Mohammadi, Shaban; Hejazi, Reza Optimal fractional order PID controller performance in chaotic system of HIV disease: particle swarm and genetic algorithms optimization method. (English) Zbl 07665305 Comput. Methods Differ. Equ. 11, No. 2, 207-224 (2023). MSC: 49J20 68W50 PDF BibTeX XML Cite \textit{S. Mohammadi} and \textit{R. Hejazi}, Comput. Methods Differ. Equ. 11, No. 2, 207--224 (2023; Zbl 07665305) Full Text: DOI OpenURL
Zhu, Pengxian; Yang, Qigui Chaos of multi-dimensional linear hyperbolic PDEs. (English) Zbl 07655889 Proc. Am. Math. Soc. 151, No. 4, 1593-1607 (2023). MSC: 37L15 35B40 35L15 47A16 PDF BibTeX XML Cite \textit{P. Zhu} and \textit{Q. Yang}, Proc. Am. Math. Soc. 151, No. 4, 1593--1607 (2023; Zbl 07655889) Full Text: DOI OpenURL
Kurlberg, Pär; Ueberschär, Henrik Non-Gaussian waves in Šeba’s billiard. (English) Zbl 07652751 Int. Math. Res. Not. 2023, No. 2, 932-955 (2023). MSC: 37C83 35P20 35J25 37A25 37D45 PDF BibTeX XML Cite \textit{P. Kurlberg} and \textit{H. Ueberschär}, Int. Math. Res. Not. 2023, No. 2, 932--955 (2023; Zbl 07652751) Full Text: DOI arXiv OpenURL
Lin, Funing; Su, Guangwang; Ji, Quanbao; Tang, Zongqiao; Fu, Jun Fuzzy sliding-mode control of fractional-order chaotic systems subject to uncertain control coefficients and input saturation. (English) Zbl 07659595 Fractals 30, No. 10, Article ID 2240237, 18 p. (2022). MSC: 93C42 93B12 34H10 34A08 93C10 PDF BibTeX XML Cite \textit{F. Lin} et al., Fractals 30, No. 10, Article ID 2240237, 18 p. (2022; Zbl 07659595) Full Text: DOI OpenURL
Firouzjah, Masoumeh; Naderi, Bashir; Edrisi Tabriz, Yousef Leader-following consensus of chaotic fractional-order multi-agent systems using distributed adaptive protocols. (English) Zbl 07655475 Casp. J. Math. Sci. 11, No. 2, 480-494 (2022). MSC: 34H10 34A08 34D06 37D45 93A16 93C40 PDF BibTeX XML Cite \textit{M. Firouzjah} et al., Casp. J. Math. Sci. 11, No. 2, 480--494 (2022; Zbl 07655475) Full Text: DOI OpenURL
Durdu, Ali; Uyaroğlu, Yılmaz Comparison of synchronization of chaotic Burke-Shaw attractor with active control and integer-order and fractional-order P-C method. (English) Zbl 07646404 Chaos Solitons Fractals 164, Article ID 112646, 11 p. (2022). MSC: 93-XX 94-XX PDF BibTeX XML Cite \textit{A. Durdu} and \textit{Y. Uyaroğlu}, Chaos Solitons Fractals 164, Article ID 112646, 11 p. (2022; Zbl 07646404) Full Text: DOI OpenURL
Huang, Pengfei; Chai, Yi; Chen, Xiaolong Multiple dynamics analysis of Lorenz-family systems and the application in signal detection. (English) Zbl 07641666 Chaos Solitons Fractals 156, Article ID 111797, 18 p. (2022). MSC: 94A12 26A33 60G35 PDF BibTeX XML Cite \textit{P. Huang} et al., Chaos Solitons Fractals 156, Article ID 111797, 18 p. (2022; Zbl 07641666) Full Text: DOI OpenURL
Lin, Xiaoran; Wang, Yachao; Wang, Jifang; Zeng, Wenxian Dynamic analysis and adaptive modified projective synchronization for systems with Atangana-Baleanu-Caputo derivative: a financial model with nonconstant demand elasticity. (English) Zbl 07641464 Chaos Solitons Fractals 160, Article ID 112269, 9 p. (2022). MSC: 91G45 37N40 91G80 26A33 PDF BibTeX XML Cite \textit{X. Lin} et al., Chaos Solitons Fractals 160, Article ID 112269, 9 p. (2022; Zbl 07641464) Full Text: DOI OpenURL
Yan, Minxiu; Jie, Jingfeng Fractional-order multiwing switchable chaotic system with a wide range of parameters. (English) Zbl 07641390 Chaos Solitons Fractals 160, Article ID 112161, 13 p. (2022). MSC: 34H05 34A08 34H10 94A60 34D45 94C05 26A33 PDF BibTeX XML Cite \textit{M. Yan} and \textit{J. Jie}, Chaos Solitons Fractals 160, Article ID 112161, 13 p. (2022; Zbl 07641390) Full Text: DOI OpenURL
Echenausía-Monroy, J. L.; Gilardi-Velázquez, H. E.; Wang, Ning; Jaimes-Reátegui, R.; García-López, J. H.; Huerta-Cuellar, G. Multistability route in a PWL multi-scroll system through fractional-order derivatives. (English) Zbl 07641346 Chaos Solitons Fractals 161, Article ID 112355, 9 p. (2022). MSC: 37N35 37D45 34A08 34D45 26A33 94C60 93C15 PDF BibTeX XML Cite \textit{J. L. Echenausía-Monroy} et al., Chaos Solitons Fractals 161, Article ID 112355, 9 p. (2022; Zbl 07641346) Full Text: DOI OpenURL
Petráš, Ivo The fractional-order Lorenz-type systems: a review. (English) Zbl 1503.34030 Fract. Calc. Appl. Anal. 25, No. 2, 362-377 (2022). MSC: 34A08 26A33 PDF BibTeX XML Cite \textit{I. Petráš}, Fract. Calc. Appl. Anal. 25, No. 2, 362--377 (2022; Zbl 1503.34030) Full Text: DOI OpenURL
Abed-Elhameed, Tarek M.; Aboelenen, Tarek Mittag-Leffler stability, control, and synchronization for chaotic generalized fractional-order systems. (English) Zbl 07636096 Adv. Contin. Discrete Models 2022, Paper No. 50, 16 p. (2022). MSC: 26A33 33E12 37C75 37D45 PDF BibTeX XML Cite \textit{T. M. Abed-Elhameed} and \textit{T. Aboelenen}, Adv. Contin. Discrete Models 2022, Paper No. 50, 16 p. (2022; Zbl 07636096) Full Text: DOI OpenURL
Xie, Hong-wei; Gao, Ya-jun; Liu, Xi-lin; Zhang, Jun; Zhang, Hao A novel exploiting modification direction scheme and its application in quantum color image steganography. (English) Zbl 07627032 Quantum Inf. Process. 21, No. 7, Paper No. 249, 19 p. (2022). MSC: 81P68 PDF BibTeX XML Cite \textit{H.-w. Xie} et al., Quantum Inf. Process. 21, No. 7, Paper No. 249, 19 p. (2022; Zbl 07627032) Full Text: DOI OpenURL
Gilardi-Velázquez, H. E.; Echenausía-Monroy, J. L.; Jaimes-Reátegui, R.; García-López, J. H.; Campos, Eric; Huerta-Cuellar, G. Deterministic coherence resonance analysis of coupled chaotic oscillators: fractional approach. (English) Zbl 1498.34169 Chaos Solitons Fractals 157, Article ID 111919, 7 p. (2022). MSC: 34H05 34H10 34C15 34A08 26A33 PDF BibTeX XML Cite \textit{H. E. Gilardi-Velázquez} et al., Chaos Solitons Fractals 157, Article ID 111919, 7 p. (2022; Zbl 1498.34169) Full Text: DOI OpenURL
Kavuran, Gürkan When machine learning meets fractional-order chaotic signals: detecting dynamical variations. (English) Zbl 1498.68242 Chaos Solitons Fractals 157, Article ID 111908, 13 p. (2022). MSC: 68T05 34A08 37D45 37M10 68T07 PDF BibTeX XML Cite \textit{G. Kavuran}, Chaos Solitons Fractals 157, Article ID 111908, 13 p. (2022; Zbl 1498.68242) Full Text: DOI OpenURL
Hamoudi, Ahcene; Djeghali, Nadia; Bettayeb, Maamar High-order sliding mode-based synchronisation of fractional-order chaotic systems subject to output delay and unknown disturbance. (English) Zbl 07614018 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 53, No. 14, 2876-2900 (2022). MSC: 93D40 93B12 93B52 26A33 PDF BibTeX XML Cite \textit{A. Hamoudi} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 53, No. 14, 2876--2900 (2022; Zbl 07614018) Full Text: DOI OpenURL
Xu, Changjin; Ur Rahman, Mati; Fatima, Bibi; Karaca, Yeliz Theoretical and numerical investigation of complexities in fractional-order chaotic system having torus attractors. (English) Zbl 07613779 Fractals 30, No. 7, Article ID 2250164, 13 p. (2022). MSC: 65Fxx 15-XX 65Yxx PDF BibTeX XML Cite \textit{C. Xu} et al., Fractals 30, No. 7, Article ID 2250164, 13 p. (2022; Zbl 07613779) Full Text: DOI OpenURL
Zhou, Zuanbo; Yu, Wenxin Studying stochastic resonance phenomenon in the fractional-order Lorenz-like chaotic system. (English) Zbl 07597207 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 10, Article ID 2250154, 12 p. (2022). MSC: 34F15 34A08 34C28 PDF BibTeX XML Cite \textit{Z. Zhou} and \textit{W. Yu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 10, Article ID 2250154, 12 p. (2022; Zbl 07597207) Full Text: DOI OpenURL
Zheng, Hang; Xia, Yonghui; Pinto, Manuel Chaotic motion and control of the driven-damped double sine-Gordon equation. (English) Zbl 07595636 Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7151-7167 (2022). MSC: 34C28 34C37 34H10 65P20 35L10 35C07 37J40 PDF BibTeX XML Cite \textit{H. Zheng} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7151--7167 (2022; Zbl 07595636) Full Text: DOI OpenURL
Blumenthal, A.; Nisoli, I. Noise induced order for skew-products over a non-uniformly expanding base. (English) Zbl 07594452 Nonlinearity 35, No. 10, 5481-5504 (2022). MSC: 37H10 37D25 37D45 37C30 PDF BibTeX XML Cite \textit{A. Blumenthal} and \textit{I. Nisoli}, Nonlinearity 35, No. 10, 5481--5504 (2022; Zbl 07594452) Full Text: DOI arXiv OpenURL
Khan, Ayub; Nigar, Uzma; Chaudhary, Harindri Secure communication and synchronization dynamics in chaotic Chua’s system via adaptive sliding mode control technique. (English) Zbl 07582588 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 170, 20 p. (2022). MSC: 93C40 93B12 93B53 34H10 26A33 PDF BibTeX XML Cite \textit{A. Khan} et al., Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 170, 20 p. (2022; Zbl 07582588) Full Text: DOI OpenURL
Martínez-Fuentes, O.; Tlelo-Cuautle, Esteban; Fernández-Anaya, Guillermo The estimation problem for nonlinear systems modeled by conformable derivative: design and applications. (English) Zbl 1498.93271 Commun. Nonlinear Sci. Numer. Simul. 115, Article ID 106720, 26 p. (2022). MSC: 93B53 93C10 34A08 PDF BibTeX XML Cite \textit{O. Martínez-Fuentes} et al., Commun. Nonlinear Sci. Numer. Simul. 115, Article ID 106720, 26 p. (2022; Zbl 1498.93271) Full Text: DOI OpenURL
Shirkavand, Mehrdad; Pourgholi, Mahdi; Yazdizadeh, Alireza Robust global fixed-time synchronization of different dimensions fractional-order chaotic systems. (English) Zbl 1498.34043 Chaos Solitons Fractals 154, Article ID 111616, 11 p. (2022). MSC: 34A08 34D06 PDF BibTeX XML Cite \textit{M. Shirkavand} et al., Chaos Solitons Fractals 154, Article ID 111616, 11 p. (2022; Zbl 1498.34043) Full Text: DOI OpenURL
Wang, Fei; Wang, Jun-Min; Li, Liangliang Chaotic oscillations of 1D wave equation due to a generalized nonlinear energy-decay boundary condition. (English) Zbl 1495.35113 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 8, Article ID 2250112, 12 p. (2022). MSC: 35L20 37D45 PDF BibTeX XML Cite \textit{F. Wang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 8, Article ID 2250112, 12 p. (2022; Zbl 1495.35113) Full Text: DOI OpenURL
Jena, Rajarama Mohan; Chakraverty, Snehashish A numerical scheme based on two- and three-step Newton interpolation polynomials for fractal-fractional variable orders chaotic attractors. (English) Zbl 07553234 Fractals 30, No. 4, Article ID 2250093, 27 p. (2022). MSC: 65Lxx 34Axx 26Axx PDF BibTeX XML Cite \textit{R. M. Jena} and \textit{S. Chakraverty}, Fractals 30, No. 4, Article ID 2250093, 27 p. (2022; Zbl 07553234) Full Text: DOI OpenURL
Friedland, Omer; Ueberschär, Henrik Superscarred quasimodes on flat surfaces with conical singularities. (English) Zbl 1487.35264 Stud. Math. 264, No. 3, 241-262 (2022). MSC: 35P20 35J25 37A25 37D45 PDF BibTeX XML Cite \textit{O. Friedland} and \textit{H. Ueberschär}, Stud. Math. 264, No. 3, 241--262 (2022; Zbl 1487.35264) Full Text: DOI arXiv OpenURL
Li, Zongcheng; Liu, Zhonghua Chaos induced by heteroclinic cycles connecting repellers for first-order partial difference equations. (English) Zbl 1489.39010 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 4, Article ID 2250059, 24 p. (2022). MSC: 39A14 39A33 PDF BibTeX XML Cite \textit{Z. Li} and \textit{Z. Liu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 4, Article ID 2250059, 24 p. (2022; Zbl 1489.39010) Full Text: DOI OpenURL
Jia, Zirui; Liu, Ling; Liu, Chongxin Dynamic analysis and fractional-order terminal sliding mode control of a fractional-order buck converter operating in discontinuous conduction mode. (English) Zbl 1497.34068 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 4, Article ID 2250045, 18 p. (2022). MSC: 34C60 94C60 34A08 34A36 39A12 34D08 34C28 34H05 93C15 PDF BibTeX XML Cite \textit{Z. Jia} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 4, Article ID 2250045, 18 p. (2022; Zbl 1497.34068) Full Text: DOI OpenURL
Yang, Qigui; Xiang, Qiaomin Chaotic vibrations of 3D linear hyperbolic PDEs with linear perturbations of superlinear boundary conditions. (English) Zbl 1478.35136 J. Math. Anal. Appl. 507, No. 1, Article ID 125743, 21 p. (2022). MSC: 35L20 37D45 PDF BibTeX XML Cite \textit{Q. Yang} and \textit{Q. Xiang}, J. Math. Anal. Appl. 507, No. 1, Article ID 125743, 21 p. (2022; Zbl 1478.35136) Full Text: DOI OpenURL
Soleimanizadeh, Ali; Nekoui, Mohammad Ali Optimal type-2 fuzzy synchronization of two different fractional-order chaotic systems with variable orders with an application to secure communication. (English) Zbl 1498.34126 Soft Comput. 25, No. 8, 6415-6426 (2021). MSC: 34C28 34A07 34A08 34D06 PDF BibTeX XML Cite \textit{A. Soleimanizadeh} and \textit{M. A. Nekoui}, Soft Comput. 25, No. 8, 6415--6426 (2021; Zbl 1498.34126) Full Text: DOI OpenURL
Wang, Xiong; Chen, Guanrong Fractional-order chaotic systems with hidden attractors. (English) Zbl 07606432 Wang, Xiong (ed.) et al., Chaotic systems with multistability and hidden attractors. Cham: Springer. Emerg. Complex. Comput. 40, 199-238 (2021). MSC: 34A08 34C28 34D45 26A33 PDF BibTeX XML Cite \textit{X. Wang} and \textit{G. Chen}, Emerg. Complex. Comput. 40, 199--238 (2021; Zbl 07606432) Full Text: DOI OpenURL
Shabani, A.; Sheikhani, A. H. Refahi; Aminikhah, H.; Gholamin, P. A predictor-corrector scheme for the nonlinear chaotic variable-order fractional three-dimensional system. (English) Zbl 07598225 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 83, No. 2, 187-202 (2021). MSC: 34A08 37Dxx 26A33 PDF BibTeX XML Cite \textit{A. Shabani} et al., Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 83, No. 2, 187--202 (2021; Zbl 07598225) OpenURL
Laarem, Guessas A new 4-D hyper chaotic system generated from the 3-D Rössler chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos synchronization using optimized fractional order sliding mode control. (A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos synchronization using optimized fractional order sliding mode control.) (English) Zbl 1498.93077 Chaos Solitons Fractals 152, Article ID 111437, 10 p. (2021). MSC: 93B12 93B52 26A33 34H10 PDF BibTeX XML Cite \textit{G. Laarem}, Chaos Solitons Fractals 152, Article ID 111437, 10 p. (2021; Zbl 1498.93077) Full Text: DOI OpenURL
Yao, Qijia Neural adaptive learning synchronization of second-order uncertain chaotic systems with prescribed performance guarantees. (English) Zbl 1498.93374 Chaos Solitons Fractals 152, Article ID 111434, 10 p. (2021). MSC: 93C40 93B52 34H10 93C10 PDF BibTeX XML Cite \textit{Q. Yao}, Chaos Solitons Fractals 152, Article ID 111434, 10 p. (2021; Zbl 1498.93374) Full Text: DOI OpenURL
Akgül, Akif; Rajagopal, Karthikeyan; Durdu, Ali; Pala, Muhammed Ali; Boyraz, Ömer Faruk; Yildiz, Mustafa Zahid A simple fractional-order chaotic system based on memristor and memcapacitor and its synchronization application. (English) Zbl 1497.94209 Chaos Solitons Fractals 152, Article ID 111306, 11 p. (2021). MSC: 94C60 34A08 34D06 PDF BibTeX XML Cite \textit{A. Akgül} et al., Chaos Solitons Fractals 152, Article ID 111306, 11 p. (2021; Zbl 1497.94209) Full Text: DOI OpenURL
Zhou, Shuang; Wang, Xingyuan Simple estimation method for the largest Lyapunov exponent of continuous fractional-order differential equations. (English) Zbl 07574001 Physica A 563, Article ID 125478, 11 p. (2021). MSC: 82-XX PDF BibTeX XML Cite \textit{S. Zhou} and \textit{X. Wang}, Physica A 563, Article ID 125478, 11 p. (2021; Zbl 07574001) Full Text: DOI OpenURL
Danca, Marius-F. Hopfield neuronal network of fractional order: a note on its numerical integration. (English) Zbl 1498.65035 Chaos Solitons Fractals 151, Article ID 111219, 9 p. (2021). MSC: 65D30 34A08 PDF BibTeX XML Cite \textit{M.-F. Danca}, Chaos Solitons Fractals 151, Article ID 111219, 9 p. (2021; Zbl 1498.65035) Full Text: DOI arXiv OpenURL
Leng, Xiangxin; Gu, Shuangquan; Peng, Qiqi; Du, Baoxiang Study on a four-dimensional fractional-order system with dissipative and conservative properties. (English) Zbl 1498.34036 Chaos Solitons Fractals 150, Article ID 111185, 12 p. (2021). MSC: 34A08 37D45 PDF BibTeX XML Cite \textit{X. Leng} et al., Chaos Solitons Fractals 150, Article ID 111185, 12 p. (2021; Zbl 1498.34036) Full Text: DOI OpenURL
Rajagopal, Karthikeyan; Panahi, Shirin; Chen, Mo; Jafari, Sajad; Bao, Bocheng Suppressing spiral wave turbulence in a simple fractional-order discrete neuron map using impulse triggering. (English) Zbl 1492.92011 Fractals 29, No. 8, Article ID 2140030, 10 p. (2021). MSC: 92C20 26A33 PDF BibTeX XML Cite \textit{K. Rajagopal} et al., Fractals 29, No. 8, Article ID 2140030, 10 p. (2021; Zbl 1492.92011) Full Text: DOI OpenURL
Akrami, Mohammad Hossein Dynamical behaviors of Bazykin-Berezovskaya model with fractional-order and its discretization. (English) Zbl 1499.34266 Comput. Methods Differ. Equ. 9, No. 4, 1013-1027 (2021). MSC: 34C60 34A08 39A12 39A28 39A33 PDF BibTeX XML Cite \textit{M. H. Akrami}, Comput. Methods Differ. Equ. 9, No. 4, 1013--1027 (2021; Zbl 1499.34266) Full Text: DOI OpenURL
Yao, Qijia Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control. (English) Zbl 1496.93095 Chaos Solitons Fractals 142, Article ID 110372, 11 p. (2021). MSC: 93D15 34H10 34D06 93B12 93C40 PDF BibTeX XML Cite \textit{Q. Yao}, Chaos Solitons Fractals 142, Article ID 110372, 11 p. (2021; Zbl 1496.93095) Full Text: DOI OpenURL
Sweetha, S.; Sakthivel, R.; Harshavarthini, S. Finite-time synchronization of nonlinear fractional chaotic systems with stochastic actuator faults. (English) Zbl 1496.34098 Chaos Solitons Fractals 142, Article ID 110312, 11 p. (2021). MSC: 34H10 34A08 34D06 34F05 37D45 93C62 93D40 PDF BibTeX XML Cite \textit{S. Sweetha} et al., Chaos Solitons Fractals 142, Article ID 110312, 11 p. (2021; Zbl 1496.34098) Full Text: DOI OpenURL
Li, Haoyu; Wang, Leimin; Lai, Qiang Synchronization of a memristor chaotic system and image encryption. (English) Zbl 1485.93109 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 16, Article ID 2150251, 18 p. (2021). MSC: 93B12 93D40 94A08 94A60 PDF BibTeX XML Cite \textit{H. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 16, Article ID 2150251, 18 p. (2021; Zbl 1485.93109) Full Text: DOI OpenURL
Vafaei, V.; Jodayree Akbarfam, A.; Kheiri, H. A new synchronisation method of fractional-order chaotic systems with distinct orders and dimensions and its application in secure communication. (English) Zbl 1485.93300 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 52, No. 16, 3437-3450 (2021). MSC: 93C40 93C15 34A08 34D06 34H10 PDF BibTeX XML Cite \textit{V. Vafaei} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 52, No. 16, 3437--3450 (2021; Zbl 1485.93300) Full Text: DOI OpenURL
Zhang, Fangfang; Li, Zhengfeng; Sun, Kai; Zhang, Xue; Ji, Peng A new hyperchaotic complex system with parametric attractors. (English) Zbl 1489.37048 Fractals 29, No. 7, Article ID 2150230, 20 p. (2021). MSC: 37D45 34C28 37G35 PDF BibTeX XML Cite \textit{F. Zhang} et al., Fractals 29, No. 7, Article ID 2150230, 20 p. (2021; Zbl 1489.37048) Full Text: DOI OpenURL
Wang, Bo; Jahanshahi, Hadi; Bekiros, Stelios; Chu, Yu-Ming; Gómez-Aguilar, J. F.; Alsaadi, Fawaz E.; Alassafi, Madini O. Tracking control and stabilization of a fractional financial risk system using novel active finite-time fault-tolerant controls. (English) Zbl 1482.91215 Fractals 29, No. 6, Article ID 2150155, 20 p. (2021). MSC: 91G45 26A33 93D40 93B35 PDF BibTeX XML Cite \textit{B. Wang} et al., Fractals 29, No. 6, Article ID 2150155, 20 p. (2021; Zbl 1482.91215) Full Text: DOI OpenURL
Zambrano-Serrano, Ernesto; Bekiros, Stelios; Platas-Garza, Miguel A.; Posadas-Castillo, Cornelio; Agarwal, Praveen; Jahanshahi, Hadi; Aly, Ayman A. On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control. (English) Zbl 07461839 Physica A 578, Article ID 126100, 18 p. (2021). MSC: 82-XX PDF BibTeX XML Cite \textit{E. Zambrano-Serrano} et al., Physica A 578, Article ID 126100, 18 p. (2021; Zbl 07461839) Full Text: DOI OpenURL
Yang, Qigui; Xiang, Qiaomin Chaotic oscillations of linear hyperbolic PDE with variable coefficients and implicit boundary conditions. (English) Zbl 1476.34106 Discrete Contin. Dyn. Syst., Ser. S 14, No. 9, 3267-3284 (2021). MSC: 34C28 35L70 35L05 PDF BibTeX XML Cite \textit{Q. Yang} and \textit{Q. Xiang}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 9, 3267--3284 (2021; Zbl 1476.34106) Full Text: DOI OpenURL
Jin, Aiyun; Mao, Beixing; Wang, Dongxiao Self-adaptive sliding mode synchronization of fractional-order uncertain chaotic Tang system. (Chinese. English summary) Zbl 1488.93100 Math. Pract. Theory 51, No. 14, 247-252 (2021). MSC: 93C40 93B12 26A33 37D45 PDF BibTeX XML Cite \textit{A. Jin} et al., Math. Pract. Theory 51, No. 14, 247--252 (2021; Zbl 1488.93100) OpenURL
Wang, Xiaodong; Mao, Beixing; Chen, Can Sliding mode synchronization of fractional-order Rikitake systems. (Chinese. English summary) Zbl 1488.34313 J. Yangzhou Univ., Nat. Sci. Ed. 24, No. 2, 7-10, 49 (2021). MSC: 34D06 37D45 93C10 34A08 34A34 PDF BibTeX XML Cite \textit{X. Wang} et al., J. Yangzhou Univ., Nat. Sci. Ed. 24, No. 2, 7--10, 49 (2021; Zbl 1488.34313) Full Text: DOI OpenURL
Eyebe, Guy Joseph; Gambo, Betchewe; Mohamadou, Alidou; Kofane, Timoleon Crepin Melnikov analysis of the nonlocal nanobeam resting on fractional-order softening nonlinear viscoelastic foundations. (English) Zbl 1484.37100 Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2213-2228 (2021). MSC: 37N15 74K10 26A33 74D10 74H65 PDF BibTeX XML Cite \textit{G. J. Eyebe} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2213--2228 (2021; Zbl 1484.37100) Full Text: DOI OpenURL
Bingi, Kishore; Prusty, B. Rajanarayan Forecasting models for chaotic fractional-order oscillators using neural networks. (English) Zbl 1484.37097 Int. J. Appl. Math. Comput. Sci. 31, No. 3, 387-398 (2021). MSC: 37M10 37M05 92B20 PDF BibTeX XML Cite \textit{K. Bingi} and \textit{B. R. Prusty}, Int. J. Appl. Math. Comput. Sci. 31, No. 3, 387--398 (2021; Zbl 1484.37097) Full Text: DOI OpenURL
Mahmoud, Gamal M.; Aboelenen, Tarek; Abed-Elhameed, Tarek M.; Farghaly, Ahmed A. On boundedness and projective synchronization of distributed order neural networks. (English) Zbl 07424113 Appl. Math. Comput. 404, Article ID 126198, 13 p. (2021). MSC: 26A33 33E12 37C75 37D45 PDF BibTeX XML Cite \textit{G. M. Mahmoud} et al., Appl. Math. Comput. 404, Article ID 126198, 13 p. (2021; Zbl 07424113) Full Text: DOI OpenURL
Chen, Yucheng; Tang, Chunming; Roohi, Majid Design of a model-free adaptive sliding mode control to synchronize chaotic fractional-order systems with input saturation: an application in secure communications. (English) Zbl 1472.93020 J. Franklin Inst. 358, No. 16, 8109-8137 (2021). MSC: 93B12 93C40 26A33 94A60 PDF BibTeX XML Cite \textit{Y. Chen} et al., J. Franklin Inst. 358, No. 16, 8109--8137 (2021; Zbl 1472.93020) Full Text: DOI OpenURL
Li, Qingbin; Mao, Beixing; Xue, Junxiao Self-adaptive sliding mode synchronization of fractional-order uncertain multi-chaotic system. (Chinese. English summary) Zbl 1488.93024 Math. Pract. Theory 51, No. 6, 199-205 (2021). MSC: 93B12 93C40 93D05 93B03 26A33 37D45 PDF BibTeX XML Cite \textit{Q. Li} et al., Math. Pract. Theory 51, No. 6, 199--205 (2021; Zbl 1488.93024) OpenURL
Zhang, Wei; Mao, Beixing Self-adaptive sliding mode synchronization of hyperchaotic fractional-order Bao systems. (Chinese. English summary) Zbl 1488.93110 Math. Pract. Theory 51, No. 5, 214-220 (2021). MSC: 93C40 93B12 37D45 26A33 PDF BibTeX XML Cite \textit{W. Zhang} and \textit{B. Mao}, Math. Pract. Theory 51, No. 5, 214--220 (2021; Zbl 1488.93110) OpenURL
Yan, Minxiu; Xu, Hui New fractional chaotic system circuit design and synchronization control. (Chinese. English summary) Zbl 1488.94128 J. Lanzhou Univ. Technol. 47, No. 1, 105-112 (2021). MSC: 94C30 93C30 37D45 PDF BibTeX XML Cite \textit{M. Yan} and \textit{H. Xu}, J. Lanzhou Univ. Technol. 47, No. 1, 105--112 (2021; Zbl 1488.94128) OpenURL
Park, Junho; Moon, Sungju; Seo, Jaemyeong Mango; Baik, Jong-Jin Systematic comparison between the generalized Lorenz equations and DNS in the two-dimensional Rayleigh-Bénard convection. (English) Zbl 1471.35028 Chaos 31, No. 7, 073119, 16 p. (2021). MSC: 35B32 35Q35 37D45 PDF BibTeX XML Cite \textit{J. Park} et al., Chaos 31, No. 7, 073119, 16 p. (2021; Zbl 1471.35028) Full Text: DOI arXiv OpenURL
Sharkovsky, A. N.; Romanenko, E. Yu.; Akbergenov, A. A. Computer turbulence as a tunnelling effect. (English. Ukrainian original) Zbl 1491.65079 J. Math. Sci., New York 256, No. 5, 703-712 (2021); translation from Neliniĭni Kolyvannya 23, No. 1, 124-133 (2020). Reviewer: Petr Sváček (Praha) MSC: 65M06 65N06 35F05 37D45 37N20 37M15 60J65 PDF BibTeX XML Cite \textit{A. N. Sharkovsky} et al., J. Math. Sci., New York 256, No. 5, 703--712 (2021; Zbl 1491.65079); translation from Neliniĭni Kolyvannya 23, No. 1, 124--133 (2020) Full Text: DOI OpenURL
Yan, Bo; He, Shaobo Dynamics and complexity analysis of the conformable fractional-order two-machine interconnected power system. (English) Zbl 1471.34104 Math. Methods Appl. Sci. 44, No. 3, 2439-2454 (2021). MSC: 34C60 34A08 34A45 34D45 34D05 34C23 34D08 34C28 PDF BibTeX XML Cite \textit{B. Yan} and \textit{S. He}, Math. Methods Appl. Sci. 44, No. 3, 2439--2454 (2021; Zbl 1471.34104) Full Text: DOI OpenURL
Ahmed, Elsayd; Matouk, Ahmed E. Complex dynamics of some models of antimicrobial resistance on complex networks. (English) Zbl 1471.34085 Math. Methods Appl. Sci. 44, No. 2, 1896-1912 (2021). MSC: 34C60 92D25 34A08 34C05 34C23 34D20 34C28 34C37 34D45 39A12 PDF BibTeX XML Cite \textit{E. Ahmed} and \textit{A. E. Matouk}, Math. Methods Appl. Sci. 44, No. 2, 1896--1912 (2021; Zbl 1471.34085) Full Text: DOI OpenURL
Starovoitov, Victor N. Boundary value problem for a global-in-time parabolic equation. (English) Zbl 1469.35124 Math. Methods Appl. Sci. 44, No. 1, 1118-1126 (2021). MSC: 35K58 35K20 35R09 35Q92 PDF BibTeX XML Cite \textit{V. N. Starovoitov}, Math. Methods Appl. Sci. 44, No. 1, 1118--1126 (2021; Zbl 1469.35124) Full Text: DOI arXiv OpenURL
Wang, Dongxiao Sliding mode synchronization of van der Pol emotion chaotic model. (Chinese. English summary) Zbl 1474.93039 Math. Pract. Theory 51, No. 3, 176-181 (2021). MSC: 93B12 37D45 26A33 PDF BibTeX XML Cite \textit{D. Wang}, Math. Pract. Theory 51, No. 3, 176--181 (2021; Zbl 1474.93039) OpenURL
Mao, Beixing; Wang, Dongxiao Self-adaptive sliding mode synchronization of fractional-order uncertain Rossler chaotic systems. (Chinese. English summary) Zbl 1474.93035 J. Zhejiang Univ., Sci. Ed. 48, No. 2, 210-214 (2021). MSC: 93B12 93C40 37D45 26A33 PDF BibTeX XML Cite \textit{B. Mao} and \textit{D. Wang}, J. Zhejiang Univ., Sci. Ed. 48, No. 2, 210--214 (2021; Zbl 1474.93035) Full Text: DOI OpenURL
Chen, Fengjuan; Qian, Yahe The second order Melnikov integral in the time-periodic equation with heteroclinic cycle. (Chinese. English summary) Zbl 1474.34280 J. Zhejiang Norm. Univ., Nat. Sci. 44, No. 1, 9-14 (2021). MSC: 34C28 34C15 37C60 34D08 34E10 34C23 34C37 PDF BibTeX XML Cite \textit{F. Chen} and \textit{Y. Qian}, J. Zhejiang Norm. Univ., Nat. Sci. 44, No. 1, 9--14 (2021; Zbl 1474.34280) Full Text: DOI OpenURL
Wang, Chunyan; Di, Jinhong; Mao, Beixing Self-adaptive sliding mode synchronization of fractional-order nonlinear chaotic systems. (Chinese. English summary) Zbl 1474.93131 J. Henan Univ. Sci. Technol., Nat. Sci. 42, No. 3, 45-50 (2021). MSC: 93C40 93B12 93D99 93C10 37D45 26A33 PDF BibTeX XML Cite \textit{C. Wang} et al., J. Henan Univ. Sci. Technol., Nat. Sci. 42, No. 3, 45--50 (2021; Zbl 1474.93131) Full Text: DOI OpenURL
Zhu, Pengxian; Xiang, Qiaomin; Lu, Kai Chaotic dynamics of a 2D hyperbolic PDE with the boundary conditions of superlinear type. (English) Zbl 1468.35090 Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 30, 18 p. (2021). MSC: 35L20 35B40 PDF BibTeX XML Cite \textit{P. Zhu} et al., Qual. Theory Dyn. Syst. 20, No. 2, Paper No. 30, 18 p. (2021; Zbl 1468.35090) Full Text: DOI OpenURL
Ha, Shumin; Chen, Liangyun; Liu, Heng Command filtered adaptive neural network synchronization control of fractional-order chaotic systems subject to unknown dead zones. (English) Zbl 1464.93075 J. Franklin Inst. 358, No. 7, 3376-3402 (2021). MSC: 93D99 93C40 93B70 93C15 26A33 PDF BibTeX XML Cite \textit{S. Ha} et al., J. Franklin Inst. 358, No. 7, 3376--3402 (2021; Zbl 1464.93075) Full Text: DOI OpenURL
Diaz-Ruelas, A.; Baldovin, F.; Robledo, A. Logistic map trajectory distributions: renormalization-group, entropy, and criticality at the transition to chaos. (English) Zbl 1468.37009 Chaos 31, No. 3, 033112, 10 p. (2021). MSC: 37A60 37A50 70K55 PDF BibTeX XML Cite \textit{A. Diaz-Ruelas} et al., Chaos 31, No. 3, 033112, 10 p. (2021; Zbl 1468.37009) Full Text: DOI arXiv OpenURL
Vafaei, Vajiheh; Kheiri, Hossein; Akbarfam, Aliasghar Jodayree Synchronization of different dimensions fractional-order chaotic systems with uncertain parameters and secure communication. (English) Zbl 1474.34367 Bol. Soc. Parana. Mat. (3) 39, No. 5, 57-72 (2021). MSC: 34D06 34H10 34A08 34C28 93C40 PDF BibTeX XML Cite \textit{V. Vafaei} et al., Bol. Soc. Parana. Mat. (3) 39, No. 5, 57--72 (2021; Zbl 1474.34367) Full Text: Link OpenURL
Silva-Juárez, Alejandro; Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo; Li, Rui Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics. (English) Zbl 07332982 Appl. Math. Comput. 394, Article ID 125831, 13 p. (2021). MSC: 35Qxx 34Bxx 44Axx 26-XX 26Axx PDF BibTeX XML Cite \textit{A. Silva-Juárez} et al., Appl. Math. Comput. 394, Article ID 125831, 13 p. (2021; Zbl 07332982) Full Text: DOI OpenURL
Chen, Ling; Tang, You-Qi; Liu, Shuang; Zhou, Yuan; Liu, Xing-Guang Nonlinear phenomena in axially moving beams with speed-dependent tension and tension-dependent speed. (English) Zbl 1462.74078 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150037, 15 p. (2021). Reviewer: Albert Luo (Edwardsville) MSC: 74H60 74H65 74K10 74H15 PDF BibTeX XML Cite \textit{L. Chen} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150037, 15 p. (2021; Zbl 1462.74078) Full Text: DOI OpenURL
Yu, Nanxiang; Zhu, Wei Event-triggered impulsive chaotic synchronization of fractional-order differential systems. (English) Zbl 07329290 Appl. Math. Comput. 388, Article ID 125554, 12 p. (2021). MSC: 93-XX 34-XX PDF BibTeX XML Cite \textit{N. Yu} and \textit{W. Zhu}, Appl. Math. Comput. 388, Article ID 125554, 12 p. (2021; Zbl 07329290) Full Text: DOI OpenURL
Taghipour, Javad; Dardel, Morteza; Pashaei, Mohammad Hadi Nonlinear vibration analysis of a flexible rotor shaft with a longitudinally dispositioned unbalanced rigid disc. (English) Zbl 1460.70023 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105761, 23 p. (2021). MSC: 70K50 70K55 74H45 34A34 PDF BibTeX XML Cite \textit{J. Taghipour} et al., Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105761, 23 p. (2021; Zbl 1460.70023) Full Text: DOI OpenURL
Mansouri, D.; Bendoukha, S.; Abdelmalek, S.; Youkana, A. On the complete synchronization of a time-fractional reaction-diffusion system with the Newton-Leipnik nonlinearity. (English) Zbl 1458.35458 Appl. Anal. 100, No. 3, 675-694 (2021). MSC: 35R11 35K51 35K57 PDF BibTeX XML Cite \textit{D. Mansouri} et al., Appl. Anal. 100, No. 3, 675--694 (2021; Zbl 1458.35458) Full Text: DOI arXiv OpenURL
Soltanpour, Mohammad Reza; Shirkavand, Mehrdad Terminal observer and disturbance observer for the class of fractional-order chaotic systems. (English) Zbl 1492.93029 Soft Comput. 24, No. 12, 8881-8898 (2020). MSC: 93B07 34C28 34A08 PDF BibTeX XML Cite \textit{M. R. Soltanpour} and \textit{M. Shirkavand}, Soft Comput. 24, No. 12, 8881--8898 (2020; Zbl 1492.93029) Full Text: DOI OpenURL
Balootaki, Mohammad Ahmadi; Rahmani, Hossein; Moeinkhah, Hossein; Mohammadzadeh, Ardashir On the synchronization and stabilization of fractional-order chaotic systems: recent advances and future perspectives. (English) Zbl 07531213 Physica A 551, Article ID 124203, 16 p. (2020). MSC: 82-XX PDF BibTeX XML Cite \textit{M. A. Balootaki} et al., Physica A 551, Article ID 124203, 16 p. (2020; Zbl 07531213) Full Text: DOI OpenURL
An, Hongli; Feng, Dali; Sun, Li; Zhu, Haixing The fractional-order unified chaotic system: a general cascade synchronization method and application. (English) Zbl 1484.34014 AIMS Math. 5, No. 5, 4345-4356 (2020). MSC: 34A08 34D06 34H10 PDF BibTeX XML Cite \textit{H. An} et al., AIMS Math. 5, No. 5, 4345--4356 (2020; Zbl 1484.34014) Full Text: DOI OpenURL
Owolabi, Kolade M.; Karaagac, Berat Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system. (English) Zbl 1496.35436 Chaos Solitons Fractals 141, Article ID 110302, 16 p. (2020). MSC: 35R11 35K40 35K57 35K58 65M06 93C10 PDF BibTeX XML Cite \textit{K. M. Owolabi} and \textit{B. Karaagac}, Chaos Solitons Fractals 141, Article ID 110302, 16 p. (2020; Zbl 1496.35436) Full Text: DOI OpenURL
Yang, Xiaojie; Liu, Hui; Sun, Chengfeng Pullback attractor of a non-autonomous order-\(2 \gamma\) parabolic equation for an epitaxial thin film growth model. (English) Zbl 1487.35107 Bound. Value Probl. 2020, Paper No. 79, 12 p. (2020). MSC: 35B41 35K35 35K58 37D45 37B25 37L30 76A20 PDF BibTeX XML Cite \textit{X. Yang} et al., Bound. Value Probl. 2020, Paper No. 79, 12 p. (2020; Zbl 1487.35107) Full Text: DOI OpenURL
Kachia, Krunal; Solís-Pérez, J. E.; Gómez-Aguilar, J. F. Chaos in a three-cell population cancer model with variable-order fractional derivative with power, exponential and Mittag-Leffler memories. (English) Zbl 1495.92030 Chaos Solitons Fractals 140, Article ID 110177, 24 p. (2020). MSC: 92C50 92C37 26A33 PDF BibTeX XML Cite \textit{K. Kachia} et al., Chaos Solitons Fractals 140, Article ID 110177, 24 p. (2020; Zbl 1495.92030) Full Text: DOI OpenURL
Shi, Jianping; Ruan, Liyuan On the reasonability of linearized approximation and Hopf bifurcation control for a fractional-order delay Bhalekar-Gejji chaotic system. (English) Zbl 1486.34157 Adv. Difference Equ. 2020, Paper No. 588, 21 p. (2020). MSC: 34K37 34K18 34A08 34K20 34K23 26A33 PDF BibTeX XML Cite \textit{J. Shi} and \textit{L. Ruan}, Adv. Difference Equ. 2020, Paper No. 588, 21 p. (2020; Zbl 1486.34157) Full Text: DOI OpenURL
Xiang, Qiaomin; Yin, Zongbin; Zhu, Pengxian Chaotic dynamics of linear hyperbolic PDEs with nonlinear boundary conditions. (English) Zbl 1495.35114 Chaos Solitons Fractals 131, Article ID 109525, 8 p. (2020). MSC: 35L20 35L05 PDF BibTeX XML Cite \textit{Q. Xiang} et al., Chaos Solitons Fractals 131, Article ID 109525, 8 p. (2020; Zbl 1495.35114) Full Text: DOI OpenURL
Ma, Yutian; Li, Wenwen Application and research of fractional differential equations in dynamic analysis of supply chain financial chaotic system. (English) Zbl 1489.65101 Chaos Solitons Fractals 130, Article ID 109417, 7 p. (2020). MSC: 65L03 34K37 34K23 90B06 91G80 PDF BibTeX XML Cite \textit{Y. Ma} and \textit{W. Li}, Chaos Solitons Fractals 130, Article ID 109417, 7 p. (2020; Zbl 1489.65101) Full Text: DOI OpenURL
Dutta, Maitreyee; Roy, Binoy Krishna A new fractional-order system displaying coexisting multiwing attractors; its synchronisation and circuit simulation. (English) Zbl 1489.34011 Chaos Solitons Fractals 130, Article ID 109414, 14 p. (2020). MSC: 34A08 26A33 34K37 94C05 PDF BibTeX XML Cite \textit{M. Dutta} and \textit{B. K. Roy}, Chaos Solitons Fractals 130, Article ID 109414, 14 p. (2020; Zbl 1489.34011) Full Text: DOI OpenURL
Cao, Yanli Chaotic synchronization based on fractional order calculus financial system. (English) Zbl 1489.91146 Chaos Solitons Fractals 130, Article ID 109410, 7 p. (2020). MSC: 91B55 26A33 91G80 PDF BibTeX XML Cite \textit{Y. Cao}, Chaos Solitons Fractals 130, Article ID 109410, 7 p. (2020; Zbl 1489.91146) Full Text: DOI OpenURL
Wang, Mengjiao; Liao, Xiaohan; Deng, Yong; Li, Zhijun; Su, Yongxin; Zeng, Yicheng Dynamics, synchronization and circuit implementation of a simple fractional-order chaotic system with hidden attractors. (English) Zbl 1489.94208 Chaos Solitons Fractals 130, Article ID 109406, 14 p. (2020). MSC: 94C05 34A08 37D45 PDF BibTeX XML Cite \textit{M. Wang} et al., Chaos Solitons Fractals 130, Article ID 109406, 14 p. (2020; Zbl 1489.94208) Full Text: DOI OpenURL
Hashemi, M. S.; Inc, Mustafa; Yusuf, Abdullahi On three-dimensional variable order time fractional chaotic system with nonsingular kernel. (English) Zbl 1483.65117 Chaos Solitons Fractals 133, Article ID 109628, 8 p. (2020). MSC: 65L05 34A08 26A33 PDF BibTeX XML Cite \textit{M. S. Hashemi} et al., Chaos Solitons Fractals 133, Article ID 109628, 8 p. (2020; Zbl 1483.65117) Full Text: DOI OpenURL
Al-sawalha, M. Mossa Synchronization of different order fractional-order chaotic systems using modify adaptive sliding mode control. (English) Zbl 1486.34121 Adv. Difference Equ. 2020, Paper No. 417, 17 p. (2020). MSC: 34H10 34D06 34A08 PDF BibTeX XML Cite \textit{M. M. Al-sawalha}, Adv. Difference Equ. 2020, Paper No. 417, 17 p. (2020; Zbl 1486.34121) Full Text: DOI OpenURL
Jian, Jigui; Wu, Kai; Wang, Baoxian Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems. (English) Zbl 07457995 Physica A 540, Article ID 123166, 13 p. (2020). MSC: 82-XX PDF BibTeX XML Cite \textit{J. Jian} et al., Physica A 540, Article ID 123166, 13 p. (2020; Zbl 07457995) Full Text: DOI OpenURL
Abdelaziz, Mahmoud A. M.; Izani Ismail, Ahmad; Abdullah, Farah A.; Hafiz Mohd, Mohd Discrete-time fractional order SIR epidemic model with saturated treatment function. (English) Zbl 07446837 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 5, 397-424 (2020). MSC: 39A28 39A30 39A33 92D30 PDF BibTeX XML Cite \textit{M. A. M. Abdelaziz} et al., Int. J. Nonlinear Sci. Numer. Simul. 21, No. 5, 397--424 (2020; Zbl 07446837) Full Text: DOI OpenURL
Lin, Funing; Xue, Guangming; Su, Guangwang; Qin, Bin A hybrid adaptive synchronization protocol for nondeterministic perturbed fractional-order chaotic nonlinear systems. (English) Zbl 1482.93313 Adv. Difference Equ. 2020, Paper No. 150, 19 p. (2020). MSC: 93C40 93C10 93C42 34A08 26A33 PDF BibTeX XML Cite \textit{F. Lin} et al., Adv. Difference Equ. 2020, Paper No. 150, 19 p. (2020; Zbl 1482.93313) Full Text: DOI OpenURL
Almatroud, A. Othman Synchronisation of two different uncertain fractional-order chaotic systems with unknown parameters using a modified adaptive sliding-mode controller. (English) Zbl 1482.34145 Adv. Difference Equ. 2020, Paper No. 78, 14 p. (2020). MSC: 34H10 34A08 93B12 93C10 34D06 PDF BibTeX XML Cite \textit{A. O. Almatroud}, Adv. Difference Equ. 2020, Paper No. 78, 14 p. (2020; Zbl 1482.34145) Full Text: DOI OpenURL
Yu, Yajuan; Wang, Zaihua Non-smooth bifurcation in two fractional-order memristive circuits. (English) Zbl 1503.34102 Lacarbonara, Walter (ed.) et al., New trends in nonlinear dynamics. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17–20, 2019. Volume III. Cham: Springer. 325-335 (2020). MSC: 34C60 94C60 34C05 34D20 34C23 34C28 PDF BibTeX XML Cite \textit{Y. Yu} and \textit{Z. Wang}, in: New trends in nonlinear dynamics. Proceedings of the first international nonlinear dynamics conference, NODYCON 2019, Rome, Italy, February 17--20, 2019. Volume III. Cham: Springer. 325--335 (2020; Zbl 1503.34102) Full Text: DOI OpenURL
Wang, Chunyan; Di, Jinhong; Mao, Beixing Proportion integral sliding mode synchronization of a class of fractional-order hyper-chaotic financial systems. (Chinese. English summary) Zbl 1488.34291 J. Yangzhou Univ., Nat. Sci. Ed. 23, No. 6, 28-33 (2020). MSC: 34C60 34D06 37D45 91G99 34A08 PDF BibTeX XML Cite \textit{C. Wang} et al., J. Yangzhou Univ., Nat. Sci. Ed. 23, No. 6, 28--33 (2020; Zbl 1488.34291) Full Text: DOI OpenURL
Wang, Yuanhui; Chen, Yiming Shifted Legendre polynomials algorithm used for the dynamic analysis of viscoelastic pipes conveying fluid with variable fractional order model. (English) Zbl 1481.74104 Appl. Math. Modelling 81, 159-176 (2020). MSC: 74D10 35R11 65Z05 74S40 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{Y. Chen}, Appl. Math. Modelling 81, 159--176 (2020; Zbl 1481.74104) Full Text: DOI HAL OpenURL
Haghighi, Ahmad Reza; Aghababa, Mohammad Pourmahmood; Asghary, Nasim; Roohi, Majid A nonlinear control scheme for stabilization of fractional order dynamical chaotic systems. (Persian. English summary) Zbl 1478.37096 JAMM, J. Adv. Math. Model. 10, No. 1, 19-38 (2020). MSC: 37N35 93D21 93C10 PDF BibTeX XML Cite \textit{A. R. Haghighi} et al., JAMM, J. Adv. Math. Model. 10, No. 1, 19--38 (2020; Zbl 1478.37096) Full Text: DOI OpenURL
Li, Qingbin; Mao, Beixing; Xue, Junxiao Two schemes for sliding mode synchronization of a new fractional order chaotic system. (Chinese. English summary) Zbl 1474.93033 Math. Pract. Theory 50, No. 23, 197-201 (2020). MSC: 93B12 93C15 26A33 37D45 PDF BibTeX XML Cite \textit{Q. Li} et al., Math. Pract. Theory 50, No. 23, 197--201 (2020; Zbl 1474.93033) OpenURL
Shao, Keyong; Xu, Zihui; Huang, Xinyu; Wang, Tingting; Zhang, Yi RBF neural network adaptive synchronization control for fractional-order hyper-chaotic systems. (Chinese. English summary) Zbl 1474.93130 J. Yangzhou Univ., Nat. Sci. Ed. 23, No. 5, 58-62 (2020). MSC: 93C40 93B70 37D45 26A33 PDF BibTeX XML Cite \textit{K. Shao} et al., J. Yangzhou Univ., Nat. Sci. Ed. 23, No. 5, 58--62 (2020; Zbl 1474.93130) Full Text: DOI OpenURL
Huo, Ruina; Mao, Beixing Finite-time synchronization control of uncertain fractional-order Qi systems. (Chinese. English summary) Zbl 1474.93194 Math. Pract. Theory 50, No. 18, 277-282 (2020). MSC: 93D40 93D50 PDF BibTeX XML Cite \textit{R. Huo} and \textit{B. Mao}, Math. Pract. Theory 50, No. 18, 277--282 (2020; Zbl 1474.93194) OpenURL