Barinova, Marina; Pochinka, Olga; Yakovlev, Evgeniy On a structure of non-wandering set of an \(\Omega\)-stable 3-diffeomorphism possessing a hyperbolic attractor. (English) Zbl 07770122 Discrete Contin. Dyn. Syst. 44, No. 1, 1-17 (2024). MSC: 37C70 37D20 37D45 PDF BibTeX XML Cite \textit{M. Barinova} et al., Discrete Contin. Dyn. Syst. 44, No. 1, 1--17 (2024; Zbl 07770122) Full Text: DOI arXiv
Toktas, Abdurrahim; Erkan, Uğur; Gao, Suo; Pak, Chanil A robust bit-level image encryption based on Bessel map. (English) Zbl 07764047 Appl. Math. Comput. 462, Article ID 128340, 31 p. (2024). MSC: 94Axx 68Uxx 37Nxx PDF BibTeX XML Cite \textit{A. Toktas} et al., Appl. Math. Comput. 462, Article ID 128340, 31 p. (2024; Zbl 07764047) Full Text: DOI
Suzuki, Yasuyuki; Togame, Keigo; Nakamura, Akihiro; Nomura, Taishin A Markov chain approximation of switched Fokker-Planck equations for a model of on-off intermittency in the postural control during quiet standing. (English) Zbl 07758929 Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107488, 19 p. (2023). MSC: 65M60 65C40 60J22 65C05 34F05 37D45 70Q05 92C10 93B52 35A24 35R07 35R09 35R60 35Q84 PDF BibTeX XML Cite \textit{Y. Suzuki} et al., Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107488, 19 p. (2023; Zbl 07758929) Full Text: DOI arXiv
Vaidyanathan, Sundarapandian; Benkouider, Khaled; Sambas, Aceng; Darwin, P. Bifurcation analysis, circuit design and sliding mode control of a new multistable chaotic population model with one prey and two predators. (English) Zbl 1521.92077 Arch. Control Sci. 33, No. 1, 127-153 (2023). MSC: 92D25 93B12 37G35 PDF BibTeX XML Cite \textit{S. Vaidyanathan} et al., Arch. Control Sci. 33, No. 1, 127--153 (2023; Zbl 1521.92077) Full Text: DOI
Bukhari, Ayaz Hussain; Shoaib, Muhammad; Kiani, Adiqa Kausar; Chaudhary, Naveed Ishtiaq; Raja, Muhammad Asif Zahoor; Shu, Chi-Min Dynamical analysis of nonlinear fractional order Lorenz system with a novel design of intelligent solution predictive radial base networks. (English) Zbl 07736748 Math. Comput. Simul. 213, 324-347 (2023). MSC: 37-XX 34-XX PDF BibTeX XML Cite \textit{A. H. Bukhari} et al., Math. Comput. Simul. 213, 324--347 (2023; Zbl 07736748) Full Text: DOI
Parastesh, Fatemeh; Dayani, Zahra; Bahramian, Alireza; Jafari, Sajad; Chen, Guanrong Performance of synchronization in networks of chaotic systems under different PID coupling schemes. (English) Zbl 07735677 Physica A 626, Article ID 129087, 11 p. (2023). MSC: 82-XX PDF BibTeX XML Cite \textit{F. Parastesh} et al., Physica A 626, Article ID 129087, 11 p. (2023; Zbl 07735677) Full Text: DOI
Schickhofer, Lukas; Antonopoulos, Chris G. Nonlinear dynamics and onset of chaos in a physical model of a damper pressure relief valve. (English) Zbl 07733047 Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107378, 19 p. (2023). MSC: 70K55 70K20 PDF BibTeX XML Cite \textit{L. Schickhofer} and \textit{C. G. Antonopoulos}, Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107378, 19 p. (2023; Zbl 07733047) Full Text: DOI arXiv
Vargas, D. A.; Falgout, R. D.; Günther, S.; Schroder, J. B. Multigrid reduction in time for chaotic dynamical systems. (English) Zbl 07729494 SIAM J. Sci. Comput. 45, No. 4, A2019-A2042 (2023). MSC: 65M22 65M55 65M06 65Y05 35Q53 PDF BibTeX XML Cite \textit{D. A. Vargas} et al., SIAM J. Sci. Comput. 45, No. 4, A2019--A2042 (2023; Zbl 07729494) Full Text: DOI arXiv
Mohammadpour, M.; Abdelkefi, A.; Safarpour, P.; Gavagsaz-Ghoachani, R.; Zandi, M. Controlling chaos in bi-stable energy harvesting systems using delayed feedback control. (English) Zbl 07726821 Meccanica 58, No. 4, 587-606 (2023). MSC: 70Q05 70K55 93B52 PDF BibTeX XML Cite \textit{M. Mohammadpour} et al., Meccanica 58, No. 4, 587--606 (2023; Zbl 07726821) Full Text: DOI
Xiang, Qiaomin; Wu, Ze-Hao; Park, Ju H.; Guo, Bao-Zhu Observability and observers for a class of two-dimensional hyperbolic PDE chaotic systems. (English) Zbl 1520.93058 SIAM J. Control Optim. 61, No. 4, 2282-2304 (2023). MSC: 93B07 93B53 93C20 35L10 PDF BibTeX XML Cite \textit{Q. Xiang} et al., SIAM J. Control Optim. 61, No. 4, 2282--2304 (2023; Zbl 1520.93058) Full Text: DOI
Donetskyi, V. S.; Shvets, A. Yu. Generalization of the concept of attractor for pendulum systems with finite excitations. (English. Ukrainian original) Zbl 07723988 J. Math. Sci., New York 273, No. 2, 220-229 (2023); translation from Neliniĭni Kolyvannya 24, No. 4, 473-481 (2021); correction J. Math. Sci., New York 274, No. 1, 156 (2023). MSC: 70K40 70K55 PDF BibTeX XML Cite \textit{V. S. Donetskyi} and \textit{A. Yu. Shvets}, J. Math. Sci., New York 273, No. 2, 220--229 (2023; Zbl 07723988); translation from Neliniĭni Kolyvannya 24, No. 4, 473--481 (2021); correction J. Math. Sci., New York 274, No. 1, 156 (2021) Full Text: DOI
Ovsyannikov, Ivan; Rademacher, Jens D. M.; Welter, Roland; Lu, Bing-ying Time averages and periodic attractors at high Rayleigh number for Lorenz-like models. (English) Zbl 07712912 J. Nonlinear Sci. 33, No. 5, Paper No. 73, 39 p. (2023); correction ibid. 33, No. 5, Paper No. 92, 1 p. (2023). MSC: 37J40 37J46 37J20 37G15 37D45 PDF BibTeX XML Cite \textit{I. Ovsyannikov} et al., J. Nonlinear Sci. 33, No. 5, Paper No. 73, 39 p. (2023; Zbl 07712912) Full Text: DOI arXiv
Khan, Mubashar; Rasheed, Amer A secure controlled quantum image steganography scheme based on the multi-channel effective quantum image representation model. (English) Zbl 07706436 Quantum Inf. Process. 22, No. 7, Paper No. 268, 32 p. (2023). MSC: 81P68 PDF BibTeX XML Cite \textit{M. Khan} and \textit{A. Rasheed}, Quantum Inf. Process. 22, No. 7, Paper No. 268, 32 p. (2023; Zbl 07706436) Full Text: DOI
Liu, Xingbin; Liu, Cong Quantum image encryption scheme using independent bit-plane permutation and Baker map. (English) Zbl 07706430 Quantum Inf. Process. 22, No. 6, Paper No. 262, 20 p. (2023). MSC: 81P68 PDF BibTeX XML Cite \textit{X. Liu} and \textit{C. Liu}, Quantum Inf. Process. 22, No. 6, Paper No. 262, 20 p. (2023; Zbl 07706430) Full Text: DOI
Di Ruzza, Sara Numerical studies to detect chaotic motion in the full planar averaged three-body problem. (English) Zbl 1518.70012 Boll. Unione Mat. Ital. 16, No. 2, 429-457 (2023). MSC: 70F07 70-08 70K55 PDF BibTeX XML Cite \textit{S. Di Ruzza}, Boll. Unione Mat. Ital. 16, No. 2, 429--457 (2023; Zbl 1518.70012) Full Text: DOI
Kangalgil, Figen; Işik, Seval Dynamical complexities in a discrete-time predator-prey system as consequences of the weak Allee effect on prey. (English) Zbl 07701546 Miskolc Math. Notes 24, No. 1, 209-226 (2023). MSC: 39A28 39A30 37N25 92D25 PDF BibTeX XML Cite \textit{F. Kangalgil} and \textit{S. Işik}, Miskolc Math. Notes 24, No. 1, 209--226 (2023; Zbl 07701546) Full Text: DOI
Mohammadi, Shaban; Hejazi, S. Reza Using particle swarm optimization and genetic algorithms for optimal control of non-linear fractional-order chaotic system of cancer cells. (English) Zbl 07700837 Math. Comput. Simul. 206, 538-560 (2023). MSC: 92-XX 93-XX PDF BibTeX XML Cite \textit{S. Mohammadi} and \textit{S. R. Hejazi}, Math. Comput. Simul. 206, 538--560 (2023; Zbl 07700837) Full Text: DOI
Elsonbaty, A.; Salman, Sanaa M.; Aldurayhim, A.; Abdo, N. F.; Hagras, E. A.; Elsadany, A. A. Dynamical analysis and encryption key-distribution application of new q-deformed reduced Lorenz system. (English) Zbl 1516.39002 S\(\vec{\text{e}}\)MA J. 80, No. 1, 131-158 (2023). MSC: 39A28 39A13 39A33 68P25 94A08 PDF BibTeX XML Cite \textit{A. Elsonbaty} et al., S\(\vec{\text{e}}\)MA J. 80, No. 1, 131--158 (2023; Zbl 1516.39002) Full Text: DOI
Elsonbaty, Amr; Elsadany, A. A. On discrete fractional-order Lotka-Volterra model based on the Caputo difference discrete operator. (English) Zbl 1516.39009 Math. Sci., Springer 17, No. 1, 67-79 (2023). MSC: 39A70 39A13 39A33 26A33 PDF BibTeX XML Cite \textit{A. Elsonbaty} and \textit{A. A. Elsadany}, Math. Sci., Springer 17, No. 1, 67--79 (2023; Zbl 1516.39009) Full Text: DOI
Chadha, Naresh M.; Tomar, Shruti; Raut, Santanu Parametric analysis of dust ion acoustic waves in superthermal plasmas through non-autonomous KdV framework. (English) Zbl 1517.35193 Commun. Nonlinear Sci. Numer. Simul. 123, Article ID 107269, 21 p. (2023). MSC: 35Q53 35Q35 76X05 76Q05 35B32 35C08 37D25 PDF BibTeX XML Cite \textit{N. M. Chadha} et al., Commun. Nonlinear Sci. Numer. Simul. 123, Article ID 107269, 21 p. (2023; Zbl 1517.35193) Full Text: DOI
Daquin, Jérôme; Charalambous, Carolina Detection of separatrices and chaotic seas based on orbit amplitudes. (English) Zbl 1516.70014 Celest. Mech. Dyn. Astron. 135, No. 3, Paper No. 31, 18 p. (2023). MSC: 70F15 70H14 70K55 70-08 PDF BibTeX XML Cite \textit{J. Daquin} and \textit{C. Charalambous}, Celest. Mech. Dyn. Astron. 135, No. 3, Paper No. 31, 18 p. (2023; Zbl 1516.70014) Full Text: DOI arXiv
Sprott, Julien Clinton Elegant automation. Robotic analysis of chaotic systems. (English) Zbl 1516.37003 Singapore: World Scientific (ISBN 978-981-12-7751-1/hbk; 978-981-12-7753-5/ebook). xii, 335 p. (2023). MSC: 37-02 68-02 37D45 37M05 34C28 34C15 70K55 68T05 68T07 PDF BibTeX XML Cite \textit{J. C. Sprott}, Elegant automation. Robotic analysis of chaotic systems. Singapore: World Scientific (2023; Zbl 1516.37003) Full Text: DOI
Llibre, Jaume; Valls, Claudia On the integrability of a four-prototype Rössler system. (English) Zbl 07692716 Math. Phys. Anal. Geom. 26, No. 1, Paper No. 5, 9 p. (2023). Reviewer: Jonathan Stanfill (Columbus) MSC: 34A05 34A34 34C45 34C28 PDF BibTeX XML Cite \textit{J. Llibre} and \textit{C. Valls}, Math. Phys. Anal. Geom. 26, No. 1, Paper No. 5, 9 p. (2023; Zbl 07692716) Full Text: DOI
Berger, Pierre Coexistence of chaotic and elliptic behaviors among analytic, symplectic diffeomorphisms of any surface. (Coexistence de comportements chaotiques et elliptiques parmi les symplectomorphismes analytiques de toute surface.) (English. French summary) Zbl 1521.37068 J. Éc. Polytech., Math. 10, 525-547 (2023). MSC: 37J70 37J46 37J35 37F80 37E30 37D45 37D25 PDF BibTeX XML Cite \textit{P. Berger}, J. Éc. Polytech., Math. 10, 525--547 (2023; Zbl 1521.37068) Full Text: DOI arXiv
Surosh, A. H.; Khoshsiar Ghaziani, R.; Alidousti, J. Chaos control and Hopf bifurcation analysis of a three-dimensional chaotic system. (English) Zbl 07680442 J. Mahani Math. Res. Cent. 12, No. 1, 183-195 (2023). MSC: 34K35 34K13 34K18 PDF BibTeX XML Cite \textit{A. H. Surosh} et al., J. Mahani Math. Res. Cent. 12, No. 1, 183--195 (2023; Zbl 07680442) Full Text: DOI
Liang, Bo; Hu, Chenyang; Tian, Zean; Wang, Qiao; Jian, Canling A 3D chaotic system with multi-transient behavior and its application in image encryption. (English) Zbl 07679931 Physica A 616, Article ID 128624, 17 p. (2023). MSC: 82-XX PDF BibTeX XML Cite \textit{B. Liang} et al., Physica A 616, Article ID 128624, 17 p. (2023; Zbl 07679931) Full Text: DOI
Baysal, Veli; Solmaz, Ramazan; Ma, Jun Investigation of chaotic resonance in type-I and type-II Morris-Lecar neurons. (English) Zbl 1511.92009 Appl. Math. Comput. 448, Article ID 127940, 11 p. (2023). MSC: 92C20 34C15 PDF BibTeX XML Cite \textit{V. Baysal} et al., Appl. Math. Comput. 448, Article ID 127940, 11 p. (2023; Zbl 1511.92009) Full Text: DOI
Pawlak, Ryszard J.; Poprawa, Justyna On some dense sets in the space of dynamical systems. (English) Zbl 1515.37017 Adv. Nonlinear Stud. 23, Article ID 20220053, 15 p. (2023). MSC: 37B40 37B55 28D20 37B20 54C35 54C70 PDF BibTeX XML Cite \textit{R. J. Pawlak} and \textit{J. Poprawa}, Adv. Nonlinear Stud. 23, Article ID 20220053, 15 p. (2023; Zbl 1515.37017) Full Text: DOI
Mohammadi, Shaban; Hejazi, Reza Optimal fractional order PID controller performance in chaotic system of HIV disease: particle swarm and genetic algorithms optimization method. (English) Zbl 07665305 Comput. Methods Differ. Equ. 11, No. 2, 207-224 (2023). MSC: 68W50 92C37 PDF BibTeX XML Cite \textit{S. Mohammadi} and \textit{R. Hejazi}, Comput. Methods Differ. Equ. 11, No. 2, 207--224 (2023; Zbl 07665305) Full Text: DOI
Su, Haipeng; Luo, Runzi; Huang, Meichun; Fu, Jiaojiao Fast convergence control of a class of uncertain chaotic systems with input nonlinearity by using a new sliding mode controller. (English) Zbl 1507.93171 Eur. J. Control 69, Article ID 100751, 10 p. (2023). MSC: 93D05 93B12 34H10 93C15 PDF BibTeX XML Cite \textit{H. Su} et al., Eur. J. Control 69, Article ID 100751, 10 p. (2023; Zbl 1507.93171) Full Text: DOI
Didov, A. A.; Uleysky, M. Yu.; Budyansky, M. V. Fractal structure of chaotic scattering in a simple hydrodynamic model with a point vortex embedded in a time-(quasi)periodic background flow. (English) Zbl 07609378 Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106882, 16 p. (2023). MSC: 76-XX PDF BibTeX XML Cite \textit{A. A. Didov} et al., Commun. Nonlinear Sci. Numer. Simul. 116, Article ID 106882, 16 p. (2023; Zbl 07609378) Full Text: DOI
Moysis, Lazaros; Volos, Christos; Pham, Viet-Thanh; El-Latif, Ahmed A. Abd; Nistazakis, Hector; Stouboulos, Ioannis Analysis of a hyperchaotic system with a hyperbolic sinusoidal nonlinearity and its application to area exploration using multiple autonomous robots. (English) Zbl 1512.70014 Volchenkov, Dimitri (ed.) et al., New perspectives on nonlinear dynamics and complexity. Selected papers based on the presentations at the first conference, online, Central Time Zone, USA, November 23–25, 2020. Cham: Springer. Nonlinear Syst. Complex. 35, 43-62 (2023). MSC: 70E60 70K55 PDF BibTeX XML Cite \textit{L. Moysis} et al., Nonlinear Syst. Complex. 35, 43--62 (2023; Zbl 1512.70014) Full Text: DOI
Ding, Yuting; Zheng, Liyuan; Guo, Jining Stability analysis of nonlinear glue flow system with delay. (English) Zbl 07771068 Math. Methods Appl. Sci. 45, No. 11, 6861-6877 (2022). MSC: 34K60 34K21 34K20 34K18 34K13 34K25 34K23 PDF BibTeX XML Cite \textit{Y. Ding} et al., Math. Methods Appl. Sci. 45, No. 11, 6861--6877 (2022; Zbl 07771068) Full Text: DOI
Kuz’menko, A. A. Forced sliding mode control for chaotic systems synchronization. (English) Zbl 1520.93072 Nonlinear Dyn. 109, No. 3, 1763-1775 (2022). MSC: 93B12 93B35 93B52 93C30 93D21 34H10 PDF BibTeX XML Cite \textit{A. A. Kuz'menko}, Nonlinear Dyn. 109, No. 3, 1763--1775 (2022; Zbl 1520.93072) Full Text: DOI
Rouar, S.; Zehrour, O. A new fractional-order three-dimensional chaotic flows with identical eigenvalues. (English) Zbl 07696823 Nonlinear Dyn. Syst. Theory 22, No. 4, 447-456 (2022). MSC: 34A08 34C28 34D08 PDF BibTeX XML Cite \textit{S. Rouar} and \textit{O. Zehrour}, Nonlinear Dyn. Syst. Theory 22, No. 4, 447--456 (2022; Zbl 07696823) Full Text: Link
Labid, M.; Hamri, N. Chaos synchronization between fractional-order lesser date moth chaotic system and integer-order chaotic system via active control. (English) Zbl 07696819 Nonlinear Dyn. Syst. Theory 22, No. 4, 407-413 (2022). MSC: 34H10 34A08 34D06 PDF BibTeX XML Cite \textit{M. Labid} and \textit{N. Hamri}, Nonlinear Dyn. Syst. Theory 22, No. 4, 407--413 (2022; Zbl 07696819) Full Text: Link
Zhao, Bolin Seeking optimal parameters for achieving a lightweight reservoir computing: a computational endeavor. (English) Zbl 1516.37137 Electron Res. Arch. 30, No. 8, 3004-3018 (2022). MSC: 37M99 37-04 PDF BibTeX XML Cite \textit{B. Zhao}, Electron Res. Arch. 30, No. 8, 3004--3018 (2022; Zbl 1516.37137) Full Text: DOI
Lin, Funing; Su, Guangwang; Ji, Quanbao; Tang, Zongqiao; Fu, Jun Fuzzy sliding-mode control of fractional-order chaotic systems subject to uncertain control coefficients and input saturation. (English) Zbl 1508.93189 Fractals 30, No. 10, Article ID 2240237, 18 p. (2022). MSC: 93C42 93B12 34H10 34A08 93C10 PDF BibTeX XML Cite \textit{F. Lin} et al., Fractals 30, No. 10, Article ID 2240237, 18 p. (2022; Zbl 1508.93189) Full Text: DOI
Liang, Jianchao; Liu, Jian; Chen, Guanrong Observer-based synchronization of time-delay complex-variable chaotic systems with complex parameters. (English) Zbl 1508.93122 Fractals 30, No. 9, Article ID 2250197, 11 p. (2022). MSC: 93B53 34H10 93C43 34K41 34K23 PDF BibTeX XML Cite \textit{J. Liang} et al., Fractals 30, No. 9, Article ID 2250197, 11 p. (2022; Zbl 1508.93122) Full Text: DOI
Doungmo Goufo, Emile Franc Implementation of multi-folded torus attractors via a piecewise system with a piecewise linear odd function. (English) Zbl 1515.34015 Fractals 30, No. 8, Article ID 2240232, 15 p. (2022). MSC: 34A08 26A33 34A34 34C28 37D45 65L05 65T60 PDF BibTeX XML Cite \textit{E. F. Doungmo Goufo}, Fractals 30, No. 8, Article ID 2240232, 15 p. (2022; Zbl 1515.34015) Full Text: DOI
Li, Xiaoyu; Wang, Yu-Lan Numerical simulation of the fractional-order Rössler chaotic systems with Grünwald-Letnikov fractional derivative. (English) Zbl 1520.65054 Fractals 30, No. 8, Article ID 2240229, 8 p. (2022). MSC: 65L05 34A08 34A34 34C28 PDF BibTeX XML Cite \textit{X. Li} and \textit{Y.-L. Wang}, Fractals 30, No. 8, Article ID 2240229, 8 p. (2022; Zbl 1520.65054) Full Text: DOI
Doungmo Goufo, Emile F.; Khan, Y.; Tchangou Toudjeu, I. The fractal and piecewise structure of some chaotic neural networks using a generalized model. (English) Zbl 1515.34014 Fractals 30, No. 8, Article ID 2240228, 19 p. (2022). MSC: 34A08 26A33 34A38 34A34 34C28 37D45 65L05 PDF BibTeX XML Cite \textit{E. F. Doungmo Goufo} et al., Fractals 30, No. 8, Article ID 2240228, 19 p. (2022; Zbl 1515.34014) Full Text: DOI
Zhang, Mengjiao; Zang, Hongyan; Bai, Luyuan A new predefined-time sliding mode control scheme for synchronizing chaotic systems. (English) Zbl 1508.93059 Chaos Solitons Fractals 164, Article ID 112745, 9 p. (2022). MSC: 93B12 34H05 34H10 PDF BibTeX XML Cite \textit{M. Zhang} et al., Chaos Solitons Fractals 164, Article ID 112745, 9 p. (2022; Zbl 1508.93059) Full Text: DOI
Setoudeh, Farbod; Dezhdar, Mohammad Matin; Najafi, M. Nonlinear analysis and chaos synchronization of a memristive-based chaotic system using adaptive control technique in noisy environments. (English) Zbl 1508.93175 Chaos Solitons Fractals 164, Article ID 112710, 12 p. (2022). MSC: 93C40 93B52 34H05 34H10 93D05 PDF BibTeX XML Cite \textit{F. Setoudeh} et al., Chaos Solitons Fractals 164, Article ID 112710, 12 p. (2022; Zbl 1508.93175) Full Text: DOI
Zhang, Fangfang; Zhang, Shuaihu; Chen, Guanrong; Li, Chunbiao; Li, Zhengfeng; Pan, Changchun Special attractors and dynamic transport of the hybrid-order complex Lorenz system. (English) Zbl 1508.37048 Chaos Solitons Fractals 164, Article ID 112700, 27 p. (2022). MSC: 37D45 34A08 26A33 PDF BibTeX XML Cite \textit{F. Zhang} et al., Chaos Solitons Fractals 164, Article ID 112700, 27 p. (2022; Zbl 1508.37048) Full Text: DOI
Abinandhitha, R.; Sakthivel, R.; Tatar, N.; Manikandan, R. Anti-disturbance observer-based control for fuzzy chaotic semi-Markov jump systems with multiple disturbances and mixed actuator failures. (English) Zbl 1508.93245 Chaos Solitons Fractals 164, Article ID 112679, 13 p. (2022). MSC: 93D21 93C42 93E03 PDF BibTeX XML Cite \textit{R. Abinandhitha} et al., Chaos Solitons Fractals 164, Article ID 112679, 13 p. (2022; Zbl 1508.93245) Full Text: DOI
Reis, Eduardo V. M.; Savi, Marcelo A. Spatiotemporal chaos in a conservative Duffing-type system. (English) Zbl 1507.70032 Chaos Solitons Fractals 165, Part 1, Article ID 112776, 16 p. (2022). MSC: 70K55 35G20 35B20 PDF BibTeX XML Cite \textit{E. V. M. Reis} and \textit{M. A. Savi}, Chaos Solitons Fractals 165, Part 1, Article ID 112776, 16 p. (2022; Zbl 1507.70032) Full Text: DOI
Pal, Pikaso; Mukherjee, Vivekananda; Jin, Gang Gyoo Adaptive chaos synchronization of a mechanical system with disturbances and uncertainties. (English) Zbl 1503.70015 Math. Mech. Complex Syst. 10, No. 3, 245-263 (2022). MSC: 70K42 34D20 93B12 93C40 PDF BibTeX XML Cite \textit{P. Pal} et al., Math. Mech. Complex Syst. 10, No. 3, 245--263 (2022; Zbl 1503.70015) Full Text: DOI
Cao, Weijia; Cai, Hang; Hua, Zhongyun \(n\)-dimensional chaotic map with application in secure communication. (English) Zbl 1507.94013 Chaos Solitons Fractals 163, Article ID 112519, 11 p. (2022). MSC: 94A12 37E05 37N35 PDF BibTeX XML Cite \textit{W. Cao} et al., Chaos Solitons Fractals 163, Article ID 112519, 11 p. (2022; Zbl 1507.94013) Full Text: DOI
Karawanich, Khunanon; Prommee, Pipat High-complex chaotic system based on new nonlinear function and OTA-based circuit realization. (English) Zbl 1506.94102 Chaos Solitons Fractals 162, Article ID 112536, 23 p. (2022). MSC: 94C05 94C60 34C28 34C23 34D45 34H10 PDF BibTeX XML Cite \textit{K. Karawanich} and \textit{P. Prommee}, Chaos Solitons Fractals 162, Article ID 112536, 23 p. (2022; Zbl 1506.94102) Full Text: DOI
Zhou, Biliu; Jin, Yanfei; Xu, Huidong Global dynamics for a class of tristable system with negative stiffness. (English) Zbl 1506.34031 Chaos Solitons Fractals 162, Article ID 112509, 20 p. (2022). MSC: 34A36 34C37 70K55 34C23 34C15 PDF BibTeX XML Cite \textit{B. Zhou} et al., Chaos Solitons Fractals 162, Article ID 112509, 20 p. (2022; Zbl 1506.34031) Full Text: DOI
Lu, Kai; Xu, Wenjing; Yang, Ting; Xiang, Qiaomin Chaos emerges from coexisting homoclinic cycles for a class of 3D piecewise systems. (English) Zbl 1506.37046 Chaos Solitons Fractals 162, Article ID 112470, 11 p. (2022). MSC: 37D45 34C28 34C37 37C29 34D45 PDF BibTeX XML Cite \textit{K. Lu} et al., Chaos Solitons Fractals 162, Article ID 112470, 11 p. (2022; Zbl 1506.37046) Full Text: DOI
Sun, Xi; Yan, Shaohui; Zhang, Yuyan; Wang, Ertong; Wang, Qiyu; Gu, Binxian Bursting dynamics and the zero-Hopf bifurcation of simple jerk system. (English) Zbl 1506.94106 Chaos Solitons Fractals 162, Article ID 112455, 8 p. (2022). MSC: 94C05 34C23 37G10 34C60 34C28 34C29 PDF BibTeX XML Cite \textit{X. Sun} et al., Chaos Solitons Fractals 162, Article ID 112455, 8 p. (2022; Zbl 1506.94106) Full Text: DOI
Li, Jiayan; Cao, Jinde; Liu, Heng State observer-based fuzzy echo state network sliding mode control for uncertain strict-feedback chaotic systems without backstepping. (English) Zbl 1506.93039 Chaos Solitons Fractals 162, Article ID 112442, 11 p. (2022). MSC: 93C10 93C40 34H10 93C15 93B12 93B52 PDF BibTeX XML Cite \textit{J. Li} et al., Chaos Solitons Fractals 162, Article ID 112442, 11 p. (2022; Zbl 1506.93039) Full Text: DOI
Hermes, Joelson D. V.; dos Reis, Marcelo A.; Caldas, Iberê L.; Leonel, Edson D. Break-up of invariant curves in the Fermi-Ulam model. (English) Zbl 1506.70029 Chaos Solitons Fractals 162, Article ID 112410, 8 p. (2022). MSC: 70K55 70F99 PDF BibTeX XML Cite \textit{J. D. V. Hermes} et al., Chaos Solitons Fractals 162, Article ID 112410, 8 p. (2022; Zbl 1506.70029) Full Text: DOI
Cheng, Guanghui; Gui, Rong Bistable chaotic family and its chaotic mechanism. (English) Zbl 1506.34060 Chaos Solitons Fractals 162, Article ID 112407, 13 p. (2022). MSC: 34C28 34C15 37D45 PDF BibTeX XML Cite \textit{G. Cheng} and \textit{R. Gui}, Chaos Solitons Fractals 162, Article ID 112407, 13 p. (2022; Zbl 1506.34060) Full Text: DOI
Fernández, Diego S.; Seoane, Jesús M.; Sanjuán, Miguel A. F. Weak dissipation drives and enhances Wada basins in three-dimensional chaotic scattering. (English) Zbl 1506.37099 Chaos Solitons Fractals 156, Article ID 111891, 9 p. (2022). MSC: 37M05 37C70 37D45 70K55 65P20 PDF BibTeX XML Cite \textit{D. S. Fernández} et al., Chaos Solitons Fractals 156, Article ID 111891, 9 p. (2022; Zbl 1506.37099) Full Text: DOI arXiv
Ramamoorthy, Ramesh; Rajagopal, Karthikeyan; Leutcho, Gervais Dolvis; Krejcar, Ondrej; Namazi, Hamidreza; Hussain, Iqtadar Multistable dynamics and control of a new 4D memristive chaotic Sprott B system. (English) Zbl 1506.94104 Chaos Solitons Fractals 156, Article ID 111834, 16 p. (2022). MSC: 94C05 94C60 34C28 34D45 34C60 34C23 PDF BibTeX XML Cite \textit{R. Ramamoorthy} et al., Chaos Solitons Fractals 156, Article ID 111834, 16 p. (2022; Zbl 1506.94104) Full Text: DOI
Huang, Pengfei; Chai, Yi; Chen, Xiaolong Multiple dynamics analysis of Lorenz-family systems and the application in signal detection. (English) Zbl 1506.94013 Chaos Solitons Fractals 156, Article ID 111797, 18 p. (2022). MSC: 94A12 26A33 60G35 PDF BibTeX XML Cite \textit{P. Huang} et al., Chaos Solitons Fractals 156, Article ID 111797, 18 p. (2022; Zbl 1506.94013) Full Text: DOI
Galadí, J. A.; Soler-Toscano, F.; Langa, J. A. Model transform and local parameters. Application to instantaneous attractors. (English) Zbl 1505.37098 Chaos Solitons Fractals 159, Article ID 112094, 13 p. (2022). MSC: 37M22 37D45 PDF BibTeX XML Cite \textit{J. A. Galadí} et al., Chaos Solitons Fractals 159, Article ID 112094, 13 p. (2022; Zbl 1505.37098) Full Text: DOI
Lin, Xiaoran; Wang, Yachao; Wang, Jifang; Zeng, Wenxian Dynamic analysis and adaptive modified projective synchronization for systems with Atangana-Baleanu-Caputo derivative: a financial model with nonconstant demand elasticity. (English) Zbl 1504.91328 Chaos Solitons Fractals 160, Article ID 112269, 9 p. (2022). MSC: 91G45 37N40 91G80 26A33 PDF BibTeX XML Cite \textit{X. Lin} et al., Chaos Solitons Fractals 160, Article ID 112269, 9 p. (2022; Zbl 1504.91328) Full Text: DOI
Yan, Minxiu; Jie, Jingfeng Fractional-order multiwing switchable chaotic system with a wide range of parameters. (English) Zbl 1504.34150 Chaos Solitons Fractals 160, Article ID 112161, 13 p. (2022). MSC: 34H05 34A08 34H10 94A60 34D45 94C05 26A33 PDF BibTeX XML Cite \textit{M. Yan} and \textit{J. Jie}, Chaos Solitons Fractals 160, Article ID 112161, 13 p. (2022; Zbl 1504.34150) Full Text: DOI
Hu, Xiang; Yin, Zhixiang A study of the pulse propagation with a generalized Kudryashov equation. (English) Zbl 1504.35429 Chaos Solitons Fractals 161, Article ID 112379, 8 p. (2022). MSC: 35Q51 35C08 35Q55 PDF BibTeX XML Cite \textit{X. Hu} and \textit{Z. Yin}, Chaos Solitons Fractals 161, Article ID 112379, 8 p. (2022; Zbl 1504.35429) Full Text: DOI
Echenausía-Monroy, J. L.; Gilardi-Velázquez, H. E.; Wang, Ning; Jaimes-Reátegui, R.; García-López, J. H.; Huerta-Cuellar, G. Multistability route in a PWL multi-scroll system through fractional-order derivatives. (English) Zbl 1504.37100 Chaos Solitons Fractals 161, Article ID 112355, 9 p. (2022). MSC: 37N35 37D45 34A08 34D45 26A33 94C60 93C15 PDF BibTeX XML Cite \textit{J. L. Echenausía-Monroy} et al., Chaos Solitons Fractals 161, Article ID 112355, 9 p. (2022; Zbl 1504.37100) Full Text: DOI
Sun, Shuqi; Shi, Hang; Musha, Ji’e; Yan, Dengwei; Duan, Shukai; Wang, Lidan Design of heterogeneous time-lags system with multi-stability and its analog circuit. (English) Zbl 1504.94244 Chaos Solitons Fractals 161, Article ID 112331, 12 p. (2022). MSC: 94C05 94C60 93C15 PDF BibTeX XML Cite \textit{S. Sun} et al., Chaos Solitons Fractals 161, Article ID 112331, 12 p. (2022; Zbl 1504.94244) Full Text: DOI
Wang, Yang; Li, Huanyun; Guan, Yan; Chen, Mingshu Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs. (English) Zbl 1504.94245 Chaos Solitons Fractals 161, Article ID 112282, 12 p. (2022). MSC: 94C05 93D40 34H05 34D06 93C15 PDF BibTeX XML Cite \textit{Y. Wang} et al., Chaos Solitons Fractals 161, Article ID 112282, 12 p. (2022; Zbl 1504.94245) Full Text: DOI
Petráš, Ivo The fractional-order Lorenz-type systems: a review. (English) Zbl 1503.34030 Fract. Calc. Appl. Anal. 25, No. 2, 362-377 (2022). MSC: 34A08 26A33 PDF BibTeX XML Cite \textit{I. Petráš}, Fract. Calc. Appl. Anal. 25, No. 2, 362--377 (2022; Zbl 1503.34030) Full Text: DOI
Zhou, Biliu; Jin, Yanfei; Xu, Huidong Subharmonic resonance and chaos for a class of vibration isolation system with two pairs of oblique springs. (English) Zbl 1503.70017 Appl. Math. Modelling 108, 427-444 (2022). MSC: 70K55 34C15 34C60 70K30 PDF BibTeX XML Cite \textit{B. Zhou} et al., Appl. Math. Modelling 108, 427--444 (2022; Zbl 1503.70017) Full Text: DOI
Gonchenko, Aleksandr Sergeevich; Korotkov, Aleksandr Gennad’evich; Samylina, Evgeniya Aleksandrovna On a reversible three-dimensional system containing attractor and Lorenz repeller. (Russian. English summary) Zbl 1509.37039 Differ. Uravn. Protsessy Upr. 2022, No. 2, 187-204 (2022). MSC: 37D45 37G35 PDF BibTeX XML Cite \textit{A. S. Gonchenko} et al., Differ. Uravn. Protsessy Upr. 2022, No. 2, 187--204 (2022; Zbl 1509.37039) Full Text: Link
Gambuzza, Lucia Valentina; Di Patti, Francesca; Gallo, Luca; Lepri, Stefano; Romance, Miguel; Criado, Regino; Frasca, Mattia; Latora, Vito; Boccaletti, Stefano The master stability function for synchronization in simplicial complexes. (English) Zbl 1514.70018 Battiston, Federico (ed.) et al., Higher-order systems. Cham: Springer. Underst. Complex Syst., 249-267 (2022). MSC: 70F99 70G60 70K20 70K55 PDF BibTeX XML Cite \textit{L. V. Gambuzza} et al., in: Higher-order systems. Cham: Springer. 249--267 (2022; Zbl 1514.70018) Full Text: DOI arXiv
Xie, Hong-wei; Gao, Ya-jun; Liu, Xi-lin; Zhang, Jun; Zhang, Hao A novel exploiting modification direction scheme and its application in quantum color image steganography. (English) Zbl 1508.81778 Quantum Inf. Process. 21, No. 7, Paper No. 249, 19 p. (2022). MSC: 81P94 94A60 PDF BibTeX XML Cite \textit{H.-w. Xie} et al., Quantum Inf. Process. 21, No. 7, Paper No. 249, 19 p. (2022; Zbl 1508.81778) Full Text: DOI
Khan, Ayub; Khan, Nasreen; Chaudhary, Harindri; Nigar, Uzma Analysis and control of complex variable hyper-chaotic Robinovich system with fractional derivative. (English) Zbl 1514.34021 Int. J. Appl. Comput. Math. 8, No. 6, Paper No. 275, 23 p. (2022). MSC: 34A08 34A34 34C28 37D45 34D08 34C23 34D06 93B52 PDF BibTeX XML Cite \textit{A. Khan} et al., Int. J. Appl. Comput. Math. 8, No. 6, Paper No. 275, 23 p. (2022; Zbl 1514.34021) Full Text: DOI
Shi, Jinjing; Chen, Shuhui; Chen, Tian; Zhao, Tongge; Tang, Jiuqi; Li, Qin; Yu, Chunlin; Shi, Heyuan Image encryption with quantum cellular neural network. (English) Zbl 1508.81737 Quantum Inf. Process. 21, No. 6, Paper No. 214, 29 p. (2022). MSC: 81P94 81P45 PDF BibTeX XML Cite \textit{J. Shi} et al., Quantum Inf. Process. 21, No. 6, Paper No. 214, 29 p. (2022; Zbl 1508.81737) Full Text: DOI
Khan, Mubashar; Rasheed, Amer A fast quantum image encryption algorithm based on affine transform and fractional-order Lorenz-like chaotic dynamical system. (English) Zbl 1508.81303 Quantum Inf. Process. 21, No. 4, Paper No. 134, 34 p. (2022). MSC: 81P45 81P68 81P94 PDF BibTeX XML Cite \textit{M. Khan} and \textit{A. Rasheed}, Quantum Inf. Process. 21, No. 4, Paper No. 134, 34 p. (2022; Zbl 1508.81303) Full Text: DOI
Butler, Travis Herman; Georgiev, Georgi Yordanov Self-organization in stellar evolution: size-complexity rule. (English) Zbl 1515.85010 Georgiev, Georgi Yordanov (ed.) et al., Efficiency in complex systems. Self-organization towards increased efficiency. Based on the presentations at the conference on complex systems, Cancun, Mexico, 2017. Cham: Springer. Springer Proc. Complex., 53-80 (2022). MSC: 85A15 85A05 34C28 82C35 PDF BibTeX XML Cite \textit{T. H. Butler} and \textit{G. Y. Georgiev}, in: Efficiency in complex systems. Self-organization towards increased efficiency. Based on the presentations at the conference on complex systems, Cancun, Mexico, 2017. Cham: Springer. 53--80 (2022; Zbl 1515.85010) Full Text: DOI arXiv
Zhu, Lei; Pan, Minghai Hyperchaotic oscillation and multistability in a fourth order smooth Chua system with implementation using no analog multipliers. (English) Zbl 1509.34051 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 12, Article ID 2250185, 20 p. (2022). Reviewer: Yong Ye (Shenzhen) MSC: 34C60 94C60 34C28 34C23 34C05 34D45 PDF BibTeX XML Cite \textit{L. Zhu} and \textit{M. Pan}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 12, Article ID 2250185, 20 p. (2022; Zbl 1509.34051) Full Text: DOI
Zhou, Hao; Tang, Sanyi Complex dynamics and sliding bifurcations of the Filippov Lorenz-Chen system. (English) Zbl 07614851 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 12, Article ID 2250182, 29 p. (2022). MSC: 34A36 34C23 34C28 34D45 37D45 PDF BibTeX XML Cite \textit{H. Zhou} and \textit{S. Tang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 12, Article ID 2250182, 29 p. (2022; Zbl 07614851) Full Text: DOI
Hamoudi, Ahcene; Djeghali, Nadia; Bettayeb, Maamar High-order sliding mode-based synchronisation of fractional-order chaotic systems subject to output delay and unknown disturbance. (English) Zbl 1504.93331 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 53, No. 14, 2876-2900 (2022). MSC: 93D40 93B12 93B52 26A33 PDF BibTeX XML Cite \textit{A. Hamoudi} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 53, No. 14, 2876--2900 (2022; Zbl 1504.93331) Full Text: DOI
Wei, Chen-Guang; He, Yong; Shangguan, Xing-Chen; Fan, Yu-Long Master-slave synchronization for time-varying delay chaotic Lur’e systems based on the integral-term-related free-weighting-matrices technique. (English) Zbl 1501.93149 J. Franklin Inst. 359, No. 16, 9079-9093 (2022). MSC: 93D99 93C43 34H10 PDF BibTeX XML Cite \textit{C.-G. Wei} et al., J. Franklin Inst. 359, No. 16, 9079--9093 (2022; Zbl 1501.93149) Full Text: DOI
Xu, Changjin; Ur Rahman, Mati; Fatima, Bibi; Karaca, Yeliz Theoretical and numerical investigation of complexities in fractional-order chaotic system having torus attractors. (English) Zbl 07613779 Fractals 30, No. 7, Article ID 2250164, 13 p. (2022). MSC: 65Fxx 15-XX 65Yxx PDF BibTeX XML Cite \textit{C. Xu} et al., Fractals 30, No. 7, Article ID 2250164, 13 p. (2022; Zbl 07613779) Full Text: DOI
Tusset, A. M.; Filho, P. L. Paula; Piccirillo, V.; Lenzi, G. G.; Balthazar, Jose Manoel; Oliveira, C.; Varanis, M. Dynamic analysis and PID control of a double pendulum arm excited by a nonideal source. (English) Zbl 1504.70035 Balthazar, Jose Manoel (ed.), Nonlinear vibrations excited by limited power sources. Cham: Springer. Mech. Mach. Sci. 116, 343-356 (2022). MSC: 70Q05 70K55 93C15 34H10 PDF BibTeX XML Cite \textit{A. M. Tusset} et al., Mech. Mach. Sci. 116, 343--356 (2022; Zbl 1504.70035) Full Text: DOI
Babu, N. Ramesh; Balasubramaniam, P. Synchronization of a nine-dimensional stochastic time-delayed hyperchaotic system. (English) Zbl 1497.37041 J. Anal. 30, No. 4, 1509-1533 (2022). MSC: 37D45 37H05 93D20 PDF BibTeX XML Cite \textit{N. R. Babu} and \textit{P. Balasubramaniam}, J. Anal. 30, No. 4, 1509--1533 (2022; Zbl 1497.37041) Full Text: DOI
Lu, Kai; Xu, Wenjing Coexisting singular cycles in a class of three-dimensional three-zone piecewise affine systems. (English) Zbl 1507.34047 Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7315-7349 (2022). Reviewer: Kuilin Wu (Guiyang) MSC: 34C37 34A36 34C28 34C45 PDF BibTeX XML Cite \textit{K. Lu} and \textit{W. Xu}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7315--7349 (2022; Zbl 1507.34047) Full Text: DOI
Zheng, Hang; Xia, Yonghui Chaotic threshold of a class of hybrid piecewise-smooth system by an impulsive effect via Melnikov-type function. (English) Zbl 1506.34062 Discrete Contin. Dyn. Syst., Ser. B 27, No. 11, 6353-6371 (2022). Reviewer: Kuilin Wu (Guiyang) MSC: 34C28 34A36 34E15 34A37 34C23 37D45 65P20 34A38 34C37 PDF BibTeX XML Cite \textit{H. Zheng} and \textit{Y. Xia}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 11, 6353--6371 (2022; Zbl 1506.34062) Full Text: DOI
Folifack Signing, V. R.; Gakam Tegue, G. A.; Kountchou, M.; Njitacke, Z. T.; Tsafack, N.; Nkapkop, J. D. D.; Lessouga Etoundi, C. M.; Kengne, J. A cryptosystem based on a chameleon chaotic system and dynamic DNA coding. (English) Zbl 1498.94061 Chaos Solitons Fractals 155, Article ID 111777, 15 p. (2022). MSC: 94A60 92D20 PDF BibTeX XML Cite \textit{V. R. Folifack Signing} et al., Chaos Solitons Fractals 155, Article ID 111777, 15 p. (2022; Zbl 1498.94061) Full Text: DOI
Azam, Anam; Aqeel, Muhammad; Sunny, Danish Ali Generation of multidirectional mirror symmetric multiscroll chaotic attractors (MSMCA) in double wing satellite chaotic system. (English) Zbl 1498.34153 Chaos Solitons Fractals 155, Article ID 111715, 14 p. (2022). MSC: 34D45 37D45 70K55 PDF BibTeX XML Cite \textit{A. Azam} et al., Chaos Solitons Fractals 155, Article ID 111715, 14 p. (2022; Zbl 1498.34153) Full Text: DOI
da Costa, Diogo Ricardo; Fujita, André; Batista, Antonio Marcos; Sales, Matheus Rolim; Szezech, José Danilo jun. Conservative generalized bifurcation diagrams and phase space properties for oval-like billiards. (English) Zbl 1498.37046 Chaos Solitons Fractals 155, Article ID 111707, 8 p. (2022). MSC: 37C83 PDF BibTeX XML Cite \textit{D. R. da Costa} et al., Chaos Solitons Fractals 155, Article ID 111707, 8 p. (2022; Zbl 1498.37046) Full Text: DOI
Nóvoa, A.; Magri, L. Real-time thermoacoustic data assimilation. (English) Zbl 1521.76751 J. Fluid Mech. 948, Paper No. A35, 40 p. (2022). MSC: 76M99 76M35 76Q05 76N25 68T05 PDF BibTeX XML Cite \textit{A. Nóvoa} and \textit{L. Magri}, J. Fluid Mech. 948, Paper No. A35, 40 p. (2022; Zbl 1521.76751) Full Text: DOI arXiv
Khan, Ayub; Nigar, Uzma; Chaudhary, Harindri Secure communication and synchronization dynamics in chaotic Chua’s system via adaptive sliding mode control technique. (English) Zbl 1504.93200 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 170, 20 p. (2022). MSC: 93C40 93B12 93B53 34H10 26A33 PDF BibTeX XML Cite \textit{A. Khan} et al., Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 170, 20 p. (2022; Zbl 1504.93200) Full Text: DOI
Zhao, Manyu; Yang, Qigui; Zhang, Xu Dynamics of a class of Chua’s oscillator with a smooth periodic nonlinearity: occurrence of infinitely many attractors. (English) Zbl 1504.37041 Commun. Nonlinear Sci. Numer. Simul. 115, Article ID 106744, 19 p. (2022). MSC: 37D45 37C70 34C15 94C05 PDF BibTeX XML Cite \textit{M. Zhao} et al., Commun. Nonlinear Sci. Numer. Simul. 115, Article ID 106744, 19 p. (2022; Zbl 1504.37041) Full Text: DOI
Cang, Shijian; Zhao, Gehang; Wang, Zenghui; Chen, Zengqiang Global structures of clew-shaped conservative chaotic flows in a class of 3D one-thermostat systems. (English) Zbl 1498.34124 Chaos Solitons Fractals 154, Article ID 111687, 8 p. (2022). MSC: 34C28 PDF BibTeX XML Cite \textit{S. Cang} et al., Chaos Solitons Fractals 154, Article ID 111687, 8 p. (2022; Zbl 1498.34124) Full Text: DOI
Khan, Taqseer; Chaudhary, Harindri Adaptive controllability of microscopic chaos generated in chemical reactor system using anti-synchronization strategy. (English) Zbl 1493.93028 Numer. Algebra Control Optim. 12, No. 3, 611-620 (2022). MSC: 93C40 93B05 PDF BibTeX XML Cite \textit{T. Khan} and \textit{H. Chaudhary}, Numer. Algebra Control Optim. 12, No. 3, 611--620 (2022; Zbl 1493.93028) Full Text: DOI
Pawlak, Ryszard J. Chaotic points of multifunctions. (English) Zbl 1504.37023 Taiwanese J. Math. 26, No. 4, 799-830 (2022). MSC: 37B40 37B02 91A44 91A06 91A25 PDF BibTeX XML Cite \textit{R. J. Pawlak}, Taiwanese J. Math. 26, No. 4, 799--830 (2022; Zbl 1504.37023) Full Text: DOI Link
Grezina, Aleksandra Viktorovna; Metrikin, Vladimir Semenovich; Panasenko, Adol’f Grigor’evich A semi-analytical investigation into the dynamics of the abrasive machining of deep cylindrical holes accounting for the memory effects in the frictional interaction. (Russian. English summary) Zbl 1498.74060 Differ. Uravn. Protsessy Upr. 2022, No. 1, 88-101 (2022). MSC: 74M10 74H60 74H55 74H65 74S99 PDF BibTeX XML Cite \textit{A. V. Grezina} et al., Differ. Uravn. Protsessy Upr. 2022, No. 1, 88--101 (2022; Zbl 1498.74060) Full Text: Link
Alzaid, Sara S.; Chauhan, R. P.; Kumar, Sunil; Alkahtani, Badr Saad T. A high order numerical scheme for fractal-fractional laser system with chaos study. (English) Zbl 1504.34109 Fractals 30, No. 5, Article ID 2240183, 19 p. (2022). MSC: 34C60 78A60 34C28 65L05 34A08 34A45 PDF BibTeX XML Cite \textit{S. S. Alzaid} et al., Fractals 30, No. 5, Article ID 2240183, 19 p. (2022; Zbl 1504.34109) Full Text: DOI
Zhang, Lei; Ahmad, Shabir; Ullah, Aman; Akgül, Ali; Karatas Akgül, Esra Analysis of hidden attractors of non-equilibrium fractal-fractional chaotic system with one signum function. (English) Zbl 1504.34140 Fractals 30, No. 5, Article ID 2240139, 16 p. (2022). MSC: 34D45 34A36 34A08 34C28 47N20 34D10 28A80 PDF BibTeX XML Cite \textit{L. Zhang} et al., Fractals 30, No. 5, Article ID 2240139, 16 p. (2022; Zbl 1504.34140) Full Text: DOI
Yan, Shaohui; Wang, Ertong; Gu, Binxian; Wang, Qiyu; Ren, Yu; Wang, Jianjian Analysis and finite-time synchronization of a novel double-wing chaotic system with transient chaos. (English) Zbl 07568871 Physica A 602, Article ID 127652, 16 p. (2022). MSC: 82-XX PDF BibTeX XML Cite \textit{S. Yan} et al., Physica A 602, Article ID 127652, 16 p. (2022; Zbl 07568871) Full Text: DOI
Wang, Huanqing; Ai, Yingdong Adaptive fixed-time control and synchronization for hyperchaotic Lü systems. (English) Zbl 1510.93158 Appl. Math. Comput. 433, Article ID 127388, 19 p. (2022). MSC: 93C40 34C28 93D40 37D45 PDF BibTeX XML Cite \textit{H. Wang} and \textit{Y. Ai}, Appl. Math. Comput. 433, Article ID 127388, 19 p. (2022; Zbl 1510.93158) Full Text: DOI
Tiwari, Ankit; Roy, Binoy Krishna Compound chaotic systems with composite attractors. (English) Zbl 1503.34047 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 9, Article ID 2250139, 15 p. (2022). MSC: 34A34 34C28 34D45 92B20 34A36 PDF BibTeX XML Cite \textit{A. Tiwari} and \textit{B. K. Roy}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 9, Article ID 2250139, 15 p. (2022; Zbl 1503.34047) Full Text: DOI
Biswas, Namrata; Mohamed I, Raja DCSK performance analysis of a chaos-based communication using a newly designed chaotic system. (English) Zbl 07565167 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 3-4, 579-592 (2022). MSC: 94-XX 37-XX PDF BibTeX XML Cite \textit{N. Biswas} and \textit{R. Mohamed I}, Int. J. Nonlinear Sci. Numer. Simul. 23, No. 3--4, 579--592 (2022; Zbl 07565167) Full Text: DOI