×

On a character of the automorphism group of a compact complex manifold. (English) Zbl 0612.53044

Let h be a hermitian metric on a compact complex m-dimensional manifold M and let \(\gamma_ h\) be its Ricci curvature. If G is the group of automorphisms of M the author defines \(f: G\to R\) by \[ f(\sigma)=\int_ M\log \det (\sigma^*h)\sum^{m}_{k=0}\gamma^ k_ h\wedge \gamma_ h^{m-k},\quad \sigma \in G. \] He shows that f is independent of h and is a character, i.e. \(f(\sigma \tau)=f(\sigma)+f(\tau)\). If \(c_ 1(M)\leq 0\) then \(f=0\). The author shows that f may be not trivial if \(c_ 1(M)>0\). Finally he gives a formula for f in terms of the differential graded algebra \(WU_ m\) used in the definition of the secondary characteristic classes.
Reviewer: V.Oproiu

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
32Q99 Complex manifolds
57S25 Groups acting on specific manifolds
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Aubin, T.: Equations du type Monge-Ampère sur les variétés Kähleriennes compactes. C. R. Acad. Sci. Paris283A, 119-121 (1976) · Zbl 0333.53040
[2] Bando, S.: An obstruction for Chern class forms to be harmonic. Preprint Tohoku University · Zbl 1132.53313
[3] Bott, R.: On a topological obstruction to integrability. Proc. Symp. Pure Math.16, 127-131 (1970) · Zbl 0206.50501
[4] Bott, R.: On the Lefshetz formula and exotic characteristic classes. Symp. Math.10, 95-105 (1972) · Zbl 0254.57013
[5] Bott, R.: Lectures on characteristic classes and foliations. Lecture Notes in Math. vol. 279, pp. 1-94. Berlin-Heidelberg-New York: Springer 1972. · Zbl 0241.57010
[6] Bott, R.: On the characteristic classes of groups of diffeomorphisms. L’Enseignement Math.23, 209-220 (1977) · Zbl 0367.57004
[7] Calabi, E.: Extremal Kähler metrics II. Differential geometry and complex analysis. Chavel, I., Farkas, H.M. (eds.), pp. 95-114. Berlin-Heidelberg-New York: Springer 1985 · Zbl 0574.58006
[8] Futaki, A.: An obstruction to the existence of Einstein Kähler metrics. Invent. Math.73, 437-443 (1983) · Zbl 0514.53054 · doi:10.1007/BF01388438
[9] Futaki, A.: On compact Kähler manifolds of constant scalar curvature. Proc. Japan Acad. Ser. A59, 401-402 (1983) · Zbl 0539.53048 · doi:10.3792/pjaa.59.401
[10] Futaki, A., Morita, S.: Invariant polynomials of the automorphism group of a compact complex manifold. J. Differ. Geom.21, 135-142 (1985) · Zbl 0598.53055
[11] Kobayashi, S.: Transformation groups in differential geometry. Berlin-Heidelberg-New York: Springer 1972 · Zbl 0246.53031
[12] Yau, S.-T.: Calabi’s conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA74, 1798-1799, (1977) · Zbl 0355.32028 · doi:10.1073/pnas.74.5.1798
[13] Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I. Commun. Pure Appl. Math.31, 339-411 (1978) · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
[14] Mabuchi, T.:K-energy maps integrating Futaki invariants (to appear in Tohoku Math. J.) · Zbl 0619.53040
[15] Bando, S., Mabuchi, T.: Uniqueness of Einstein Kähler metrics modulo connected group actions (preprint) · Zbl 0641.53065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.