zbMATH — the first resource for mathematics

Multi-level models can benefit from minimizing higher-order variations: an illustration using child malnutrition data. (English) Zbl 07193771
Summary: This study aims to measure the robustness of multi-level models designed for three anthropometric indices – height-for-age (HAZ), weight-for-age (WAZ) and weight-for-height (WHZ) Z-scores for estimating the childhood malnutrition indicators stunting, underweight and wasting in Bangladesh. The 2011 BDHS child malnutrition data have been used in developing multi-level models with and without incorporating specific contextual variables relating to lower administrative units extracted from the 2011 Bangladesh Population and Housing Census. The robustness of the models is examined through (i) testing significance of random effects corresponding to lower administrative units through selection criteria including conditional AIC, R-squared, and LRT; (ii) comparing multi-level model-based estimators to design-based estimators of child malnutrition indicators with their precision at division, district and sub-district levels; and (iii) assessing the impact of contextual variables in capturing higher-order administrative level variations. Findings reveal that the inclusion of important contextual variables helps capture variations at higher-level administrative units, and consequently assists in the selection of robust multi-level models which ultimately provide improved accuracy of estimated parameters. The findings support the application of lower administrative census information in developing a simpler multi-level model by minimizing higher-order variation.
62 Statistics
Full Text: DOI
[1] Rahman A.Significant risk factors for childhood malnutrition: evidence from an Asian developing country. Sci J Public Health. 2016;4(1):16-27. [Google Scholar]
[2] Megabiaw B, Rahman A.Prevalence and determinants of chronic malnutrition among under-5 children in Ethiopia. Int J Child Health Nutr. 2013;2(3):230-236. [Google Scholar]
[3] Rahman A, Chaudhury S, Karim A, et al. Factors associated with nutritional status of children in Bangladesh: a multivariate analysis. Demog India. 2008;37(1):95-109. [Google Scholar]
[4] NIPORT, MA, ICFI. Bangladesh demographic and health survey 2014. Dhaka, Bangladesh and Calverton, Maryland, USA: National Institute of Population Research and Training (NIPORT), Mitra and Associates (MA), and ICF International (ICFI); 2016. [Google Scholar]
[5] UN. Sustainable development goals [Online]. United Nations; 2015 [cited 2017 Apr 28]. Available from: http://www.un.org/sustainabledevelopment/poverty/. [Google Scholar]
[6] Rahman A.Estimating small area health related characteristics of populations: a methodological review. Geospat Health. 2017;12(495):1-12. [Google Scholar]
[7] WHO. Global nutrition targets 2025, policy brief series. Geneva: World Health Organization; 2017. [Google Scholar]
[8] Haslett S, Jones G, Isidro M. Small-area estimation of child undernutrition in Bangladesh. Dhaka: Bangladesh Bureau of Statistics, United Nations World Food Programme and International Fund for Agricultural Development; 2014. [Google Scholar]
[9] Rahman A, Harding A, Tanton R, et al. Simulating the characteristics of populations at the small area level: new validation techniques for a spatial microsimulation model in Australia. Comput Stat Data Anal. 2013;57(1):149-165. doi: 10.1016/j.csda.2012.06.018[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1365.86023
[10] Elbers C, Lanjouw JO, Lanjouw P.Micro-level estimation of poverty and inequality. Econometrica. 2003;71(1):355-364. doi: 10.1111/1468-0262.00399[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1184.91163
[11] Elbers C, Van Der Weide R. Estimation of normal mixtures in a nested error model with an application to small area estimation of poverty and inequality. Washington (DC): The World Bank, World Bank Policy Research Working Paper, 6962; 2014. [Crossref], [Google Scholar]
[12] Rao JNK, Molina I. Small area estimation. New York: John Wiley & Sons; 2015. [Crossref], [Google Scholar]
[13] Das S, Chambers R.Robust mean-squared error estimation for poverty estimates based on the method of Elbers, Lanjouw and Lanjouw. J Roy Stat Soc Ser A. 2017;180(4):1137-1161. doi: 10.1111/rssa.12311[Crossref], [Web of Science ®], [Google Scholar]
[14] Haslett S.Small area estimation using both survey and census unit record data. In: Pratesi M, editor. Analysis of poverty data by small area estimation. New York: Wiley; 2016. p. 325-348. [Crossref], [Google Scholar]
[15] NIPORT, MA, ICFI. Bangladesh demographic and health survey 2011. Dhaka, Bangladesh and Calverton, Maryland, USA: National Institute of Population Research and Training (NIPORT), Mitra and Associates, and ICF International; 2013. [Google Scholar]
[16] WHO. WHO child growth standards: length/height for age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age, methods and development. Geneva: World Health Organization; 2006. [Google Scholar]
[17] BBS. Bangladesh population and housing census 2011. Dhaka: Bangladesh Bureau of Statistics; 2012. [Google Scholar]
[18] Rahman A, Upadhyay S.A Bayesian reweighting technique for small area estimation. In: Current trends in Bayesian methodology with applications. 24th ed. Florida: Chapman and Hall/CRC; 2015. p. 503-519. [Crossref], [Google Scholar]
[19] Pfeffermann D, Sverchkov M.Inference under informative sampling. In: Rao CR, editor. Handbook of statistics: sample surveys: inference and analysis. Cambridge: Elsevier; 2009. p. 455-487. [Crossref], [Google Scholar]
[20] Münnich R, Burgard JP.On the influence of sampling design on small area estimates. Indian Soc Agric Stat. 2012;66:145-156. [Google Scholar]
[21] Pfeffermann D, Sverchkov M.Small-area estimation under informative probability sampling of areas and within the selected areas. J Am Stat Assoc. 2007;102(480):1427-1439. doi: 10.1198/016214507000001094[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1333.62023
[22] Pfeffermann D.The role of sampling weights when modeling survey data. Int Stat Rev. 1993;61(2):317-337. doi: 10.2307/1403631[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0779.62009
[23] Pfeffermann D, Skinner CJ, Holmes DJ, et al. Weighting for unequal selection probabilities in multi-level models. J Roy Stat Soc Ser B. 1998;60(1):23-40. doi: 10.1111/1467-9868.00106[Crossref], [Google Scholar] · Zbl 0909.62006
[24] Asparouhov T.General multi-level modeling with sampling weights. Commun Stat Theory Method. 2006;35(2):439-460. doi: 10.1080/03610920500476598[Taylor & Francis Online], [Google Scholar] · Zbl 1084.62053
[25] Rahman A. A review of small area estimation problems and methodological developments [Online]. Discussion Paper Series: DP-66, NATSEM. University of Canberra; 2008. [Google Scholar]
[26] Rahman A, Harding A. Small area estimation and microsimulation modeling. Florida: Chapman and Hall/CRC; 2016. [Crossref], [Google Scholar] · Zbl 1353.62005
[27] Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. Abingdon: Taylor & Francis; 2003. [Google Scholar]
[28] Pinheiro J, Bates D. Mixed-effects models in S and S-PLUS. New York: Springer; 2006. [Google Scholar] · Zbl 0953.62065
[29] Fan J, Li R.Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc. 2001;96(456):1348-1360. doi: 10.1198/016214501753382273[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1073.62547
[30] Vaida F, Blanchard S.Conditional akaike information for mixed-effects models. Biometrika. 2005;92(2):351-370. doi: 10.1093/biomet/92.2.351[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1094.62077
[31] Greven S, Kneib T.On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika. 2010;97:773-789. doi: 10.1093/biomet/asq042[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1204.62114
[32] Särndal CE, Swensson B, Wretman J. Model assisted survey sampling. New York: Springer; 1992. [Crossref], [Google Scholar] · Zbl 0742.62008
[33] Tranmer M, Steel DG.Ignoring a level in a multi-level model: evidence from UK census data. Environ Plann A. 2001;33(5):941-948. doi: 10.1068/a3317[Crossref], [Web of Science ®], [Google Scholar]
[34] Rahman A, Harding A, Tanton R, et al. Methodological issues in spatial microsimulation modelling for small area estimation. Int J Microsimulation. 2010;3(2):3-22. [Google Scholar]
[35] Rahman A, Harding A. Some health related issues in Australia and methodologies for estimating small area health related characteristics. Canberra: NATSEM, University of Canberra, Online Working Paper Series: WP-15; 2010. [Google Scholar]
[36] Rahman A.Small area housing stress estimation in Australia: calculating confidence intervals for a spatial microsimulation model. Commun Stat Simul Comput. 2017;46(9):7466-7484. doi: 10.1080/03610918.2016.1241406[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1385.62002
[37] Bhowmik KR, Das, S.On selection of an appropriate logistic model to determine the risk factors of childhood stunting in Bangladesh. Matern Child Nutr. 2018;e12636. doi:10.1111/mcn.12636. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[38] Rahman A, Chowdhury S.Determinants of chronic malnutrition among preschool children in Bangladesh. J Biosoc Sci. 2007;39(2):161-173. doi: 10.1017/S0021932006001295[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[39] Rahman A, Chowdhury S, Hossain D.Acute malnutrition in Bangladeshi children: levels and determinants. Asia Pac J Public Health. 2009;21(3):294-302. doi: 10.1177/1010539509335399[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.