×

Computational modeling of cardiac hemodynamics: current status and future outlook. (English) Zbl 1349.92010

Summary: The proliferation of four-dimensional imaging technologies, increasing computational speeds, improved simulation algorithms, and the widespread availability of powerful computing platforms is enabling simulations of cardiac hemodynamics with unprecedented speed and fidelity. Since cardiovascular disease is intimately linked to cardiovascular hemodynamics, accurate assessment of the patient’s hemodynamic state is critical for the diagnosis and treatment of heart disease. Unfortunately, while a variety of invasive and non-invasive approaches for measuring cardiac hemodynamics are in widespread use, they still only provide an incomplete picture of the hemodynamic state of a patient. In this context, computational modeling of cardiac hemodynamics presents as a powerful non-invasive modality that can fill this information gap, and significantly impact the diagnosis as well as the treatment of cardiac disease. This article reviews the current status of this field as well as the emerging trends and challenges in cardiovascular health, computing, modeling and simulation and that are expected to play a key role in its future development. Some recent advances in modeling and simulations of cardiac flow are described by using examples from our own work as well as the research of other groups.

MSC:

92-08 Computational methods for problems pertaining to biology
92C35 Physiological flow
76Z05 Physiological flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mozaffarian, D.; Benjamin, E. J.; Go, A. S.; Arnett, D. K.; Blaha, M. J.; Cushman, M.; de Ferranti, S.; Despres, J. P.; Fullerton, H. J.; Howard, V. J., Heart disease and stroke statistics - 2015 update: a report from the American heart association, Circulation, 131, 4, e29 (2015)
[2] Fox, M.; Mealing, S.; Anderson, R.; Dean, J.; Stein, K.; Price, A.; Taylor, R., The clinical effectiveness and cost-effectiveness of cardiac resynchronisation (biventricular pacing) for heart failure: systematic review and economic model, Health Technol. Assess., 11, 47 (2007)
[3] Schaller, R. R., Moore’s law: past, present and future, IEEE Spectr., 34, 6, 52-59 (1997)
[4] Lau, K. D.; Figueroa, C. A., Simulation of short-term pressure regulation during the tilt test in a coupled 3D-0D closed-loop model of the circulation, Biomech. Model. Mechanobiol., 1-15 (2015)
[5] Moghadam, M. E.; Vignon-Clementel, I. E.; Figliola, R.; Marsden, A. L.; M. O.C. H.A. (Mocha) Investigators, A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations, J. Comput. Phys., 244, 63-79 (2013) · Zbl 1377.76041
[6] Min, J. K.; Leipsic, J.; Pencina, M. J.; Berman, D. S.; Koo, B.-K.; van Mieghem, C.; Erglis, A.; Lin, F. Y.; Dunning, A. M.; Apruzzese, P., Diagnostic accuracy of fractional flow reserve from anatomic CT angiography, JAMA, 308, 12, 1237-1245 (2012)
[7] Taylor, C. A.; Fonte, T. A.; Min, J. K., Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis, J. Am. Coll. Cardiol., 61, 22, 2233-2241 (2013)
[8] Kung, E.; Baretta, A.; Baker, C.; Arbia, G.; Biglino, G.; Corsini, C.; Schievano, S.; Vignon-Clementel, I. E.; Dubini, G.; Pennati, G., Predictive modeling of the virtual hemi-Fontan operation for second stage single ventricle palliation: two patient-specific cases, J. Biomech., 46, 2, 423-429 (2013)
[9] Long, C.; Hsu, M.-C.; Bazilevs, Y.; Feinstein, J.; Marsden, A., Fluid-structure interaction simulations of the Fontan procedure using variable wall properties, Int. J. Numer. Methods Biomed. Eng., 28, 5, 513-527 (2012) · Zbl 1451.92006
[10] Sengupta, D.; Kahn, A. M.; Burns, J. C.; Sankaran, S.; Shadden, S. C.; Marsden, A. L., Image-based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease, Biomech. Model. Mechanobiol., 11, 6, 915-932 (2012)
[11] Heric, B.; Lytle, B. W.; Miller, D. P.; Rosenkranz, E. R.; Level, H. M.; Cosgrove, D. M., Surgical management of hypertrophic obstructive cardiomyopathy: early and late results, J. Thorac. Cardiovasc. Surg., 110, 1, 195-208 (1995)
[12] Feins, E. N.; Yamauchi, H.; Marx, G. R.; Freudenthal, F. P.; Liu, H.; del Nido, P. J.; Vasilyev, N. V., Repair of posterior mitral valve prolapse with a novel leaflet plication clip in an animal model, J. Thorac. Cardiovasc. Surg., 147, 2, 783-791 (2014)
[13] Slocum, K.; Pagani, F. D.; Aaronson, K., Heart transplantation and left ventricular assist devices, Inpatient Cardiovasc. Med., 197-205 (2014)
[14] Deviri, E.; Sareli, P.; Wisenbaugh, T.; Cronje, S. L., Obstruction of mechanical heart valve prostheses: clinical aspects and surgical management, J. Am. Coll. Cardiol., 17, 3, 646-650 (1991)
[15] Babaliaros, V.; Cribier, A.; Agatiello, C., Surgery insight: current advances in percutaneous heart valve replacement and repair, Nat. Clin. Pract. Cardiovasc. Med., 3, 5, 256-264 (2006)
[16] Linde, C.; Ellenbogen, K.; McAlister, F. A., Cardiac resynchronization therapy (CRT): clinical trials, guidelines, and target populations, Heart Rhythm, 9, 8, S3-S13 (2012)
[17] Doenst, T.; Spiegel, K.; Reik, M.; Markl, M.; Hennig, J.; Nitzsche, S.; Beyersdorf, F.; Oertel, H., Fluid-dynamic modeling of the human left ventricle: methodology and application to surgical ventricular reconstruction, Ann. Thorac. Surg., 87, 4, 1187-1195 (2009)
[18] Le, T. B.; Sotiropoulos, F., On the three-dimensional vortical structure of early diastolic flow in a patient-specific left ventricle, Eur. J. Mech. B, Fluids, 35, 20-24 (2012) · Zbl 1446.76198
[19] Long, Q.; Merrifield, R.; Xu, X.; Kilner, P.; Firmin, D.; Yang, G., Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging, Proc. Inst. Mech. Eng., H J. Eng. Med., 222, 4, 475-485 (2008)
[20] Mangual, J. O.; Kraigher-Krainer, E.; De Luca, A.; Toncelli, L.; Shah, A.; Solomon, S.; Galanti, G.; Domenichini, F.; Pedrizzetti, G., Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy, J. Biomech., 46, 10, 1611-1617 (2013)
[21] Saber, N. R.; Wood, N. B.; Gosman, A.; Merrifield, R. D.; Yang, G.-Z.; Charrier, C. L.; Gatehouse, P. D.; Firmin, D. N., Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics, Ann. Biomed. Eng., 31, 1, 42-52 (2003)
[22] Seo, J. H.; Mittal, R., Effect of diastolic flow patterns on the function of the left ventricle, Phys. Fluids, 25, 11, 110801 (2013)
[23] Seo, J. H.; Vedula, V.; Abraham, T.; Mittal, R., Multiphysics computational models for cardiac flow and virtual cardiography, Int. J. Numer. Methods Biomed. Eng., 29, 8, 850-869 (2013)
[24] Tang, D.; Yang, C.; Geva, T.; del Nido, P. J., Image-based patient-specific ventricle models with fluid-structure interaction for cardiac function assessment and surgical design optimization, Progr. Pediatr. Cardiol., 30, 1, 51-62 (2010)
[25] Zheng, X.; Seo, J.; Vedula, V.; Abraham, T.; Mittal, R., Computational modeling and analysis of intracardiac flows in simple models of the left ventricle, Eur. J. Mech. B, Fluids, 35, 31-39 (2012) · Zbl 1446.76202
[26] Hendabadi, S.; Bermejo, J.; Benito, Y.; Yotti, R.; Fernandez-Aviles, F.; Del Alamo, J. C.; Shadden, S. C., Topology of blood transport in the human left ventricle by novel processing of Doppler echocardiography, Ann. Biomed. Eng., 41, 12, 2603-2616 (2013)
[27] Courtois, M.; Kovacs, S.; Ludbrook, P., Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole, Circulation, 78, 3, 661-671 (1988)
[28] Ishida, Y.; Meisner, J.; Tsujioka, K.; Gallo, J.; Yoran, C.; Frater, R.; Yellin, E., Left ventricular filling dynamics: influence of left ventricular relaxation and left atrial pressure, Circulation, 74, 1, 187-196 (1986)
[29] Delewi, R.; Zijlstra, F.; Piek, J. J., Left ventricular thrombus formation after acute myocardial infarction, Heart, 98, 23, 1743-1749 (2012)
[30] Trayanova, N. A., Computational cardiology: the heart of the matter, ISRN Cardiol., 2012 (2012)
[31] Krishnamurthy, A.; Villongco, C. T.; Chuang, J.; Frank, L. R.; Nigam, V.; Belezzuoli, E.; Stark, P.; Krummen, D. E.; Narayan, S.; Omens, J. H., Patient-specific models of cardiac biomechanics, J. Comput. Phys., 244, 4-21 (2013)
[32] Baillargeon, B.; Rebelo, N.; Fox, D. D.; Taylor, R. L.; Kuhl, E., The living heart project: a robust and integrative simulator for human heart function, Eur. J. Mech. A, Solids, 48, 38-47 (2014) · Zbl 1406.74491
[33] Prakosa, A.; Malamas, P.; Zhang, S.; Pashakhanloo, F.; Arevalo, H.; Herzka, D.; Lardo, A.; Halperin, H.; McVeigh, E.; Trayanova, N., Methodology for image-based reconstruction of ventricular geometry for patient-specific modeling of cardiac electrophysiology, Prog. Biophys. Mol. Biol., 115, 2, 226-234 (2014)
[34] Vadakkumpadan, F.; Arevalo, H.; Trayanova, N. A., Patient-specific modeling of the heart: estimation of ventricular fiber orientations, J. Visual. Exp.: JoVE, 71 (2013)
[35] Choi, Y. J.; Constantino, J.; Vedula, V.; Trayanova, N.; Mittal, R., A new MRI-based model of heart function with coupled hemodynamics and application to normal and diseased canine left ventricles, Front. Bioeng. Biotechnol., 3, 140 (2015)
[36] McCormick, M.; Nordsletten, D. A.; Kay, D.; Smith, N., Simulating left ventricular fluid-solid mechanics through the cardiac cycle under LVAD support, J. Comput. Phys., 244, 80-96 (2013) · Zbl 1377.76046
[37] McCormick, M.; Nordsletten, D.; Lamata, P.; Smith, N. P., Computational analysis of the importance of flow synchrony for cardiac ventricular assist devices, Comput. Biol. Med., 49, 83-94 (2014)
[38] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 252-271 (1972) · Zbl 0244.92002
[39] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220-252 (1977) · Zbl 0403.76100
[40] Peskin, C. S.; McQueen, D. M., A three-dimensional computational model of blood flow in the heart: I. Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys., 81, 372-405 (1989) · Zbl 0668.76159
[41] McQueen, D. M.; Peskin, C. S., A three-dimensional computational model of blood flow in the heart: II. Contractile fibers, J. Comput. Phys., 82, 289-297 (1989) · Zbl 0701.76130
[42] Perrin, D. P.; Vasilyev, N. V.; Marx, G. R.; Pedro, J., Temporal enhancement of 3D echocardiography by frame reordering, JACC: Cardiovasc. Imaging, 5, 3, 300-304 (2012)
[43] Chen, M. Y.; Shanbhag, S. M.; Arai, A. E., Submillisievert median radiation dose for coronary angiography with a second-generation 320-detector row CT scanner in 107 consecutive patients, Radiol., 267, 1, 76-85 (2013)
[44] Kitagawa, K.; Lardo, A. C.; Lima, J. A.; George, R. T., Prospective ECG-gated 320 row detector computed tomography: implications for CT angiography and perfusion imaging, Int. J. Cardiovasc. Imaging, 25, 2, 201-208 (2009)
[45] Achenbach, S.; Marwan, M.; Ropers, D.; Schepis, T.; Pflederer, T.; Anders, K.; Kuettner, A.; Daniel, W. G.; Uder, M.; Lell, M. M., Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition, Eur. Heart J., 31, 3, 340-346 (2010)
[46] Yin, W. H.; Lu, B.; Hou, Z. H.; Li, N.; Han, L.; Wu, Y. J.; Niu, H. X.; Silverman, J. R.; De Cecco, C. N.; Schoepf, U. J., Detection of coronary artery stenosis with sub-milliSievert radiation dose by prospectively ECG-triggered high-pitch spiral CT angiography and iterative reconstruction, Eur. Radiol., 23, 11, 2927-2933 (2013)
[47] Smith-Bindman, R., Is computed tomography safe, N. Engl. J. Med., 363, 1, 1-4 (2010)
[48] Smith-Bindman, R.; Miglioretti, D. L.; Johnson, E.; Lee, C.; Feigelson, H. S.; Flynn, M.; Greenlee, R. T.; Kruger, R. L.; Hornbrook, M. C.; Roblin, D., Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996-2010, J. Am. Med. Assoc., 307, 22, 2400-2409 (2012)
[49] Storrs, C., How much do CT scans increase the risk of cancer?, Sci. Am., 309, 1 (2013)
[50] George, R. T.; Mehra, V. C.; Chen, M. Y.; Kitagawa, K.; Arbab-Zadeh, A.; Miller, J. M.; Matheson, M. B.; Vavere, A. L.; Kofoed, K. F.; Rochitte, C. E., Myocardial CT perfusion imaging and SPECT for the diagnosis of coronary artery disease: a head-to-head comparison from the CORE320 multicenter diagnostic performance study, Radiol., 272, 2, 407-416 (2014)
[51] Weininger, M.; Schoepf, U. J.; Ramachandra, A.; Fink, C.; Rowe, G. W.; Costello, P.; Henzler, T., Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: initial results, Eur. J. Radiol., 81, 12, 3703-3710 (2012)
[52] Fuchs, T. A.; Stehli, J.; Fiechter, M.; Dougoud, S.; Gebhard, C.; Ghadri, J. R.; Husmann, L.; Gaemperli, O.; Kaufmann, P. A., First experience with monochromatic coronary computed tomography angiography from a 64-slice CT scanner with Gemstone Spectral Imaging (GSI), J. Cardiovasc. Comput. Tomogr., 7, 1, 25-31 (2013)
[54] McAuliffe, M. J.; Lalonde, F. M.; McGarry, D.; Gandler, W.; Csaky, K.; Trus, B. L., Medical image processing, analysis and visualization in clinical research, (Proceedings of the Fourteenth IEEE Symposium on Computer-Based Medical Systems. Proceedings of the Fourteenth IEEE Symposium on Computer-Based Medical Systems, Washington, DC, USA (2001))
[55] Yushkevich, P. A.; Piven, J.; Cody Hazlett, H.a. G.S. R.; Ho, S.; Gee, J. C.; Gerig, G., User-guided \(\{\text{3D} \}\) active contour segmentation of anatomical structures: significantly improved efficiency and reliability, NeuroImage, 31, 3, 1116-1128 (2006)
[57] Top, A.; Hamarneh, G.; Abugharbieh, R., Active learning for interactive 3D image segmentation, (Medical Image Computing and Computer-Assisted Intervention. Medical Image Computing and Computer-Assisted Intervention, MICCAI (2011))
[58] Top, A.; Hamarneh, G.; Abugharbieh, R., Spotlight: automated confidence-based user guidance for increasing efficiency in interactive 3D image segmentation, (Medical Image Computing and Computer-Assisted Intervention Workshop on Medical Computer Vision. Medical Image Computing and Computer-Assisted Intervention Workshop on Medical Computer Vision, MICCAI MCV (2010))
[60] Wolf, I.; Vetter, M.; Wegner, I.; Nolden, M.; Bottger, T.; Hastenteufel, M.; Schobinger, M.; Kunert, T.; Meinzer, H.-P., The medical imaging interaction toolkit (MITK): a toolkit facilitating the creation of interactive software by extending VTK and ITK, (Medical Imaging 2004 (2004))
[61] Larrabide, I.; Omedas, P.; Martelli, Y.; Planes, X.; Nieber, M.; Moya, J. A.; Butakoff, C.; Sebastian, R.; Camara, O.; De Craene, M., GIMIAS: an open source framework for efficient development of research tools and clinical prototypes, (Functional Imaging and Modeling of the Heart (2009), Springer), 417-426
[62] McInerney, T.; Terzopoulos, D., A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis, Comput. Med. Imaging Graph., 19, 1, 69-83 (1995)
[63] Shen, D.; Sundar, H.; Xue, Z.; Fan, Y.; Litt, H., Consistent estimation of cardiac motions by 4D image registration, (Medical Image Computing and Computer-Assisted Intervention. Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005 (2005), Springer), 902-910
[64] Peyrat, J. M.; Delingette, H.; Sermesant, M.; Pennec, X.; Xu, C.; Ayache, N., Registration of 4D time-series of cardiac images with multichannel diffeomorphic demons, (Medical Image Computing and Computer-Assisted Intervention. Medical Image Computing and Computer-Assisted Intervention, MICCAI 2008 (2008), Springer), 972-979
[65] Sundar, H.; Litt, H.; Shen, D., Estimating myocardial motion by 4D image warping, Pattern Recognit., 42, 11, 2514-2526 (2009)
[66] Gao, M.; Huang, J.; Zhang, S.; Qian, Z.; Voros, S.; Metaxas, D.; Axel, L., 4D cardiac reconstruction using high resolution CT images, (Functional Imaging and Modeling of the Heart (2011), Springer), 153-160
[67] Kulp, S.; Gao, M.; Zhang, S.; Qian, Z.; Voros, S.; Metaxas, D.; Axel, L., Using high resolution cardiac CT data to model and visualize patient-specific interactions between trabeculae and blood flow, (Medical Image Computing and Computer-Assisted Intervention. Medical Image Computing and Computer-Assisted Intervention, MICCAI 2011 (2011), Springer), 468-475
[68] Mihalef, V.; Ionasec, R. I.; Sharma, P.; Georgescu, B.; Voigt, I.; Suehling, M.; Comaniciu, D., Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images, Interface Focus, 1, 3, 286-296 (2011)
[69] Lim, C. W.; Su, Y.; Yeo, S. Y.; Ng, G. M.; Nguyen, V. T.; Zhong, L.; San Tan, R.; Poh, K. K.; Chai, P., Automatic 4D reconstruction of patient-specific cardiac mesh with 1-to-1 vertex correspondence from segmented contours lines, PLoS ONE, 9, 4, e93747 (2014)
[70] Chnafa, C.; Mendez, S.; Nicoud, F., Image-based large-eddy simulation in a realistic left heart, Comput. Fluids, 94, 173-187 (2014) · Zbl 1391.76886
[71] Dillard, S. I.; Mousel, J. A.; Shrestha, L.; Raghavan, M. L.; Vigmostad, S. C., From medical images to flow computations without user-generated meshes, Int. J. Numer. Methods Biomed. Eng., 30, 10, 1057-1083 (2014)
[72] Schutz, C.; Jost, T.; Hugli, H., Multi-feature matching algorithm for free-form 3D surface registration, (Proceedings of the Fourteenth International Conference on Pattern Recognition. Proceedings of the Fourteenth International Conference on Pattern Recognition, 1998 (1998))
[73] Rusinkiewicz, S.; Levoy, M., Efficient variants of the ICP algorithm, (Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling. Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, 2001 (2001))
[74] Litke, N.; Droske, M.; Rumpf, M.; Schroder, P., An image processing approach to surface matching, (Symposium on Geometry Processing (2005))
[75] Akca, D., Matching of 3D surfaces and their intensities, ISPRS J. Photogramm. Remote Sens., 62, 2, 112-121 (2007)
[76] Salvi, J.; Matabosch, C.; Fofi, D.; Forest, J., A review of recent range image registration methods with accuracy evaluation, Image Vis. Comput., 25, 5, 578-596 (2007)
[77] Santamaria, J.; Cordon, O.; Damas, S., A comparative study of state-of-the-art evolutionary image registration methods for 3D modeling, Comput. Vis. Image Underst., 115, 9, 1340-1354 (2011)
[78] Besl, P. J.; McKay, N. D., A method for registration of 3-D shapes, IEEE Trans. Pattern Anal. Mach. Intell., 14, 2, 239-256 (1992)
[79] Bajcsy, R.; Kovacic, S., Multiresolution elastic matching, Comput. Vis. Graph. Image Process., 46, 1, 1-21 (1989)
[80] Bookstein, F. L., Principal warps: thin-plate splines and the decomposition of deformations, IEEE Trans. Pattern Anal. Mach. Intell., 11, 6, 567-585 (1989) · Zbl 0691.65002
[81] Miller, M. I.; Trouve, A.; Younes, L., On the metrics and Euler-Lagrange equations of computational anatomy, Annu. Rev. Biomed. Eng., 4, 1, 375-405 (2002)
[82] Beg, M. F.; Miller, M. I.; Trouve, A.; Younes, L., Computing large deformation metric mappings via geodesic flows of diffeomorphisms, Int. J. Comput. Vis., 61, 2, 139-157 (2005) · Zbl 1477.68459
[83] Aronszajn, N., Theory of reproducing kernels, Trans. Am. Math. Soc., 337-404 (1950) · Zbl 0037.20701
[84] Younes, L., Shapes and Diffeomorphisms, vol. 171 (2010), Springer · Zbl 1205.68355
[85] Glaunes, J.; Trouve, A.; Younes, L., Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching, (Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004 (2004))
[86] Ardekani, S.; Jain, A.; Jain, S.; Abraham, T.; Abraham, M.; Zimmerman, S.; Winslow, R.; Miller, M.; Younes, L., Matching sparse sets of cardiac image cross-sections using large deformation diffeomorphic metric mapping algorithm, (Camara, O.; Konukoglu, E.; Pop, M.; Rhode, K.; Sermesant, M.; Young, A., Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges, vol. 7085 (2012), Springer: Springer Berlin, Heidelberg), 234-243
[87] Seo, J. H.; Vedula, V.; Abraham, T.; Lardo, A.; Dawoud, F.; Luo, H.; Mittal, R., Effect of the mitral valve on diastolic flow patterns, Phys. Fluids, 26, 12, 121901-1-121901-14 (2014)
[88] Griffith, B. E.; Luo, X.; McQueen, D. M.; Peskin, C. S., Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method, Int. J. Appl. Mech., 1, 01, 137-177 (2009)
[89] Einstein, D. R.; Kunzelman, K. S.; Reinhall, P. G.; Nicosia, M.; Cochran, R., Non-linear fluid-coupled computational model of the mitral valve, J. Heart Valve Dis., 14, 3, 376-385 (2005)
[90] Watton, P.; Luo, X.; Yin, M.; Bernacca, G.; Wheatley, D., Effect of ventricle motion on the dynamic behaviour of chorded mitral valves, J. Fluids Struct., 24, 1, 58-74 (2008)
[91] De Tullio, M.; Cristallo, A.; Balaras, E.; Verzicco, R., Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve, J. Fluid Mech., 622, 259-290 (2009) · Zbl 1165.76388
[92] De Tullio, M.; Nam, J.; Pascazio, G.; Balaras, E.; Verzicco, R., Computational prediction of mechanical hemolysis in aortic valved prostheses, Eur. J. Mech. B, Fluids, 35, 47-53 (2012) · Zbl 1446.76194
[93] Choi, Y. J.; Vedula, V.; Mittal, R., Computational study of the dynamics of a bileaflet mechanical heart valve in the mitral position, Ann. Biomed. Eng., 1-13 (2014)
[94] Le, T. B.; Sotiropoulos, F., Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle, J. Comput. Phys., 244, 41-62 (2013) · Zbl 1377.76045
[95] Hsu, M.-C.; Kamensky, D.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J., Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation, Comput. Mech., 54, 4, 1055-1071 (2014) · Zbl 1311.74039
[96] Votta, E.; Le, T. B.; Stevanella, M.; Fusini, L.; Caiani, E. G.; Redaelli, A.; Sotiropoulos, F., Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions, J. Biomech., 46, 2, 217-228 (2013)
[97] Sotiropoulos, F., Fluid mechanics of heart valves and their replacements, Annu. Rev. Fluid Mech., 48, 1 (2015)
[98] Domenichini, F.; Pedrizzetti, G., Asymptotic model of fluid-tissue interaction for mitral valve dynamics, Cardiovasc. Eng. Technol., 6, 2, 95-104 (2015)
[99] Cheng, Y.; Oertel, H.; Schenkel, T., Fluid-structure coupled CFD simulation of the left ventricular flow during diasole phase, Ann. Biomed. Eng., 33, 567-576 (2005)
[100] Schenkel, T.; Malve, M.; Reik, M.; Markl, M.; Jung, B.; Oertel, H., MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart, Ann. Biomed. Eng., 37, 3, 503-515 (2009)
[101] Nichols, J. W.; Lele, S. K.; Moin, P.; Ham, F. E.; Bridges, J. E., Large-eddy simulation for supersonic rectangular jet noise prediction: effects of chevrons (2012), AIAA Pap. 2212
[102] Pasipoularides, A. D.; Shu, M.; Womack, M. S.; Shah, A.; Ramm, O. V.; Glower, D. D., RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations, Am. J. Physiol., Heart Circ. Physiol., 284, H56-H65 (2003)
[103] Watanabe, H.; Sugiura, S.; Kafuku, H.; Hisada, T., Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method, Biophys. J., 87, 2074-2085 (2004)
[104] Liu, W. K.; Liu, Y.; Farrell, D.; Zhang, L.; Wang, X. S.; Fukui, Y.; Patankar, N.; Zhang, Y.; Bajaj, C.; Lee, J., Immersed finite element method and its applications to biological systems, Comput. Methods Appl. Mech. Eng., 195, 13, 1722-1749 (2006) · Zbl 1178.76232
[105] Long, C.; Marsden, A.; Bazilevs, Y., Fluid-structure interaction simulation of pulsatile ventricular assist devices, Comput. Mech., 52, 5, 971-981 (2013) · Zbl 1388.74039
[106] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[107] Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.; Vargas, A.; von Loebbecke, A., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J. Comput. Phys., 227, 10, 4825-4852 (2008) · Zbl 1388.76263
[108] Chorin, A. J., On the convergence of discrete approximations to the Navier-Stokes equations, Math. Comput., 23, 106, 341-353 (1969) · Zbl 0184.20103
[109] Press, W. H., Numerical Recipes: The Art of Scientific Computing (2007), Cambridge University Press · Zbl 1132.65001
[110] Zhou, J.; Adrian, R.; Balachandar, S.; Kendall, T., Mechanisms for generating coherent packets of hairpin vortices in channel flow, J. Fluid Mech., 387, 353-396 (1999) · Zbl 0946.76030
[111] Chakraborty, P.; Balachandar, S.; Adrian, R. J., On the relationships between local vortex identification schemes, J. Fluid Mech., 535, 189-214 (2005) · Zbl 1071.76015
[112] Ranganathan, N.; Lam, J.; Wigle, E.; Silver, M., Morphology of the human mitral valve II. The valve leaflets, Circulation, 41, 3, 459-467 (1970)
[113] Angiolillo, D. J.; Capodanno, D.; Goto, S., Platelet thrombin receptor antagonism and atherothrombosis, Eur. Heart J., ehp504 (2009)
[114] Seo, J. H.; Mittal, R.; Abd, T.; George, R., Coupled chemo-fluidic computational modeling of thrombogenesis in infarcted hearts, (4th International Conference on Computational and Mathematical Biomedical Engineering. 4th International Conference on Computational and Mathematical Biomedical Engineering, CMBE2015, Cachan, France (2015))
[115] Biasetti, J.; Spazzini, P. G.; Swedenborg, J.; Gasser, T. C., An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms, Front. Physiol., 3 (2012)
[116] Neeves, K.; Illing, D.; Diamond, S., Thrombin flux and wall shear rate regulate fibrin fiber deposition state during polymerization under flow, Biophys. J., 98, 7, 1344-1352 (2010)
[117] Leiderman, K.; Fogelson, A. L., Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow, Math. Med. Biol., 28, 1, 47-84 (2011) · Zbl 1211.92030
[118] Seo, J. H.; Moon, Y. J., Linearized perturbed compressible equations for low Mach number aeroacoustics, J. Comput. Phys., 218, 2, 702-719 (2006) · Zbl 1161.76546
[119] Seo, J. H.; Mittal, R., A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries, J. Comput. Phys., 230, 4, 1000-1019 (2011) · Zbl 1391.76698
[120] Oung, H.; Forsberg, F., Doppler ultrasound simulation model for pulsatile flow with nonaxial components, Ultrason. Imag., 18, 3, 157-172 (1996)
[121] Liu, H.; Seo, J. H.; Mittal, R.; Huang, H. H., GPU-accelerated scalable solver for banded linear systems, (2013 IEEE International Conference on Cluster Computing. 2013 IEEE International Conference on Cluster Computing, CLUSTER (2013))
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.