb, M., BDDC methods for discontinuous Galerkin discretization of elliptic problems, J. Complexity, 23, 715-739 (2007)
[67] Bramble, J.; King, J., A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comput. Math., 6, 109-138 (1996) · Zbl 0868.65081
[68] Burman, Erik; Hansbo, Peter, Interior-penalty-stabilized Lagrange multiplier methods for the finite-element solution of elliptic interface problems, IAM J. Numer. Anal., 30, 870-885 (2010) · Zbl 1201.65204
[69] Sheldon Wang, X.; Zhang, L. T.; Kam, Liu Wing, On computational issues of immersed finite element methods, J. Comput. Phys., 228, 2535-2551 (2009) · Zbl 1158.74049
[70] Hansbo, A.; Hansbo, P., An unfitted finite element method, Comput. Methods Appl. Mech. Engrg., 191, 5537-5552 (2002) · Zbl 1035.65125
[71] Hou, S. M.; Wang, W.; Wang, L. Q., Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces, J. Comput. Phys., 229, 7162-7179 (2010) · Zbl 1197.65183
[72] Harari, I.; Dolbow, J., Analysis of an efficient finite element method for embedded interface problems, Comput. Math., 46, 205-211 (2010) · Zbl 1190.65172
[73] Sukumar, N.; Chopp, D. L.; Moes, N.; Belytschko, T., Modeling holes and inclusions by level sets in the extended finite-element method, Comput. Methods Appl. Mech. Engrg., 190, 6180-6200 (2001) · Zbl 1029.74049
[74] Hiptmair, R.; Li, J.; Zou, J., Convergence analysis of finite element methods for H(div;Omega)-elliptic interface problems, J. Numer. Math., 18, 187-218 (2010) · Zbl 1203.65227
[75] Wang, D. A.; Li, R.; Yan, N. N., An edge-based anisotropic mesh refinement algorithm and its application to interface problems, Commun. Comput. Phys., 8, 511-540 (2010) · Zbl 1364.65272
[76] Wang, J.; Ye, X., A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241, 103-115 (2013) · Zbl 1261.65121
[77] Mu, L.; Wang, J.; Wei, G. W.; Ye, X.; Zhao, S., Weak Galerkin method for second order elliptic interface problems, J. Comput. Phys., 250, 106-125 (2013) · Zbl 1349.65472
[78] Xia, K. L.; Zhan, Meng; Wan, D. C.; Wei, G. W., Adaptively deformed mesh based matched interface and boundary (MIB) method for elliptic interface problems, J. Comput. Phys., 231, 1440-1461 (2012) · Zbl 1242.65229
[79] Geng, W.; Wei, G. W., Multiscale molecular dynamics using the matched interface and boundary method, J. Comput. Phys., 230, 2, 435-457 (2011) · Zbl 1246.82028
[80] Zheng, Qiong; Chen, Duan; Wei, G. W., Second-order Poisson-Nernst-Planck solver for ion transport, J. Comput. Phys., 230, 5239-5262 (2011) · Zbl 1222.82073
[81] Chen, D.; Wei, G. W., Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices, J. Comput. Phys., 229, 4431-4460 (2010) · Zbl 1191.82113
[82] Wei, G. W., Discrete singular convolution for the solution of the Fokker-Planck equations, J. Chem. Phys., 110, 8930-8942 (1999)
[83] Wei, G. W.; Jia, Y. Q., Synchronization-based image edge detection, Europhys. Lett., 59, 6, 814-819 (2002)
[84] Glowinski, R.; Pan, Tsorng-Whay; Periaux, Jacques, A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Engrg., 111, 283-303 (1994) · Zbl 0845.73078
[85] Li, Z. L.; Lin, T.; Wu, X. H., New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96, 61-98 (2003) · Zbl 1055.65130
[86] Xia, K. L.; Wei, G. W., A galerkin formulation of the MIB method for three dimensional elliptic interface problems, Comput. Math. Appl. (2013), revised
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.