Gillespie, Maria Monks A combinatorial approach to Macdonald \(q, t\)-symmetry via the Carlitz bijection. (English. French summary) Zbl 1440.05202 Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4–8, 2016. Nancy: The Association. Discrete Mathematics & Theoretical Computer Science (DMTCS). Discrete Math. Theor. Comput. Sci., Proc., 563-574 (2020). MSC: 05E05 05E10 20C30 PDF BibTeX XML Cite \textit{M. M. Gillespie}, in: Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4--8, 2016. Nancy: The Association. Discrete Mathematics \& Theoretical Computer Science (DMTCS). 563--574 (2020; Zbl 1440.05202) Full Text: Link
Kaliszewski, Ryan; Morse, Jennifer Colorful combinatorics and Macdonald polynomials. (English) Zbl 1420.05180 Eur. J. Comb. 81, 354-377 (2019). MSC: 05E10 05A15 20C30 14N15 PDF BibTeX XML Cite \textit{R. Kaliszewski} and \textit{J. Morse}, Eur. J. Comb. 81, 354--377 (2019; Zbl 1420.05180) Full Text: DOI arXiv
Cain, Alan J.; Malheiro, António Combinatorics of cyclic shifts in plactic, hypoplactic, Sylvester, and related monoids. (English) Zbl 1405.05193 Brlek, Srečko (ed.) et al., Combinatorics on words. 11th international conference, WORDS 2017, Montréal, QC, Canada, September 11–15, 2017. Proceedings. Cham: Springer (ISBN 978-3-319-66395-1/pbk; 978-3-319-66396-8/ebook). Lecture Notes in Computer Science 10432, 190-202 (2017). MSC: 05E15 05E10 05C12 20M32 PDF BibTeX XML Cite \textit{A. J. Cain} and \textit{A. Malheiro}, Lect. Notes Comput. Sci. 10432, 190--202 (2017; Zbl 1405.05193) Full Text: DOI
Gillespie, Maria Monks A combinatorial approach to the \(q,t\)-symmetry relation in Macdonald polynomials. (English) Zbl 1337.05109 Electron. J. Comb. 23, No. 2, Research Paper P2.38, 64 p. (2016). MSC: 05E10 05E05 33D52 PDF BibTeX XML Cite \textit{M. M. Gillespie}, Electron. J. Comb. 23, No. 2, Research Paper P2.38, 64 p. (2016; Zbl 1337.05109) Full Text: Link arXiv
Descouens, Francois Ribbon tableaux, ribbon rigged configurations and Hall-Littlewood functions at roots of unity. (English) Zbl 1144.05071 J. Comb. Theory, Ser. A 115, No. 3, 361-375 (2008). Reviewer: M. Rafiq Omar (Bellville) MSC: 05E10 05E05 PDF BibTeX XML Cite \textit{F. Descouens}, J. Comb. Theory, Ser. A 115, No. 3, 361--375 (2008; Zbl 1144.05071) Full Text: DOI
Allen, Edward The decomposition of a bigraded left regular representation of the diagonal action of \(S_ n\). (English) Zbl 0826.05057 J. Comb. Theory, Ser. A 71, No. 1, 97-111 (1995). Reviewer: N.I.Osetinskii (Moskva) MSC: 05E10 20C10 PDF BibTeX XML Cite \textit{E. Allen}, J. Comb. Theory, Ser. A 71, No. 1, 97--111 (1995; Zbl 0826.05057) Full Text: DOI
Allen, Edward E. A conjecture of Procesi and a new basis for the decomposition of the graded left regular representation of \(S_ n\). (English) Zbl 0795.20006 Adv. Math. 100, No. 2, 262-292 (1993). Reviewer: D.M.Bressoud (St.Paul) MSC: 20C30 05E10 PDF BibTeX XML Cite \textit{E. E. Allen}, Adv. Math. 100, No. 2, 262--292 (1993; Zbl 0795.20006) Full Text: DOI