Vatutin, V. A.; Dyakonova, E. E. Subcritical branching processes in random environment with immigration: survival of a single family. (English. Russian original) Zbl 07308473 Theory Probab. Appl. 65, No. 4, 527-544 (2021); translation from Teor. Veroyatn. Primen. 65, No. 4, 671-692 (2020). MSC: 60 05 PDF BibTeX XML Cite \textit{V. A. Vatutin} and \textit{E. E. Dyakonova}, Theory Probab. Appl. 65, No. 4, 527--544 (2021; Zbl 07308473); translation from Teor. Veroyatn. Primen. 65, No. 4, 671--692 (2020) Full Text: DOI
Bulinskaya, Ekaterina Vl. Maximum of catalytic branching random walk with regularly varying tails. (English) Zbl 07306256 J. Theor. Probab. 34, No. 1, 141-161 (2021). MSC: 60J80 60F05 PDF BibTeX XML Cite \textit{E. Vl. Bulinskaya}, J. Theor. Probab. 34, No. 1, 141--161 (2021; Zbl 07306256) Full Text: DOI
Hou, Wanting; Hong, Wenming Minima of independent time-inhomogeneous random walks. (English) Zbl 07308694 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 3, Article ID 2050021, 13 p. (2020). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{W. Hou} and \textit{W. Hong}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23, No. 3, Article ID 2050021, 13 p. (2020; Zbl 07308694) Full Text: DOI
Andriopoulos, George Scaling limit of a biased random walk on a critical branching random walk. (English) Zbl 07304020 RIMS Kôkyûroku Bessatsu B79, 163-177 (2020). MSC: 60K37 60F17 82D30 PDF BibTeX XML Cite \textit{G. Andriopoulos}, RIMS Kôkyûroku Bessatsu B79, 163--177 (2020; Zbl 07304020) Full Text: Link
Zhang, Xiaoyue; Hou, Wanting; Hong, Wenming Limit theorems for the minimal position of a branching random walk in random environment. (English) Zbl 07303964 Markov Process. Relat. Fields 26, No. 5, 839-860 (2020). MSC: 60K37 60J80 60G50 PDF BibTeX XML Cite \textit{X. Zhang} et al., Markov Process. Relat. Fields 26, No. 5, 839--860 (2020; Zbl 07303964) Full Text: Link
Dong, C.; Smadi, C.; Vatutin, V. A. Critical branching processes in random environment and Cauchy domain of attraction. (English) Zbl 07285712 ALEA, Lat. Am. J. Probab. Math. Stat. 17, No. 2, 877-900 (2020). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{C. Dong} et al., ALEA, Lat. Am. J. Probab. Math. Stat. 17, No. 2, 877--900 (2020; Zbl 07285712) Full Text: Link
Cheek, David; Shneer, Seva The empirical mean position of a branching Lévy process. (English) Zbl 07284541 J. Appl. Probab. 57, No. 4, 1252-1259 (2020). MSC: 60J80 60G51 60J25 PDF BibTeX XML Cite \textit{D. Cheek} and \textit{S. Shneer}, J. Appl. Probab. 57, No. 4, 1252--1259 (2020; Zbl 07284541) Full Text: DOI
Afanasyev, V. I. On the times of attaining high levels by a random walk in a random environment. (English. Russian original) Zbl 07270300 Theory Probab. Appl. 65, No. 3, 359-374 (2020); translation from Teor. Veroyatn. Primen. 65, No. 3, 460-478 (2020). MSC: 60 00 PDF BibTeX XML Cite \textit{V. I. Afanasyev}, Theory Probab. Appl. 65, No. 3, 359--374 (2020; Zbl 07270300); translation from Teor. Veroyatn. Primen. 65, No. 3, 460--478 (2020) Full Text: DOI
Shao, Sihong; Xiong, Yunfeng Branching random walk solutions to the Wigner equation. (English) Zbl 1448.81419 SIAM J. Numer. Anal. 58, No. 5, 2589-2608 (2020). MSC: 81S30 60J85 34E05 35S05 65C35 62J10 PDF BibTeX XML Cite \textit{S. Shao} and \textit{Y. Xiong}, SIAM J. Numer. Anal. 58, No. 5, 2589--2608 (2020; Zbl 1448.81419) Full Text: DOI
Bulinskaya, E. V. On the maximal displacement of catalytic branching random walk. (English) Zbl 07251433 Sib. Èlektron. Mat. Izv. 17, 1088-1099 (2020). MSC: 60J80 PDF BibTeX XML Cite \textit{E. V. Bulinskaya}, Sib. Èlektron. Mat. Izv. 17, 1088--1099 (2020; Zbl 07251433) Full Text: DOI
Huss, Wilfried; Sava-Huss, Ecaterina A law of large numbers for the range of rotor walks on periodic trees. (English) Zbl 07249108 Markov Process. Relat. Fields 26, No. 3, 467-485 (2020). MSC: 60J10 28A80 31A15 05C81 PDF BibTeX XML Cite \textit{W. Huss} and \textit{E. Sava-Huss}, Markov Process. Relat. Fields 26, No. 3, 467--485 (2020; Zbl 07249108) Full Text: Link
Bertacchi, Daniela; Zucca, Fabio Branching random walks with uncountably many extinction probability vectors. (English) Zbl 07232937 Braz. J. Probab. Stat. 34, No. 2, 426-438 (2020). MSC: 60J80 60K35 PDF BibTeX XML Cite \textit{D. Bertacchi} and \textit{F. Zucca}, Braz. J. Probab. Stat. 34, No. 2, 426--438 (2020; Zbl 07232937) Full Text: DOI Euclid
Huss, Wilfried; Sava-Huss, Ecaterina Range and speed of rotor walks on trees. (English) Zbl 1444.05133 J. Theor. Probab. 33, No. 3, 1657-1690 (2020). MSC: 05C81 60J80 60F05 60J10 PDF BibTeX XML Cite \textit{W. Huss} and \textit{E. Sava-Huss}, J. Theor. Probab. 33, No. 3, 1657--1690 (2020; Zbl 1444.05133) Full Text: DOI
Černý, Jiří; Drewitz, Alexander Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model. (English) Zbl 1445.60061 Ann. Probab. 48, No. 1, 94-146 (2020). Reviewer: Bastien Mallein (Villetaneuse) MSC: 60J80 60K37 60G70 60F17 82B44 PDF BibTeX XML Cite \textit{J. Černý} and \textit{A. Drewitz}, Ann. Probab. 48, No. 1, 94--146 (2020; Zbl 1445.60061) Full Text: DOI Euclid
Peköz, Erol A.; Röllin, Adrian; Ross, Nathan Exponential and Laplace approximation for occupation statistics of branching random walk. (English) Zbl 1441.60069 Electron. J. Probab. 25, Paper No. 55, 22 p. (2020). MSC: 60J80 60F05 PDF BibTeX XML Cite \textit{E. A. Peköz} et al., Electron. J. Probab. 25, Paper No. 55, 22 p. (2020; Zbl 1441.60069) Full Text: DOI Euclid
Lalley, Steven P.; Tang, Si Occupation densities of ensembles of branching random walks. (English) Zbl 1434.60243 Electron. Commun. Probab. 25, Paper No. 12, 13 p. (2020). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{S. P. Lalley} and \textit{S. Tang}, Electron. Commun. Probab. 25, Paper No. 12, 13 p. (2020; Zbl 1434.60243) Full Text: DOI Euclid
Liang, Xingang; Liu, Quansheng Regular variation of fixed points of the smoothing transform. (English) Zbl 1434.60309 Stochastic Processes Appl. 130, No. 7, 4104-4140 (2020). MSC: 60K37 60J80 PDF BibTeX XML Cite \textit{X. Liang} and \textit{Q. Liu}, Stochastic Processes Appl. 130, No. 7, 4104--4140 (2020; Zbl 1434.60309) Full Text: DOI
Buraczewski, Dariusz; Dyszewski, Piotr; Iksanov, Alexander; Marynych, Alexander Random walks in a strongly sparse random environment. (English) Zbl 1434.60306 Stochastic Processes Appl. 130, No. 7, 3990-4027 (2020). MSC: 60K37 60F05 60F15 60J80 PDF BibTeX XML Cite \textit{D. Buraczewski} et al., Stochastic Processes Appl. 130, No. 7, 3990--4027 (2020; Zbl 1434.60306) Full Text: DOI
van der Hofstad, Remco; Hulshof, Tim; Nagel, Jan Random walk on barely supercritical branching random walk. (English) Zbl 1434.60311 Probab. Theory Relat. Fields 177, No. 1-2, 1-53 (2020). MSC: 60K37 82C41 60F17 60K40 PDF BibTeX XML Cite \textit{R. van der Hofstad} et al., Probab. Theory Relat. Fields 177, No. 1--2, 1--53 (2020; Zbl 1434.60311) Full Text: DOI
Marzouk, Cyril Scaling limits of discrete snakes with stable branching. (English. French summary) Zbl 1434.60248 Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 1, 502-523 (2020). MSC: 60J80 60F17 60G50 PDF BibTeX XML Cite \textit{C. Marzouk}, Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 1, 502--523 (2020; Zbl 1434.60248) Full Text: DOI Euclid
Croydon, David; Holmes, Mark Biased random walk on the trace of biased random walk on the trace of \(\dots\). (English) Zbl 1440.60085 Commun. Math. Phys. 375, No. 2, 1341-1372 (2020). MSC: 60K37 60G50 60J80 PDF BibTeX XML Cite \textit{D. Croydon} and \textit{M. Holmes}, Commun. Math. Phys. 375, No. 2, 1341--1372 (2020; Zbl 1440.60085) Full Text: DOI
Engländer, János A generalization of the submartingale property: maximal inequality and applications to various stochastic processes. (English) Zbl 1444.60018 J. Theor. Probab. 33, No. 1, 506-521 (2020). MSC: 60E15 60G44 60G48 60G51 60J80 PDF BibTeX XML Cite \textit{J. Engländer}, J. Theor. Probab. 33, No. 1, 506--521 (2020; Zbl 1444.60018) Full Text: DOI
Vatutin, V. A.; Dyakonova, E. E. The initial evolution stage of a weakly subcritical branching process in a random environment. (English. Russian original) Zbl 1432.60097 Theory Probab. Appl. 64, No. 4, 535-552 (2020); translation from Teor. Veroyatn. Primen. 64, No. 4, 671-691 (2019). MSC: 60K37 60F17 PDF BibTeX XML Cite \textit{V. A. Vatutin} and \textit{E. E. Dyakonova}, Theory Probab. Appl. 64, No. 4, 535--552 (2020; Zbl 1432.60097); translation from Teor. Veroyatn. Primen. 64, No. 4, 671--691 (2019) Full Text: DOI
Bulinskaya, E. Vl. Fluctuations of the propagation front of a catalytic branching walk. (English. Russian original) Zbl 1432.60094 Theory Probab. Appl. 64, No. 4, 513-534 (2020); translation from Teor. Veroyatn. Primen. 64, No. 4, 642-670 (2019). MSC: 60K37 60J80 PDF BibTeX XML Cite \textit{E. Vl. Bulinskaya}, Theory Probab. Appl. 64, No. 4, 513--534 (2020; Zbl 1432.60094); translation from Teor. Veroyatn. Primen. 64, No. 4, 642--670 (2019) Full Text: DOI
Collevecchio, Andrea; Kious, Daniel; Sidoravicius, Vladas The branching-ruin number and the critical parameter of once-reinforced random walk on trees. (English) Zbl 1443.60044 Commun. Pure Appl. Math. 73, No. 1, 210-236 (2020). MSC: 60G50 60K35 60J80 60D05 82B43 PDF BibTeX XML Cite \textit{A. Collevecchio} et al., Commun. Pure Appl. Math. 73, No. 1, 210--236 (2020; Zbl 1443.60044) Full Text: DOI
Bogun, Vladyslav Almost sure asymptotic expansions for profiles of simply generated random trees. (English) Zbl 1449.60086 Theory Stoch. Process. 24, No. 1, 49-63 (2019). MSC: 60G50 60F05 60J80 60J85 60F10 60F15 PDF BibTeX XML Cite \textit{V. Bogun}, Theory Stoch. Process. 24, No. 1, 49--63 (2019; Zbl 1449.60086) Full Text: Link
Abdullahi, A.; Shohaimi, S.; Kilicman, A.; Ibrahim, M. H. Stochastic models in seed dispersals: random walks and birth-death processes. (English) Zbl 1447.92503 J. Biol. Dyn. 13, No. 1, 345-361 (2019). MSC: 92D40 60J85 60G50 92-02 PDF BibTeX XML Cite \textit{A. Abdullahi} et al., J. Biol. Dyn. 13, No. 1, 345--361 (2019; Zbl 1447.92503) Full Text: DOI
Holmes, Mark; Kious, Daniel A monotonicity property for once reinforced biased random walk on \(\mathbb{Z}^d\). (English) Zbl 1446.82030 Sidoravicius, Vladas (ed.), Sojourns in probability theory and statistical physics. III. Interacting particle systems and random walks, a festschrift for Charles M. Newman. Singapore: Springer; Shanghai: NYU Shanghai. Springer Proc. Math. Stat. 300, 255-273 (2019). MSC: 82B41 60J80 60J50 60K37 PDF BibTeX XML Cite \textit{M. Holmes} and \textit{D. Kious}, Springer Proc. Math. Stat. 300, 255--273 (2019; Zbl 1446.82030) Full Text: DOI
Rytova, Anastasiya I.; Yarovaya, Elena B. Moments of particle numbers in a branching random walk with heavy tails. (English. Russian original) Zbl 1441.60070 Russ. Math. Surv. 74, No. 6, 1126-1128 (2019); translation from Usp. Mat. Nauk 74, No. 6, 165-166 (2019). MSC: 60J80 60B99 PDF BibTeX XML Cite \textit{A. I. Rytova} and \textit{E. B. Yarovaya}, Russ. Math. Surv. 74, No. 6, 1126--1128 (2019; Zbl 1441.60070); translation from Usp. Mat. Nauk 74, No. 6, 165--166 (2019) Full Text: DOI
Bonilla, Luis L.; Carretero, Manuel; Terragni, Filippo Stochastic models of blood vessel growth. (English) Zbl 1442.82009 Giacomin, Giambattista (ed.) et al., Stochastic dynamics out of equilibrium. Lecture notes from the IHP trimester, Institut Henri Poincaré (IHP), Paris, France, April – July, 2017. Cham: Springer. Springer Proc. Math. Stat. 282, 413-436 (2019). MSC: 82C20 82C41 82C31 60H10 60H15 34F05 92C15 92C17 35R09 PDF BibTeX XML Cite \textit{L. L. Bonilla} et al., Springer Proc. Math. Stat. 282, 413--436 (2019; Zbl 1442.82009) Full Text: DOI
Hong, Wenming; Yang, Hui Cutoff phenomenon for nearest Lamperti’s random walk. (English) Zbl 1437.60055 Methodol. Comput. Appl. Probab. 21, No. 4, 1215-1228 (2019). MSC: 60J80 60G50 60F15 PDF BibTeX XML Cite \textit{W. Hong} and \textit{H. Yang}, Methodol. Comput. Appl. Probab. 21, No. 4, 1215--1228 (2019; Zbl 1437.60055) Full Text: DOI
Liu, Jingning; Zhang, Mei Critical survival barrier for branching random walk. (English) Zbl 1434.60245 Front. Math. China 14, No. 6, 1259-1280 (2019). MSC: 60J80 60F05 PDF BibTeX XML Cite \textit{J. Liu} and \textit{M. Zhang}, Front. Math. China 14, No. 6, 1259--1280 (2019; Zbl 1434.60245) Full Text: DOI
Bulinskaya, E. Vl. Maximum of a catalytic branching random walk. (English. Russian original) Zbl 1441.60067 Russ. Math. Surv. 74, No. 3, 546-548 (2019); translation from Usp. Mat. Nauk 74, No. 3, 187-188 (2019). MSC: 60J80 60J27 PDF BibTeX XML Cite \textit{E. Vl. Bulinskaya}, Russ. Math. Surv. 74, No. 3, 546--548 (2019; Zbl 1441.60067); translation from Usp. Mat. Nauk 74, No. 3, 187--188 (2019) Full Text: DOI
Ben Arous, Gérard; Molchanov, Stanislav; Ramírez, Alejandro F. Stable limit laws for reaction-diffusion in random environment. (English) Zbl 1430.82007 Friz, Peter (ed.) et al., Probability and analysis in interacting physical systems. In honor of S. R. S. Varadhan. Based on a workshop on the occasion of Varadhan’s 75th birthday, TU Berlin, Germany, August 15–19, 2016. Cham: Springer. Springer Proc. Math. Stat. 283, 123-171 (2019). MSC: 82B41 82B44 60J80 82C22 PDF BibTeX XML Cite \textit{G. Ben Arous} et al., Springer Proc. Math. Stat. 283, 123--171 (2019; Zbl 1430.82007) Full Text: DOI
Collevecchio, Andrea; Huynh, Cong Bang; Kious, Daniel The branching-ruin number as critical parameter of random processes on trees. (English) Zbl 1427.60198 Electron. J. Probab. 24, Paper No. 121, 29 p. (2019). MSC: 60K35 60K37 82D30 PDF BibTeX XML Cite \textit{A. Collevecchio} et al., Electron. J. Probab. 24, Paper No. 121, 29 p. (2019; Zbl 1427.60198) Full Text: DOI Euclid arXiv
Chen, Xinxin; Guillotin-Plantard, Nadine Branching processes in correlated random environment. (English) Zbl 07142642 Electron. Commun. Probab. 24, Paper No. 71, 13 p. (2019). Reviewer: Utkir A. Rozikov (Tashkent) MSC: 60J80 60K37 60G22 PDF BibTeX XML Cite \textit{X. Chen} and \textit{N. Guillotin-Plantard}, Electron. Commun. Probab. 24, Paper No. 71, 13 p. (2019; Zbl 07142642) Full Text: DOI Euclid
Bhattacharya, Ayan; Maulik, Krishanu; Palmowski, Zbigniew; Roy, Parthanil Extremes of multitype branching random walks: heaviest tail wins. (English) Zbl 1427.60175 Adv. Appl. Probab. 51, No. 2, 514-540 (2019). MSC: 60J80 60J70 60G55 60G70 PDF BibTeX XML Cite \textit{A. Bhattacharya} et al., Adv. Appl. Probab. 51, No. 2, 514--540 (2019; Zbl 1427.60175) Full Text: DOI
Iksanov, Alexander; Kolesko, Konrad; Meiners, Matthias Stable-like fluctuations of Biggins’ martingales. (English) Zbl 1448.60172 Stochastic Processes Appl. 129, No. 11, 4480-4499 (2019). MSC: 60J80 60F05 60G42 PDF BibTeX XML Cite \textit{A. Iksanov} et al., Stochastic Processes Appl. 129, No. 11, 4480--4499 (2019; Zbl 1448.60172) Full Text: DOI arXiv
Khristolyubov, I. I.; Yarovaya, E. B. A limit theorem for supercritical random branching walks with branching sources of varying intensity. (English. Russian original) Zbl 07122183 Theory Probab. Appl. 64, No. 3, 365-384 (2019); translation from Teor. Veroyatn. Primen. 64, No. 3, 456-480 (2019). MSC: 60 82 PDF BibTeX XML Cite \textit{I. I. Khristolyubov} and \textit{E. B. Yarovaya}, Theory Probab. Appl. 64, No. 3, 365--384 (2019; Zbl 07122183); translation from Teor. Veroyatn. Primen. 64, No. 3, 456--480 (2019) Full Text: DOI
Buttenschön, Andreas; Edelstein-Keshet, Leah Correlated random walks inside a cell: actin branching and microtubule dynamics. (English) Zbl 1425.92062 J. Math. Biol. 79, No. 5, 1953-1972 (2019). MSC: 92C37 60G50 35Q92 PDF BibTeX XML Cite \textit{A. Buttenschön} and \textit{L. Edelstein-Keshet}, J. Math. Biol. 79, No. 5, 1953--1972 (2019; Zbl 1425.92062) Full Text: DOI
Hong, Wenming; Liu, Minzhi; Vatutin, Vladimir Limit theorems for supercritical MBPRE with linear fractional offspring distributions. (English) Zbl 1423.60129 Markov Process. Relat. Fields 25, No. 1, 1-31 (2019). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{W. Hong} et al., Markov Process. Relat. Fields 25, No. 1, 1--31 (2019; Zbl 1423.60129) Full Text: arXiv
Shao, Sihong; Xiong, Yunfeng A branching random walk method for many-body Wigner quantum dynamics. (English) Zbl 1438.60113 Numer. Math., Theory Methods Appl. 12, No. 1, 21-71 (2019). MSC: 60J85 81S30 81V70 PDF BibTeX XML Cite \textit{S. Shao} and \textit{Y. Xiong}, Numer. Math., Theory Methods Appl. 12, No. 1, 21--71 (2019; Zbl 1438.60113) Full Text: DOI
Lin, Shen Harmonic measure for biased random walk in a supercritical Galton-Watson tree. (English) Zbl 1428.62373 Bernoulli 25, No. 4B, 3652-3672 (2019). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{S. Lin}, Bernoulli 25, No. 4B, 3652--3672 (2019; Zbl 1428.62373) Full Text: DOI Euclid
Yang, Hui Scaling limit of the local time of the reflected \((1, 2)\)-random walk. (English) Zbl 1422.60151 Stat. Probab. Lett. 155, Article ID 108578, 8 p. (2019). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{H. Yang}, Stat. Probab. Lett. 155, Article ID 108578, 8 p. (2019; Zbl 1422.60151) Full Text: DOI
Bhattacharya, Ayan; Palmowski, Zbigniew Slower variation of the generation sizes induced by heavy-tailed environment for geometric branching. (English) Zbl 1422.60143 Stat. Probab. Lett. 154, Article ID 108550, 6 p. (2019). MSC: 60J70 60G55 60J80 PDF BibTeX XML Cite \textit{A. Bhattacharya} and \textit{Z. Palmowski}, Stat. Probab. Lett. 154, Article ID 108550, 6 p. (2019; Zbl 1422.60143) Full Text: DOI arXiv
Chen, Xinxin; He, Hui On large deviation probabilities for empirical distribution of supercritical branching random walks with unbounded displacements. (English) Zbl 1422.60132 Probab. Theory Relat. Fields 175, No. 1-2, 255-307 (2019). MSC: 60J60 60F10 PDF BibTeX XML Cite \textit{X. Chen} and \textit{H. He}, Probab. Theory Relat. Fields 175, No. 1--2, 255--307 (2019; Zbl 1422.60132) Full Text: DOI
Chen, Xinxin; Madaule, Thomas; Mallein, Bastien On the trajectory of an individual chosen according to supercritical Gibbs measure in the branching random walk. (English) Zbl 07107464 Stochastic Processes Appl. 129, No. 10, 3821-3858 (2019). MSC: 60 PDF BibTeX XML Cite \textit{X. Chen} et al., Stochastic Processes Appl. 129, No. 10, 3821--3858 (2019; Zbl 07107464) Full Text: DOI
Boutaud, Pierre; Maillard, Pascal A revisited proof of the Seneta-Heyde norming for branching random walks under optimal assumptions. (English) Zbl 07107406 Electron. J. Probab. 24, Paper No. 99, 22 p. (2019). MSC: 60J80 60J50 60B10 PDF BibTeX XML Cite \textit{P. Boutaud} and \textit{P. Maillard}, Electron. J. Probab. 24, Paper No. 99, 22 p. (2019; Zbl 07107406) Full Text: DOI Euclid arXiv
Hong, Wenming; Liu, Minzhi On the transience and recurrence of Lamperti’s random walk on Galton-Watson trees. (English) Zbl 1420.60108 Sci. China, Math. 62, No. 9, 1813-1822 (2019). MSC: 60J80 60G50 PDF BibTeX XML Cite \textit{W. Hong} and \textit{M. Liu}, Sci. China, Math. 62, No. 9, 1813--1822 (2019; Zbl 1420.60108) Full Text: DOI
Gao, Zhi-Qiang Exact convergence rate in the local central limit theorem for a lattice branching random walk on \(\mathbb{Z}^d\). (English) Zbl 1448.60054 Stat. Probab. Lett. 151, 58-66 (2019). MSC: 60F05 60J10 60G50 60J80 PDF BibTeX XML Cite \textit{Z.-Q. Gao}, Stat. Probab. Lett. 151, 58--66 (2019; Zbl 1448.60054) Full Text: DOI
Platonova, M. V.; Ryadovkin, K. S. Branching random walks on \(Z^d\) with periodic branching sources. (English. Russian original) Zbl 07099810 Theory Probab. Appl. 64, No. 2, 229-248 (2019); translation from Teor. Veroyatn. Primen. 64, No. 2, 283-307 (2019). MSC: 60 82 PDF BibTeX XML Cite \textit{M. V. Platonova} and \textit{K. S. Ryadovkin}, Theory Probab. Appl. 64, No. 2, 229--248 (2019; Zbl 07099810); translation from Teor. Veroyatn. Primen. 64, No. 2, 283--307 (2019) Full Text: DOI
Wang, Hua-Ming; Zhang, Meijuan \(M\)-estimator and its weak consistency for a \((2,1)\) random walk in a parametric random environment. (English) Zbl 1426.62249 Stoch. Models 35, No. 3, 338-356 (2019). MSC: 62M05 62F12 60K37 60J80 PDF BibTeX XML Cite \textit{H.-M. Wang} and \textit{M. Zhang}, Stoch. Models 35, No. 3, 338--356 (2019; Zbl 1426.62249) Full Text: DOI
Buraczewski, Dariusz; Dyszewski, Piotr; Kolesko, Konrad Local fluctuations of critical Mandelbrot cascades. (English. French summary) Zbl 07097348 Ann. Inst. Henri Poincaré, Probab. Stat. 55, No. 2, 1179-1202 (2019). MSC: 60J80 60G57 PDF BibTeX XML Cite \textit{D. Buraczewski} et al., Ann. Inst. Henri Poincaré, Probab. Stat. 55, No. 2, 1179--1202 (2019; Zbl 07097348) Full Text: DOI Euclid arXiv
Buraczewski, Dariusz; Dyszewski, Piotr; Iksanov, Alexander; Marynych, Alexander; Roitershtein, Alexander Random walks in a moderately sparse random environment. (English) Zbl 07089007 Electron. J. Probab. 24, Paper No. 69, 44 p. (2019). MSC: 60K37 60F05 60F15 60J80 PDF BibTeX XML Cite \textit{D. Buraczewski} et al., Electron. J. Probab. 24, Paper No. 69, 44 p. (2019; Zbl 07089007) Full Text: DOI Euclid
Wang, Xiaoqiang; Huang, Chunmao Convergence of complex martingale for a branching random walk in a time random environment. (English) Zbl 07088982 Electron. Commun. Probab. 24, Paper No. 41, 14 p. (2019). MSC: 60J80 60K37 PDF BibTeX XML Cite \textit{X. Wang} and \textit{C. Huang}, Electron. Commun. Probab. 24, Paper No. 41, 14 p. (2019; Zbl 07088982) Full Text: DOI Euclid
van Doorn, Erik A.; Szwarc, Ryszard On a property of random walk polynomials involving Christoffel functions. (English) Zbl 1415.60097 J. Math. Anal. Appl. 477, No. 1, 85-103 (2019). MSC: 60J80 PDF BibTeX XML Cite \textit{E. A. van Doorn} and \textit{R. Szwarc}, J. Math. Anal. Appl. 477, No. 1, 85--103 (2019; Zbl 1415.60097) Full Text: DOI
Zhu, Qingsan An upper bound for the probability of visiting a distant point by a critical branching random walk in \(\mathbb{Z} ^{4}\). (English) Zbl 07068656 Electron. Commun. Probab. 24, Paper No. 32, 6 p. (2019). MSC: 60G50 60J80 PDF BibTeX XML Cite \textit{Q. Zhu}, Electron. Commun. Probab. 24, Paper No. 32, 6 p. (2019; Zbl 07068656) Full Text: DOI Euclid
Johnson, Tobias; Rolla, Leonardo T. Sensitivity of the frog model to initial conditions. (English) Zbl 07068653 Electron. Commun. Probab. 24, Paper No. 29, 9 p. (2019). MSC: 60K35 60J80 60J10 PDF BibTeX XML Cite \textit{T. Johnson} and \textit{L. T. Rolla}, Electron. Commun. Probab. 24, Paper No. 29, 9 p. (2019; Zbl 07068653) Full Text: DOI Euclid arXiv
Bertoin, Jean; Mallein, Bastien Infinitely ramified point measures and branching Lévy processes. (English) Zbl 07067278 Ann. Probab. 47, No. 3, 1619-1652 (2019). Reviewer: Heinrich Hering (Rockenberg) MSC: 60J80 60G51 60G55 PDF BibTeX XML Cite \textit{J. Bertoin} and \textit{B. Mallein}, Ann. Probab. 47, No. 3, 1619--1652 (2019; Zbl 07067278) Full Text: DOI Euclid arXiv
Ben Arous, Gérard; Cabezas, Manuel; Fribergh, Alexander Scaling limit for the ant in a simple high-dimensional labyrinth. (English) Zbl 1427.60212 Probab. Theory Relat. Fields 174, No. 1-2, 553-646 (2019). MSC: 60K37 82D30 PDF BibTeX XML Cite \textit{G. Ben Arous} et al., Probab. Theory Relat. Fields 174, No. 1--2, 553--646 (2019; Zbl 1427.60212) Full Text: DOI
Mallein, Bastien Necessary and sufficient conditions for the convergence of the consistent maximal displacement of the branching random walk. (English) Zbl 07057451 Braz. J. Probab. Stat. 33, No. 2, 356-373 (2019). MSC: 60 34 PDF BibTeX XML Cite \textit{B. Mallein}, Braz. J. Probab. Stat. 33, No. 2, 356--373 (2019; Zbl 07057451) Full Text: DOI Euclid arXiv
Alsmeyer, Gerold; Raschel, Kilian The extinction problem for a distylous plant population with sporophytic self-incompatibility. (English) Zbl 1411.60105 J. Math. Biol. 78, No. 6, 1841-1874 (2019). MSC: 60J05 60H25 60K05 PDF BibTeX XML Cite \textit{G. Alsmeyer} and \textit{K. Raschel}, J. Math. Biol. 78, No. 6, 1841--1874 (2019; Zbl 1411.60105) Full Text: DOI
Bowditch, Adam Central limit theorems for biased randomly trapped random walks on \(\mathbb{Z}\). (English) Zbl 1409.60148 Stochastic Processes Appl. 129, No. 3, 740-770 (2019). MSC: 60K37 60F05 60F17 60J80 PDF BibTeX XML Cite \textit{A. Bowditch}, Stochastic Processes Appl. 129, No. 3, 740--770 (2019; Zbl 1409.60148) Full Text: DOI
Li, Yingqiu; Liu, Quansheng; Peng, Xuelian Harmonic moments, large and moderate deviation principles for Mandelbrot’s cascade in a random environment. (English) Zbl 1442.60109 Stat. Probab. Lett. 147, 57-65 (2019). MSC: 60K37 60F05 60F10 60J80 PDF BibTeX XML Cite \textit{Y. Li} et al., Stat. Probab. Lett. 147, 57--65 (2019; Zbl 1442.60109) Full Text: DOI
Shi, Wanlin A note on large deviation probabilities for empirical distribution of branching random walks. (English) Zbl 1415.60096 Stat. Probab. Lett. 147, 18-28 (2019). MSC: 60J80 60F10 PDF BibTeX XML Cite \textit{W. Shi}, Stat. Probab. Lett. 147, 18--28 (2019; Zbl 1415.60096) Full Text: DOI
Procaccia, Eviatar B.; Zhang, Yuan Connectivity properties of branching interlacements. (English) Zbl 1406.60121 ALEA, Lat. Am. J. Probab. Math. Stat. 16, No. 1, 279-314 (2019). MSC: 60J80 60D05 60G57 PDF BibTeX XML Cite \textit{E. B. Procaccia} and \textit{Y. Zhang}, ALEA, Lat. Am. J. Probab. Math. Stat. 16, No. 1, 279--314 (2019; Zbl 1406.60121) Full Text: Link arXiv
Afanasyev, V. I. Two-boundary problem for a random walk in a random environment. (English. Russian original) Zbl 1442.60107 Theory Probab. Appl. 63, No. 3, 339-350 (2019); translation from Teor. Veroyatn. Primen. 63, No. 3, 417-430 (2018). MSC: 60K37 60J80 PDF BibTeX XML Cite \textit{V. I. Afanasyev}, Theory Probab. Appl. 63, No. 3, 339--350 (2019; Zbl 1442.60107); translation from Teor. Veroyatn. Primen. 63, No. 3, 417--430 (2018) Full Text: DOI
Dawson, D. A.; Gorostiza, L. G. Random systems in ultrametric spaces. (English) Zbl 1430.05107 Adv. Appl. Probab. 50, No. A, 83-97 (2018). MSC: 05C80 05C81 60K35 60C05 PDF BibTeX XML Cite \textit{D. A. Dawson} and \textit{L. G. Gorostiza}, Adv. Appl. Probab. 50, No. A, 83--97 (2018; Zbl 1430.05107) Full Text: DOI
Bertoin, Jean; Cortines, Aser; Mallein, Bastien Branching-stable point measures and processes. (English) Zbl 07163687 Adv. Appl. Probab. 50, No. 4, 1294-1314 (2018). Reviewer: Hans Daduna (Hamburg) MSC: 60J80 60G52 60G57 PDF BibTeX XML Cite \textit{J. Bertoin} et al., Adv. Appl. Probab. 50, No. 4, 1294--1314 (2018; Zbl 07163687) Full Text: DOI
He, Hui; Liu, Jingning; Zhang, Mei On Seneta-Heyde scaling for a stable branching random walk. (English) Zbl 1431.60096 Adv. Appl. Probab. 50, No. 2, 565-599 (2018). MSC: 60J80 60F05 PDF BibTeX XML Cite \textit{H. He} et al., Adv. Appl. Probab. 50, No. 2, 565--599 (2018; Zbl 1431.60096) Full Text: DOI
Mallein, B. \(N\)-branching random walk with \(\alpha\)-stable spine. (English. Russian original) Zbl 1434.60247 Theory Probab. Appl. 62, No. 2, 295-318 (2018); translation from Teor. Veroyatn. Primen. 62, No. 2, 365-392 (2017). MSC: 60J80 82C31 PDF BibTeX XML Cite \textit{B. Mallein}, Theory Probab. Appl. 62, No. 2, 295--318 (2018; Zbl 1434.60247); translation from Teor. Veroyatn. Primen. 62, No. 2, 365--392 (2017) Full Text: DOI
Cortines, Aser; Mallein, Bastien The genealogy of an exactly solvable Ornstein-Uhlenbeck type branching process with selection. (English) Zbl 1406.60130 Electron. Commun. Probab. 23, Paper No. 98, 13 p. (2018). MSC: 60K35 92D15 PDF BibTeX XML Cite \textit{A. Cortines} and \textit{B. Mallein}, Electron. Commun. Probab. 23, Paper No. 98, 13 p. (2018; Zbl 1406.60130) Full Text: DOI Euclid arXiv
Groisman, Pablo; Jonckheere, Matthieu Front propagation and quasi-stationary distributions for one-dimensional Lévy processes. (English) Zbl 1409.60125 Electron. Commun. Probab. 23, Paper No. 93, 11 p. (2018). MSC: 60J68 60J80 60G51 PDF BibTeX XML Cite \textit{P. Groisman} and \textit{M. Jonckheere}, Electron. Commun. Probab. 23, Paper No. 93, 11 p. (2018; Zbl 1409.60125) Full Text: DOI Euclid arXiv
Iksanov, Alexander; Kabluchko, Zakhar A functional limit theorem for the profile of random recursive trees. (English) Zbl 1406.60051 Electron. Commun. Probab. 23, Paper No. 87, 13 p. (2018). MSC: 60F17 60J80 60G50 60C05 60F05 PDF BibTeX XML Cite \textit{A. Iksanov} and \textit{Z. Kabluchko}, Electron. Commun. Probab. 23, Paper No. 87, 13 p. (2018; Zbl 1406.60051) Full Text: DOI Euclid arXiv
Buraczewski, Dariusz; Dyszewski, Piotr Precise large deviations for random walk in random environment. (English) Zbl 1406.60135 Electron. J. Probab. 23, Paper No. 114, 26 p. (2018). MSC: 60K37 60J10 60G50 PDF BibTeX XML Cite \textit{D. Buraczewski} and \textit{P. Dyszewski}, Electron. J. Probab. 23, Paper No. 114, 26 p. (2018; Zbl 1406.60135) Full Text: DOI Euclid arXiv
Eckhoff, Maren; Mörters, Peter; Ortgiese, Marcel Near critical preferential attachment networks have small giant components. (English) Zbl 1404.05192 J. Stat. Phys. 173, No. 3-4, 663-703 (2018). MSC: 05C80 60J85 60J80 90B15 PDF BibTeX XML Cite \textit{M. Eckhoff} et al., J. Stat. Phys. 173, No. 3--4, 663--703 (2018; Zbl 1404.05192) Full Text: DOI
Gao, Zhi-Qiang A second order asymptotic expansion in the local limit theorem for a simple branching random walk in \(\mathbb{Z}^d\). (English) Zbl 1417.60016 Stochastic Processes Appl. 128, No. 12, 4000-4017 (2018). MSC: 60F05 60J10 60G50 60J80 PDF BibTeX XML Cite \textit{Z.-Q. Gao}, Stochastic Processes Appl. 128, No. 12, 4000--4017 (2018; Zbl 1417.60016) Full Text: DOI
Yarovaya, Elena B. Branching random walk with receding sources. (English. Russian original) Zbl 1428.60127 Russ. Math. Surv. 73, No. 3, 549-551 (2018); translation from Usp. Mat. Nauk 73, No. 3, 181-182 (2018). MSC: 60J80 60J35 47B39 PDF BibTeX XML Cite \textit{E. B. Yarovaya}, Russ. Math. Surv. 73, No. 3, 549--551 (2018; Zbl 1428.60127); translation from Usp. Mat. Nauk 73, No. 3, 181--182 (2018) Full Text: DOI
Pain, Michel The near-critical Gibbs measure of the branching random walk. (English. French summary) Zbl 1404.60127 Ann. Inst. Henri Poincaré, Probab. Stat. 54, No. 3, 1622-1666 (2018). MSC: 60J80 60G50 60F05 60F17 PDF BibTeX XML Cite \textit{M. Pain}, Ann. Inst. Henri Poincaré, Probab. Stat. 54, No. 3, 1622--1666 (2018; Zbl 1404.60127) Full Text: DOI Euclid arXiv
Ortgiese, Marcel; Roberts, Matthew I. Scaling limit and ageing for branching random walk in Pareto environment. (English. French summary) Zbl 1401.60183 Ann. Inst. Henri Poincaré, Probab. Stat. 54, No. 3, 1291-1313 (2018). MSC: 60K37 60J80 PDF BibTeX XML Cite \textit{M. Ortgiese} and \textit{M. I. Roberts}, Ann. Inst. Henri Poincaré, Probab. Stat. 54, No. 3, 1291--1313 (2018; Zbl 1401.60183) Full Text: DOI Euclid arXiv
Lin, Shen Typical behavior of the harmonic measure in critical Galton-Watson trees with infinite variance offspring distribution. (English) Zbl 1404.60125 J. Theor. Probab. 31, No. 3, 1469-1511 (2018). MSC: 60J80 60G50 60K37 PDF BibTeX XML Cite \textit{S. Lin}, J. Theor. Probab. 31, No. 3, 1469--1511 (2018; Zbl 1404.60125) Full Text: DOI arXiv
Döbler, Christian; Gantert, Nina; Höfelsauer, Thomas; Popov, Serguei; Weidner, Felizitas Recurrence and transience of frogs with drift on \(\mathbb{Z}^d\). (English) Zbl 1414.60057 Electron. J. Probab. 23, Paper No. 88, 23 p. (2018). MSC: 60J10 60K35 60J80 PDF BibTeX XML Cite \textit{C. Döbler} et al., Electron. J. Probab. 23, Paper No. 88, 23 p. (2018; Zbl 1414.60057) Full Text: DOI Euclid arXiv
Collevecchio, Andrea; Holmes, Mark; Kious, Daniel On the speed of once-reinforced biased random walk on trees. (English) Zbl 1417.60085 Electron. J. Probab. 23, Paper No. 86, 32 p. (2018). MSC: 60K37 60G50 60J80 PDF BibTeX XML Cite \textit{A. Collevecchio} et al., Electron. J. Probab. 23, Paper No. 86, 32 p. (2018; Zbl 1417.60085) Full Text: DOI Euclid arXiv
Bowditch, Adam A quenched central limit theorem for biased random walks on supercritical Galton-Watson trees. (English) Zbl 1401.60051 J. Appl. Probab. 55, No. 2, 610-626 (2018). MSC: 60F17 60K37 60F05 60J80 PDF BibTeX XML Cite \textit{A. Bowditch}, J. Appl. Probab. 55, No. 2, 610--626 (2018; Zbl 1401.60051) Full Text: DOI arXiv
Mallein, Bastien Genealogy of the extremal process of the branching random walk. (English) Zbl 1394.60088 ALEA, Lat. Am. J. Probab. Math. Stat. 15, No. 2, 1065-1087 (2018). MSC: 60J80 60G55 92D10 PDF BibTeX XML Cite \textit{B. Mallein}, ALEA, Lat. Am. J. Probab. Math. Stat. 15, No. 2, 1065--1087 (2018; Zbl 1394.60088) Full Text: Link arXiv
Afanasyev, Valeriy I. On the non-recurrent random walk in a random environment. (English. Russian original) Zbl 1395.60117 Discrete Math. Appl. 28, No. 3, 139-156 (2018); translation from Diskretn. Mat. 28, No. 4, 6-28 (2016). MSC: 60K37 82C41 PDF BibTeX XML Cite \textit{V. I. Afanasyev}, Discrete Math. Appl. 28, No. 3, 139--156 (2018; Zbl 1395.60117); translation from Diskretn. Mat. 28, No. 4, 6--28 (2016) Full Text: DOI
Rousselin, Pierre Invariant measures, Hausdorff dimension and dimension drop of some harmonic measures on Galton-Watson trees. (English) Zbl 1410.60078 Electron. J. Probab. 23, Paper No. 46, 31 p. (2018). MSC: 60J50 60J80 37A50 60J05 60J10 PDF BibTeX XML Cite \textit{P. Rousselin}, Electron. J. Probab. 23, Paper No. 46, 31 p. (2018; Zbl 1410.60078) Full Text: DOI Euclid arXiv
Maślanka, Mariusz Tail asymptotics of maximums on trees in the critical case. (English) Zbl 1394.60074 Electron. Commun. Probab. 23, Paper No. 48, 11 p. (2018). MSC: 60H25 60J80 60K05 PDF BibTeX XML Cite \textit{M. Maślanka}, Electron. Commun. Probab. 23, Paper No. 48, 11 p. (2018; Zbl 1394.60074) Full Text: DOI Euclid
Gantert, Nina; Höfelsauer, Thomas Large deviations for the maximum of a branching random walk. (English) Zbl 1394.60019 Electron. Commun. Probab. 23, Paper No. 34, 12 p. (2018). MSC: 60F10 60J80 60G50 PDF BibTeX XML Cite \textit{N. Gantert} and \textit{T. Höfelsauer}, Electron. Commun. Probab. 23, Paper No. 34, 12 p. (2018; Zbl 1394.60019) Full Text: DOI Euclid arXiv
Chen, Xinxin; Zeng, Xiaolin Speed of vertex-reinforced jump process on Galton-Watson trees. (English) Zbl 1429.60067 J. Theor. Probab. 31, No. 2, 1166-1211 (2018). MSC: 60J80 60K37 PDF BibTeX XML Cite \textit{X. Chen} and \textit{X. Zeng}, J. Theor. Probab. 31, No. 2, 1166--1211 (2018; Zbl 1429.60067) Full Text: DOI arXiv
Wang, Hua-Ming Law of large numbers for random walk with unbounded jumps and birth and death process with bounded jumps in random environment. (English) Zbl 1412.60138 J. Theor. Probab. 31, No. 2, 619-642 (2018). Reviewer: Heinrich Hering (Rockenberg) MSC: 60K37 60J80 60J75 60F15 PDF BibTeX XML Cite \textit{H.-M. Wang}, J. Theor. Probab. 31, No. 2, 619--642 (2018; Zbl 1412.60138) Full Text: DOI
Yarovaya, E. B. Spectral asymptotics of a supercritical branching random walk. (English. Russian original) Zbl 1405.60132 Theory Probab. Appl. 62, No. 3, 413-431 (2018); translation from Teor. Veroyatn. Primen. 62, No. 3, 518-541 (2017). MSC: 60J80 PDF BibTeX XML Cite \textit{E. B. Yarovaya}, Theory Probab. Appl. 62, No. 3, 413--431 (2018; Zbl 1405.60132); translation from Teor. Veroyatn. Primen. 62, No. 3, 518--541 (2017) Full Text: DOI
Platonova, Mariya V.; Ryadovkin, K. S. On the mean number of particles of a branching random walk on \(\mathbb{Z}^d\) with periodic sources of branching. (English. Russian original) Zbl 1410.60088 Dokl. Math. 97, No. 2, 140-143 (2018); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 479, No. 3, 250-253 (2018). MSC: 60J80 PDF BibTeX XML Cite \textit{M. V. Platonova} and \textit{K. S. Ryadovkin}, Dokl. Math. 97, No. 2, 140--143 (2018; Zbl 1410.60088); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 479, No. 3, 250--253 (2018) Full Text: DOI
Monk, Travis Martingales and the fixation probability of high-dimensional evolutionary graphs. (English) Zbl 1397.92507 J. Theor. Biol. 451, 10-18 (2018). MSC: 92D15 05C90 60J85 PDF BibTeX XML Cite \textit{T. Monk}, J. Theor. Biol. 451, 10--18 (2018; Zbl 1397.92507) Full Text: DOI
van Doorn, Erik A. On the strong ratio limit property for discrete-time birth-death processes. (English) Zbl 1391.60217 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 047, 9 p. (2018). MSC: 60J80 42C05 PDF BibTeX XML Cite \textit{E. A. van Doorn}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 047, 9 p. (2018; Zbl 1391.60217) Full Text: DOI arXiv
Ho, Choon-Lin; Ide, Yusuke; Konno, Norio; Segawa, Etsuo; Takumi, Kentaro A spectral analysis of discrete-time quantum walks related to the birth and death chains. (English) Zbl 1392.82050 J. Stat. Phys. 171, No. 2, 207-219 (2018). MSC: 82C41 81S25 60J80 82C20 15A18 PDF BibTeX XML Cite \textit{C.-L. Ho} et al., J. Stat. Phys. 171, No. 2, 207--219 (2018; Zbl 1392.82050) Full Text: DOI
Andreoletti, Pierre; Chen, Xinxin Range and critical generations of a random walk on Galton-Watson trees. (English. French summary) Zbl 1396.60104 Ann. Inst. Henri Poincaré, Probab. Stat. 54, No. 1, 466-513 (2018). MSC: 60K37 60J80 60G50 PDF BibTeX XML Cite \textit{P. Andreoletti} and \textit{X. Chen}, Ann. Inst. Henri Poincaré, Probab. Stat. 54, No. 1, 466--513 (2018; Zbl 1396.60104) Full Text: DOI
Biard, Romain; Mallein, Bastien; Rabehasaina, Landy Branching random walk with trapping zones. (English) Zbl 1434.60239 Stochastic Processes Appl. 128, No. 7, 2341-2366 (2018). MSC: 60J80 60J85 62P10 92D20 PDF BibTeX XML Cite \textit{R. Biard} et al., Stochastic Processes Appl. 128, No. 7, 2341--2366 (2018; Zbl 1434.60239) Full Text: DOI
Bulinskaya, Ekaterina Vl. Spread of a catalytic branching random walk on a multidimensional lattice. (English) Zbl 1391.60210 Stochastic Processes Appl. 128, No. 7, 2325-2340 (2018). MSC: 60J80 60F15 PDF BibTeX XML Cite \textit{E. Vl. Bulinskaya}, Stochastic Processes Appl. 128, No. 7, 2325--2340 (2018; Zbl 1391.60210) Full Text: DOI
Caraceni, Alessandra; Curien, Nicolas Geometry of the uniform infinite half-planar quadrangulation. (English) Zbl 1387.05232 Random Struct. Algorithms 52, No. 3, 454-494 (2018). MSC: 05C80 05C05 60C05 60J80 PDF BibTeX XML Cite \textit{A. Caraceni} and \textit{N. Curien}, Random Struct. Algorithms 52, No. 3, 454--494 (2018; Zbl 1387.05232) Full Text: DOI arXiv