Zhao, Jing; Li, Yuan A new inertial self-adaptive algorithm for split common fixed-point problems. (English) Zbl 07312306 J. Nonlinear Var. Anal. 5, No. 1, 43-57 (2021). MSC: 47 46 PDF BibTeX XML Cite \textit{J. Zhao} and \textit{Y. Li}, J. Nonlinear Var. Anal. 5, No. 1, 43--57 (2021; Zbl 07312306) Full Text: Link
Taiwo, A.; Jolaoso, L. O.; Mewomo, O. T. Inertial-type algorithm for solving split common fixed point problems in Banach spaces. (English) Zbl 07301290 J. Sci. Comput. 86, No. 1, Paper No. 12, 30 p. (2021). MSC: 47H10 47J25 47N10 65J15 90C33 PDF BibTeX XML Cite \textit{A. Taiwo} et al., J. Sci. Comput. 86, No. 1, Paper No. 12, 30 p. (2021; Zbl 07301290) Full Text: DOI
Suparatulatorn, Raweerote; Charoensawan, Phakdi; Poochinapan, Kanyuta; Dangskul, Supreedee An algorithm for the split feasible problem and image restoration. (English) Zbl 07299282 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 12, 17 p. (2021). MSC: 47J25 47H10 65K10 PDF BibTeX XML Cite \textit{R. Suparatulatorn} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 12, 17 p. (2021; Zbl 07299282) Full Text: DOI
Tiwari, Rakesh; Thakur, Shashi Common fixed point theorem for pair of mappings satisfying common \((E.A)\)-property in complete metric spaces with application. (English) Zbl 07246100 Electron. J. Math. Analysis Appl. 9, No. 1, 334-342 (2021). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{R. Tiwari} and \textit{S. Thakur}, Electron. J. Math. Analysis Appl. 9, No. 1, 334--342 (2021; Zbl 07246100) Full Text: Link
Singh, Balbir; Gupta, Vishal; Kumar, Pawan Existence of fixed point of Meir Keeler type contractive condition in fuzzy metric spaces. (English) Zbl 07246089 Electron. J. Math. Analysis Appl. 9, No. 1, 216-225 (2021). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{B. Singh} et al., Electron. J. Math. Analysis Appl. 9, No. 1, 216--225 (2021; Zbl 07246089) Full Text: Link
Siva Prasad, N.; Ratna Babu, D.; Amarendra Babu, V. Common coupled fixed points of generalized contraction maps in \(b\)-metric spaces. (English) Zbl 07246082 Electron. J. Math. Analysis Appl. 9, No. 1, 131-150 (2021). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{N. Siva Prasad} et al., Electron. J. Math. Analysis Appl. 9, No. 1, 131--150 (2021; Zbl 07246082) Full Text: Link
Sharma, Varsha Common fixed point theorem in Menger space using \((CLRg)\) property. (English) Zbl 07246076 Electron. J. Math. Analysis Appl. 9, No. 1, 59-66 (2021). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{V. Sharma}, Electron. J. Math. Analysis Appl. 9, No. 1, 59--66 (2021; Zbl 07246076) Full Text: Link
Gharibi, R.; Jahedi, S. On the coincidence point in ordered partial metric spaces. (English) Zbl 07314262 J. Math. Ext. 14, No. 2, 1-14 (2020). MSC: 47H10 47J05 54H25 PDF BibTeX XML Cite \textit{R. Gharibi} and \textit{S. Jahedi}, J. Math. Ext. 14, No. 2, 1--14 (2020; Zbl 07314262) Full Text: Link
Tuyen, Truong Minh; Quy, Tran Xuan; Trang, Nguyen Minh A parallel iterative method for solving a class of variational inequalities in Hilbert spaces. (English) Zbl 07312296 J. Nonlinear Var. Anal. 4, No. 3, 357-376 (2020). MSC: 47 46 PDF BibTeX XML Cite \textit{T. M. Tuyen} et al., J. Nonlinear Var. Anal. 4, No. 3, 357--376 (2020; Zbl 07312296) Full Text: DOI
Saleh, Khairul; Fukhar-Ud-din, Hafiz Common fixed point of generalized asymptotic pointwise (quasi-) nonexpansive mappings in hyperbolic spaces. (English) Zbl 07312288 Korean J. Math. 28, No. 4, 915-929 (2020). MSC: 47H09 47H10 47J25 PDF BibTeX XML Cite \textit{K. Saleh} and \textit{H. Fukhar-Ud-din}, Korean J. Math. 28, No. 4, 915--929 (2020; Zbl 07312288) Full Text: DOI
Kumar, D. Ramesh; Madhu, V. Some common and coincidence fixed points of weakly compatible mappings in cone metric spaces. (English) Zbl 07303976 J. Adv. Math. Stud. 13, No. 3, 331-338 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{D. R. Kumar} and \textit{V. Madhu}, J. Adv. Math. Stud. 13, No. 3, 331--338 (2020; Zbl 07303976) Full Text: Link
Gautam, Pragati; Mishra, Vishnu Narayan; Negi, Komal Common fixed point theorems for cyclic Ćirić-Reich-Rus contraction mappings in quasi-partial \(b\)-metric space. (English) Zbl 07297271 Ann. Fuzzy Math. Inform. 20, No. 2, 149-156 (2020). MSC: 47H09 47H10 54H25 PDF BibTeX XML Cite \textit{P. Gautam} et al., Ann. Fuzzy Math. Inform. 20, No. 2, 149--156 (2020; Zbl 07297271) Full Text: DOI
Hu, Pin; Gu, Feng Some coupled coincidence point theorems in partially ordered Menger PSM-space. (Chinese. English summary) Zbl 07295987 Math. Appl. 33, No. 3, 733-746 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{P. Hu} and \textit{F. Gu}, Math. Appl. 33, No. 3, 733--746 (2020; Zbl 07295987)
Tao, Tao; Xue, Xifeng; Zhang, Xuezhi Some new fixed point theorems under \(F\)-contractive conditions in \({D^*}\)-metric spaces. (Chinese. English summary) Zbl 07295559 J. Northeast Norm. Univ., Nat. Sci. Ed. 52, No. 1, 26-30 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{T. Tao} et al., J. Northeast Norm. Univ., Nat. Sci. Ed. 52, No. 1, 26--30 (2020; Zbl 07295559) Full Text: DOI
Sun, Yuxin; Gu, Feng Common fixed point theorems for converse commuting mappings in \(S\)-metric spaces. (English) Zbl 07295287 J. Hangzhou Norm. Univ., Nat. Sci. 19, No. 4, 405-409 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{Y. Sun} and \textit{F. Gu}, J. Hangzhou Norm. Univ., Nat. Sci. 19, No. 4, 405--409 (2020; Zbl 07295287) Full Text: DOI
Zhang, Shuyi; Nie, Hui Fixed point theorems for a class of mapping in non-Archimedes Menger probability \(n\)-metric spaces. (English) Zbl 07295172 J. Beihua Univ., Nat. Sci. 21, No. 4, 427-433 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{H. Nie}, J. Beihua Univ., Nat. Sci. 21, No. 4, 427--433 (2020; Zbl 07295172) Full Text: DOI
Wang, Yamin; Sai, Pengfei Common fixed point theorems for generalized cyclic contraction pairs in \({b_2}\)-metric spaces. (English) Zbl 07295055 Chin. Q. J. Math. 35, No. 1, 63-76 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{P. Sai}, Chin. Q. J. Math. 35, No. 1, 63--76 (2020; Zbl 07295055) Full Text: DOI
Sow, T. M. M. A new iterative method based on the modified proximal-point algorithm for finding a common null point of an infinite family of accretive operators in Banach spaces. (English) Zbl 07289312 Cubo 22, No. 2, 155-175 (2020). MSC: 47H06 47H09 47H10 PDF BibTeX XML Cite \textit{T. M. M. Sow}, Cubo 22, No. 2, 155--175 (2020; Zbl 07289312) Full Text: DOI
Ardsalee, Pinya; Saejung, Satit Some common best proximity point theorems via a fixed point theorem in metric spaces. (English) Zbl 07285134 Fixed Point Theory 21, No. 2, 413-426 (2020). MSC: 47H10 47H09 PDF BibTeX XML Cite \textit{P. Ardsalee} and \textit{S. Saejung}, Fixed Point Theory 21, No. 2, 413--426 (2020; Zbl 07285134) Full Text: Link
Hong, Yumin; Liu, Yanyan; Yang, Liping Some common fixed point theorems of expanding mappings in cone metric spaces over Banach algebras. (English) Zbl 07274324 J. Adv. Math. Stud. 13, No. 2, 215-228 (2020). MSC: 47H09 47H10 47J20 PDF BibTeX XML Cite \textit{Y. Hong} et al., J. Adv. Math. Stud. 13, No. 2, 215--228 (2020; Zbl 07274324) Full Text: Link
Babaei, Reza; Rahimi, Hamidreza; Soleimani Rad, Ghasem Weakly compatible mappings with respect to a generalized \(c\)-distance and common fixed point results. (English) Zbl 07273123 Cogent Math. Stat. 7, Article ID 1833427, 10 p. (2020). MSC: 54H 47H PDF BibTeX XML Cite \textit{R. Babaei} et al., Cogent Math. Stat. 7, Article ID 1833427, 10 p. (2020; Zbl 07273123) Full Text: DOI
Fabiano, Nicola; Parvaneh, Vahid; Mirković, Dušica; Paunović, Ljiljana; Radenović, Stojan On W-contractions of Jungck-Ćirić-Wardowski-type in metric spaces. (English) Zbl 07273117 Cogent Math. Stat. 7, Article ID 1792699, 1 p. (2020). MSC: 54H 47H PDF BibTeX XML Cite \textit{N. Fabiano} et al., Cogent Math. Stat. 7, Article ID 1792699, 1 p. (2020; Zbl 07273117) Full Text: DOI
Tao, Tao; Xue, Xifeng Cone \({\mathrm{D}^*}\)-metric spaces over Banach algebras and common fixed point theorems. (Chinese. English summary) Zbl 07267505 Pure Appl. Math. 36, No. 1, 58-66 (2020). MSC: 54E35 47H10 54H25 PDF BibTeX XML Cite \textit{T. Tao} and \textit{X. Xue}, Pure Appl. Math. 36, No. 1, 58--66 (2020; Zbl 07267505) Full Text: DOI
Rehman, Saif Ur; Jabeen, Shamoona; Abbas, Fatima; Ullah, Hayat; Khan, Ihsan Common fixed point theorems for compatible and weakly compatible maps in fuzzy cone metric spaces. (English) Zbl 1444.54037 Ann. Fuzzy Math. Inform. 19, No. 1, 1-19 (2020). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. U. Rehman} et al., Ann. Fuzzy Math. Inform. 19, No. 1, 1--19 (2020; Zbl 1444.54037) Full Text: DOI
Prajisha, E.; Shaini, P. Coupled coincidence point theorems of mappings in partially ordered metric spaces. (English) Zbl 07261894 J. Nonlinear Anal. Optim. 11, No. 1, 29-40 (2020). MSC: 47H10 54F05 PDF BibTeX XML Cite \textit{E. Prajisha} and \textit{P. Shaini}, J. Nonlinear Anal. Optim. 11, No. 1, 29--40 (2020; Zbl 07261894) Full Text: Link
Rashwan, R. A.; Mahmoud, M. G. Common fixed point theorems for weakly compatible self-mappings under contraction conditions in complex valued b-metric spaces. (English) Zbl 1452.54035 Palest. J. Math. 9, No. 2, 749-760 (2020). MSC: 54H25 PDF BibTeX XML Cite \textit{R. A. Rashwan} and \textit{M. G. Mahmoud}, Palest. J. Math. 9, No. 2, 749--760 (2020; Zbl 1452.54035) Full Text: Link
Prommai, Tanaphong; Kaewkhao, Attapol; Inthakon, Warunun Common fixed point theorems for firmly nonspreading mappings and quasi-nonexpansive mappings in CAT(0) spaces. (English) Zbl 07256141 Thai J. Math., Spec. Iss.: Annual Meeting in Mathematics 2019, 293-301 (2020). MSC: 47H05 47H09 47H10 47J25 PDF BibTeX XML Cite \textit{T. Prommai} et al., Thai J. Math. , 293--301 (2020; Zbl 07256141) Full Text: Link
Khemphet, Anchalee The existence theorem for a coincidence point of some admissible contraction mappings in a generalized metric space. (English) Zbl 07256135 Thai J. Math., Spec. Iss.: Annual Meeting in Mathematics 2019, 223-235 (2020). MSC: 47H04 47H10 PDF BibTeX XML Cite \textit{A. Khemphet}, Thai J. Math. , 223--235 (2020; Zbl 07256135) Full Text: Link
Niyamosot, Nutchari; Inthakon, Warunun Strong convergence of the shrinking projection method for the split equilibrium problem and an infinite family of relatively nonexpansive mappings in Banach spaces. (English) Zbl 07256133 Thai J. Math., Spec. Iss.: Annual Meeting in Mathematics 2019, 191-205 (2020). MSC: 47H05 47H09 47H10 47J25 PDF BibTeX XML Cite \textit{N. Niyamosot} and \textit{W. Inthakon}, Thai J. Math. , 191--205 (2020; Zbl 07256133) Full Text: Link
Morales, J. R.; Rojas, E. M. Generalized \(\Psi\)-Geraghty-quasi contractions in \(b\)-metric spaces. (English) Zbl 07254899 Miskolc Math. Notes 21, No. 1, 273-286 (2020). MSC: 47H09 47H10 54H25 54E18 PDF BibTeX XML Cite \textit{J. R. Morales} and \textit{E. M. Rojas}, Miskolc Math. Notes 21, No. 1, 273--286 (2020; Zbl 07254899) Full Text: DOI
El Harrak, Meryeme; Hajji, Ahmed Common fixed point theorems for two and three mappings. (English) Zbl 07254122 Fixed Point Theory Appl. 2020, Paper No. 11, 11 p. (2020). MSC: 47H08 47H10 PDF BibTeX XML Cite \textit{M. El Harrak} and \textit{A. Hajji}, Fixed Point Theory Appl. 2020, Paper No. 11, 11 p. (2020; Zbl 07254122) Full Text: DOI
Jolaoso, Lateef Olakunle; Aphane, Maggie A self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems. (English) Zbl 07254120 Fixed Point Theory Appl. 2020, Paper No. 9, 22 p. (2020). MSC: 65K15 47J25 65J15 90C33 PDF BibTeX XML Cite \textit{L. O. Jolaoso} and \textit{M. Aphane}, Fixed Point Theory Appl. 2020, Paper No. 9, 22 p. (2020; Zbl 07254120) Full Text: DOI
Ansari, A. H.; Popa, Valeriu; Singh, Y. Mahendra; Khan, M. S. Fixed point theorems of an implicit relation via \(\mathcal{C}\)-class function in metric spaces. (English) Zbl 07249078 J. Adv. Math. Stud. 13, No. 1, 1-10 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{A. H. Ansari} et al., J. Adv. Math. Stud. 13, No. 1, 1--10 (2020; Zbl 07249078)
Bhutia, Jigmi Dorjee; Tiwary, Kalishankar Common fixed points theorem for four mappings on metric space satisfying contractive conditions of integral type. (English) Zbl 07246069 Electron. J. Math. Analysis Appl. 8, No. 2, 326-345 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{J. D. Bhutia} and \textit{K. Tiwary}, Electron. J. Math. Analysis Appl. 8, No. 2, 326--345 (2020; Zbl 07246069) Full Text: Link
Rashid, M. H. M.; Almahadin, S. A. Common fixed point theorem for occasionally weakly compatible mappings in probabilistic metric spaces. (English) Zbl 07246064 Electron. J. Math. Analysis Appl. 8, No. 2, 261-271 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{M. H. M. Rashid} and \textit{S. A. Almahadin}, Electron. J. Math. Analysis Appl. 8, No. 2, 261--271 (2020; Zbl 07246064) Full Text: Link
Sharma, Varsha Common fixed point theorems satisfying a contractive condition of integral type. (English) Zbl 07246062 Electron. J. Math. Analysis Appl. 8, No. 2, 244-250 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{V. Sharma}, Electron. J. Math. Analysis Appl. 8, No. 2, 244--250 (2020; Zbl 07246062) Full Text: Link
Sarkar, Krishnadhan Some common fixed point theorem in metric spaces of Fisher and Sessa. (English) Zbl 07246042 Electron. J. Math. Analysis Appl. 8, No. 2, 10-15 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{K. Sarkar}, Electron. J. Math. Analysis Appl. 8, No. 2, 10--15 (2020; Zbl 07246042) Full Text: Link
Swamy, K. Kumara; Phaneendra, T. Common coupled fixed point in a partially ordered \(b\)-metric space. (English) Zbl 1446.54032 Nonlinear Funct. Anal. Appl. 25, No. 2, 371-382 (2020). MSC: 54H25 PDF BibTeX XML Cite \textit{K. K. Swamy} and \textit{T. Phaneendra}, Nonlinear Funct. Anal. Appl. 25, No. 2, 371--382 (2020; Zbl 1446.54032) Full Text: Link
Saluja, G. S.; Kim, Jong Kyu Convergence analysis for total asymptotically nonexpansive mappings in convex metric spaces with applications. (English) Zbl 1446.47078 Nonlinear Funct. Anal. Appl. 25, No. 2, 231-247 (2020). MSC: 47J25 47H09 54H25 54E40 PDF BibTeX XML Cite \textit{G. S. Saluja} and \textit{J. K. Kim}, Nonlinear Funct. Anal. Appl. 25, No. 2, 231--247 (2020; Zbl 1446.47078) Full Text: Link
Mishra, Urmila; Ranadive, Abhay S.; Dubey, A. K.; Lim, Won Hee Common fixed point of absorbing mapping satisfying implicit relation. (English) Zbl 1440.54038 Nonlinear Funct. Anal. Appl. 25, No. 1, 117-126 (2020). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{U. Mishra} et al., Nonlinear Funct. Anal. Appl. 25, No. 1, 117--126 (2020; Zbl 1440.54038) Full Text: Link
Liu, Zeqing; Meng, Lei; Liu, Na; Jung, Chahn Yong Common fixed point theorems for a pair of mappings satisfying contractive inequalities of integral type. (English) Zbl 1446.54027 Nonlinear Funct. Anal. Appl. 25, No. 1, 69-100 (2020). MSC: 54H25 PDF BibTeX XML Cite \textit{Z. Liu} et al., Nonlinear Funct. Anal. Appl. 25, No. 1, 69--100 (2020; Zbl 1446.54027) Full Text: Link
Abbas, Mujahid; Shatanawi, Wasfi; Farooq, Sadia; Mitrović, Zoran D. On a JH-operators pair of type (A) with applications to integral equations. (English) Zbl 07240946 J. Fixed Point Theory Appl. 22, No. 3, Paper No. 72, 24 p. (2020). MSC: 47H10 55M20 PDF BibTeX XML Cite \textit{M. Abbas} et al., J. Fixed Point Theory Appl. 22, No. 3, Paper No. 72, 24 p. (2020; Zbl 07240946) Full Text: DOI
Kesahorm, Thitima; Sintunavarat, Wutiphol Existence and convergence theorems concerning common fixed points of nonlinear semigroups of weak contractions. (English) Zbl 07240944 J. Fixed Point Theory Appl. 22, No. 3, Paper No. 70, 19 p. (2020). MSC: 47H06 47J20 47J25 PDF BibTeX XML Cite \textit{T. Kesahorm} and \textit{W. Sintunavarat}, J. Fixed Point Theory Appl. 22, No. 3, Paper No. 70, 19 p. (2020; Zbl 07240944) Full Text: DOI
Tao, Tao; Xue, Xifeng Some new fixed point theorems for pairs of sub-compatible maps in \({D^*}\)-metric spaces. (Chinese. English summary) Zbl 07235296 J. Yunnan Univ., Nat. Sci. 42, No. 1, 1-5 (2020). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{T. Tao} and \textit{X. Xue}, J. Yunnan Univ., Nat. Sci. 42, No. 1, 1--5 (2020; Zbl 07235296) Full Text: DOI
Sun, Yuxin; Gu, Feng A new common fixed point theorem for \(R\)-weakly commuting mappings in the \(S\)-metric space. (Chinese. English summary) Zbl 07234809 J. Hangzhou Norm. Univ., Nat. Sci. 19, No. 1, 71-75 (2020). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{Y. Sun} and \textit{F. Gu}, J. Hangzhou Norm. Univ., Nat. Sci. 19, No. 1, 71--75 (2020; Zbl 07234809) Full Text: DOI
Nie, Hui; Zhang, Shuyi Common fixed point theorems for a class of integral Altman type mapping with applications. (Chinese. English summary) Zbl 07234795 J. Guangxi Norm. Univ., Nat. Sci. 38, No. 1, 60-69 (2020). MSC: 54H25 54E40 54E70 90C39 PDF BibTeX XML Cite \textit{H. Nie} and \textit{S. Zhang}, J. Guangxi Norm. Univ., Nat. Sci. 38, No. 1, 60--69 (2020; Zbl 07234795) Full Text: DOI
Khan, Muhammad Aqeel Ahmad; Cholamjiak, Prasit A multi-step approximant for fixed point problem and convex optimization problem in Hadamard spaces. (English) Zbl 1443.47066 J. Fixed Point Theory Appl. 22, No. 3, Paper No. 62, 17 p. (2020). MSC: 47J25 47H09 90C48 54H25 90C25 PDF BibTeX XML Cite \textit{M. A. A. Khan} and \textit{P. Cholamjiak}, J. Fixed Point Theory Appl. 22, No. 3, Paper No. 62, 17 p. (2020; Zbl 1443.47066) Full Text: DOI
Reich, Simeon; Tuyen, Truong Minh Two projection algorithms for solving the split common fixed point problem. (English) Zbl 07220280 J. Optim. Theory Appl. 186, No. 1, 148-168 (2020). MSC: 47H05 47H09 49J53 90C25 PDF BibTeX XML Cite \textit{S. Reich} and \textit{T. M. Tuyen}, J. Optim. Theory Appl. 186, No. 1, 148--168 (2020; Zbl 07220280) Full Text: DOI
Gebru, Yohannes; Sarma, K. K. M. Common best proximity points for generalized proximal \(C\)-contraction mappings. (English) Zbl 1442.54035 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 4, 245-264 (2020). MSC: 54H25 11J83 PDF BibTeX XML Cite \textit{Y. Gebru} and \textit{K. K. M. Sarma}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 4, 245--264 (2020; Zbl 1442.54035) Full Text: Link
Kumar, Santosh; Rugumisa, Terentius Common fixed points of non-self mappings satisfying implicit relations in partial metric spaces. (English) Zbl 07220223 J. Anal. 28, No. 2, 363-375 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{T. Rugumisa}, J. Anal. 28, No. 2, 363--375 (2020; Zbl 07220223) Full Text: DOI
Fukhar-ud-din, Hafiz; Khan, Abdul Rahim Strong and \(\triangle\)-convergence of Moudafi’s iterative algorithm for generalized nonexpansive mappings in convex metric spaces. (English) Zbl 1442.47046 Rend. Circ. Mat. Palermo (2) 69, No. 2, 547-559 (2020). MSC: 47J25 47H09 54H25 54E40 PDF BibTeX XML Cite \textit{H. Fukhar-ud-din} and \textit{A. R. Khan}, Rend. Circ. Mat. Palermo (2) 69, No. 2, 547--559 (2020; Zbl 1442.47046) Full Text: DOI
Rugumisa, Terentius; Kumar, Santosh; Imdad, Mohammad Common fixed points for four non-self mappings in partial metric spaces. (English) Zbl 07217179 Math. Bohem. 145, No. 1, 45-63 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{T. Rugumisa} et al., Math. Bohem. 145, No. 1, 45--63 (2020; Zbl 07217179) Full Text: DOI
Ahmad, F.; Shehu Shagari, M.; Azam, A. Multi-valued fixed point theorems in complex valued \(b\)-metric spaces. (English) Zbl 07216320 J. Linear Topol. Algebra 9, No. 1, 75-94 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{F. Ahmad} et al., J. Linear Topol. Algebra 9, No. 1, 75--94 (2020; Zbl 07216320) Full Text: Link
Khan, Abdul Rahim; Oyetunbi, Dolapo Muhammed On some mappings with a unique common fixed point. (English) Zbl 1442.54039 J. Fixed Point Theory Appl. 22, No. 2, Paper No. 47, 7 p. (2020). Reviewer: Jarosław Górnicki (Rzeszów) MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{A. R. Khan} and \textit{D. M. Oyetunbi}, J. Fixed Point Theory Appl. 22, No. 2, Paper No. 47, 7 p. (2020; Zbl 1442.54039) Full Text: DOI
Işık, Hüseyin; Park, Choonkil Existence of a common solution to systems of integral equations via fixed point results. (English) Zbl 1435.54024 Open Math. 18, 249-261 (2020). MSC: 54H25 54E40 54E50 54F05 45G15 PDF BibTeX XML Cite \textit{H. Işık} and \textit{C. Park}, Open Math. 18, 249--261 (2020; Zbl 1435.54024) Full Text: DOI
Panwar, Anju; Anita Metric-like space and Suzuki type common fixed point results with (W.C.C) condition. (English) Zbl 07210522 Asian-Eur. J. Math. 13, No. 3, Article ID 2050066, 18 p. (2020). MSC: 47H10 54H25 54E50 PDF BibTeX XML Cite \textit{A. Panwar} and \textit{Anita}, Asian-Eur. J. Math. 13, No. 3, Article ID 2050066, 18 p. (2020; Zbl 07210522) Full Text: DOI
Taiwo, A.; Jolaoso, L. O.; Mewomo, O. T. General alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spaces. (English) Zbl 1439.47056 Ric. Mat. 69, No. 1, 235-259 (2020). MSC: 47J26 47H09 47N10 65J15 90C33 PDF BibTeX XML Cite \textit{A. Taiwo} et al., Ric. Mat. 69, No. 1, 235--259 (2020; Zbl 1439.47056) Full Text: DOI
Takahashi, Wataru; Wen, Ching-Feng; Yao, Jen-Chih The split common fixed point problem by the hybrid method for families of new demimetric mappings in Banach spaces. (English) Zbl 1445.47049 J. Convex Anal. 27, No. 2, 623-644 (2020). MSC: 47J26 47H05 47H09 PDF BibTeX XML Cite \textit{W. Takahashi} et al., J. Convex Anal. 27, No. 2, 623--644 (2020; Zbl 1445.47049) Full Text: Link
Cholamjiak, Watcharaporn; Khan, Suhel Ahmad; Yambangwai, Damrongsak; Kazmi, Kaleem Raza Strong convergence analysis of common variational inclusion problems involving an inertial parallel monotone hybrid method for a novel application to image restoration. (English) Zbl 1443.47055 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 99, 20 p. (2020). MSC: 47J22 47J25 47H05 47N10 68U10 PDF BibTeX XML Cite \textit{W. Cholamjiak} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 99, 20 p. (2020; Zbl 1443.47055) Full Text: DOI
Sow, Thierno M. M. An algorithm to solve equilibrium problems and fixed points problems involving a finite family of multivalued strictly pseudo-contractive mappings. (English) Zbl 07190902 Vietnam J. Math. 48, No. 1, 171-186 (2020). Reviewer: Vasile Berinde (Baia Mare) MSC: 47H05 47J05 47J25 PDF BibTeX XML Cite \textit{T. M. M. Sow}, Vietnam J. Math. 48, No. 1, 171--186 (2020; Zbl 07190902) Full Text: DOI
Abbas, Mujahid; Nazir, Talat; Rakočević, Vladimir Common fixed points of family of multivalued F-contraction mappings on ordered metric spaces. (English) Zbl 1437.54033 Vietnam J. Math. 48, No. 1, 11-21 (2020). MSC: 54H25 54E40 54E50 54F05 PDF BibTeX XML Cite \textit{M. Abbas} et al., Vietnam J. Math. 48, No. 1, 11--21 (2020; Zbl 1437.54033) Full Text: DOI
Reich, Simeon; Truong Minh Tuyen; Nguyen Minh Trang Parallel iterative methods for solving the split common fixed point problem in Hilbert spaces. (English) Zbl 1442.47064 Numer. Funct. Anal. Optim. 41, No. 7, 778-805 (2020). MSC: 47J26 47H05 47H09 49J53 90C25 PDF BibTeX XML Cite \textit{S. Reich} et al., Numer. Funct. Anal. Optim. 41, No. 7, 778--805 (2020; Zbl 1442.47064) Full Text: DOI
Taiwo, A.; Jolaoso, L. O.; Mewomo, O. T. Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems. (English) Zbl 07179253 Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1893-1918 (2020). MSC: 47H10 47J25 47N10 65J15 90C33 PDF BibTeX XML Cite \textit{A. Taiwo} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1893--1918 (2020; Zbl 07179253) Full Text: DOI
Sow, Thierno M. M. A new iterative technique for solving fixed point problem involving quasi-nonexpansive and firmly nonexpansive mappings. (English) Zbl 07175533 Funct. Anal. Approx. Comput. 12, No. 1, 51-59 (2020). MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{T. M. M. Sow}, Funct. Anal. Approx. Comput. 12, No. 1, 51--59 (2020; Zbl 07175533) Full Text: Link
Lau, Anthony To-Ming; Zhang, Yong Algebraic and analytic properties of semigroups related to fixed point properties of non-expansive mappings. (English) Zbl 07169445 Semigroup Forum 100, No. 1, 77-102 (2020). MSC: 20M PDF BibTeX XML Cite \textit{A. T. M. Lau} and \textit{Y. Zhang}, Semigroup Forum 100, No. 1, 77--102 (2020; Zbl 07169445) Full Text: DOI
Suparatulatorn, Raweerote; Cholamjiak, Prasit; Suantai, Suthep Self-adaptive algorithms with inertial effects for solving the split problem of the demicontractive operators. (English) Zbl 07164433 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 1, Paper No. 40, 16 p. (2020). MSC: 47J25 47H10 65K10 PDF BibTeX XML Cite \textit{R. Suparatulatorn} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 1, Paper No. 40, 16 p. (2020; Zbl 07164433) Full Text: DOI
Shatanawi, W.; Abodayeh, K. Some fixed and common fixed point results in \(G\)-metric spaces which can’t be obtained from metric spaces. (English) Zbl 1431.54040 Bol. Soc. Parana. Mat. (3) 38, No. 6, 43-51 (2020). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{W. Shatanawi} and \textit{K. Abodayeh}, Bol. Soc. Parana. Mat. (3) 38, No. 6, 43--51 (2020; Zbl 1431.54040) Full Text: Link
Alfaqih, Waleed Mohd.; Imdad, Mohammad; Rouzkard, Fayyaz Unified common fixed point theorems in complex valued metric spaces via an implicit relation with applications. (English) Zbl 1431.54023 Bol. Soc. Parana. Mat. (3) 38, No. 4, 9-29 (2020). MSC: 54H25 54E40 45G10 PDF BibTeX XML Cite \textit{W. Mohd. Alfaqih} et al., Bol. Soc. Parana. Mat. (3) 38, No. 4, 9--29 (2020; Zbl 1431.54023) Full Text: Link
Morales, José R.; Rojas, Edixon M.; Bisht, R. K. Generalized contraction mappings of rational type and applications to nonlinear integral equations. (English) Zbl 1431.54032 Bol. Soc. Parana. Mat. (3) 38, No. 1, 131-149 (2020). MSC: 54H25 54E40 45G10 PDF BibTeX XML Cite \textit{J. R. Morales} et al., Bol. Soc. Parana. Mat. (3) 38, No. 1, 131--149 (2020; Zbl 1431.54032) Full Text: Link
Sastry, K. P. R.; Kameswari, M. V. R.; Kiran, D. M. K. Common fixed point theorems for generalized TAC contraction condition in b-metric spaces. (English) Zbl 07158114 Palest. J. Math. 9, No. 1, 354-370 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{K. P. R. Sastry} et al., Palest. J. Math. 9, No. 1, 354--370 (2020; Zbl 07158114) Full Text: Link
Tomar, Anita; Sharma, Ritu; Ansari, Arslan Hojat Strict coincidence and common strict fixed point of a faintly compatible hybrid pair of maps via \(C\)-class function and applications. (English) Zbl 1443.54019 Palest. J. Math. 9, No. 1, 274-288 (2020). Reviewer: Ravindra Kishor Bisht (Pune) MSC: 54H25 54E40 54C60 47N20 PDF BibTeX XML Cite \textit{A. Tomar} et al., Palest. J. Math. 9, No. 1, 274--288 (2020; Zbl 1443.54019) Full Text: Link
Zhu, Yue; Xiao, Jian-Zhong Strong convergence of viscosity iterations with error terms for cosine families in Banach spaces. (English) Zbl 07157704 Adv. Oper. Theory 5, No. 1, 1-14 (2020). MSC: 47H10 47D09 65J05 PDF BibTeX XML Cite \textit{Y. Zhu} and \textit{J.-Z. Xiao}, Adv. Oper. Theory 5, No. 1, 1--14 (2020; Zbl 07157704) Full Text: DOI
Singh, K. Anthony; Singh, M. R. Common fixed points in complex valued \(A_b\)-metric space. (English) Zbl 1449.54095 Electron. J. Math. Analysis Appl. 8, No. 1, 27-36 (2020). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{K. A. Singh} and \textit{M. R. Singh}, Electron. J. Math. Analysis Appl. 8, No. 1, 27--36 (2020; Zbl 1449.54095) Full Text: Link
Beloul, Said Stability results for Jungck and Jungck-Mann iteration processes using contractive condition of integral type. (English) Zbl 1438.47131 Electron. J. Math. Analysis Appl. 8, No. 1, 1-7 (2020). MSC: 47J26 54H25 39B82 PDF BibTeX XML Cite \textit{S. Beloul}, Electron. J. Math. Analysis Appl. 8, No. 1, 1--7 (2020; Zbl 1438.47131) Full Text: Link
Takahashi, Wataru A strong convergence theorem for two infinite sequences of nonlinear mappings in Hilbert spaces and applications. (English) Zbl 07313944 Pure Appl. Funct. Anal. 4, No. 3, 629-647 (2019). MSC: 47J26 47H05 PDF BibTeX XML Cite \textit{W. Takahashi}, Pure Appl. Funct. Anal. 4, No. 3, 629--647 (2019; Zbl 07313944) Full Text: Link
Takahashi, Wataru; Wen, Ching-Feng; Yao, Jen-Chih A strong convergence theorem by Halpern type iteration for a finite family of generalized demimetric mappings in a Hilbert space. (English) Zbl 07313924 Pure Appl. Funct. Anal. 4, No. 2, 407-426 (2019). MSC: 47H05 47H09 PDF BibTeX XML Cite \textit{W. Takahashi} et al., Pure Appl. Funct. Anal. 4, No. 2, 407--426 (2019; Zbl 07313924) Full Text: Link
Kondo, Atsumasa; Takahashi, Wataru Approximation of a common attractive point of noncommutative normally 2-generalized hybrid mappings in Hilbert spaces. (English) Zbl 07313276 Linear Nonlinear Anal. 5, No. 2, Spec. Iss., 279-297 (2019). MSC: 47H05 47H09 PDF BibTeX XML Cite \textit{A. Kondo} and \textit{W. Takahashi}, Linear Nonlinear Anal. 5, No. 2, 279--297 (2019; Zbl 07313276) Full Text: Link
Wang, Yaqin; Fang, Xiaoli; Kim, Tae-Hwa A cyclic viscosity approximation method for the multiple-set split equality common fixed-point problem. (English) Zbl 07313269 Linear Nonlinear Anal. 5, No. 2, Spec. Iss., 355-369 (2019). MSC: 47H09 47H10 47J05 54H25 PDF BibTeX XML Cite \textit{Y. Wang} et al., Linear Nonlinear Anal. 5, No. 2, 355--369 (2019; Zbl 07313269) Full Text: Link
Saejung, Satit A quick look on the hybrid projection scheme of Deepho et al. (English) Zbl 07313251 Linear Nonlinear Anal. 5, No. 1, Spec. Iss., 121-128 (2019). MSC: 47H10 65K15 49J40 49M05 PDF BibTeX XML Cite \textit{S. Saejung}, Linear Nonlinear Anal. 5, No. 1, 121--128 (2019; Zbl 07313251) Full Text: Link
Malhotra, S. K.; Bhargava, P. K.; Shukla, S. Some coincidence and common fixed point results in cone metric spaces over Banach algebras via weak \(g\)-\(\varphi \)-contractions. (English) Zbl 07300648 Trans. A. Razmadze Math. Inst. 173, No. 2, 55-63 (2019). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{S. K. Malhotra} et al., Trans. A. Razmadze Math. Inst. 173, No. 2, 55--63 (2019; Zbl 07300648) Full Text: Link
Ahmadullah, Md; Imdad, Mohammad Relation-theoretic coincidence theorems for nonlinear contractions in metric-like spaces. (English) Zbl 07273986 J. Adv. Math. Stud. 12, No. 1, 1-12 (2019). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{M. Ahmadullah} and \textit{M. Imdad}, J. Adv. Math. Stud. 12, No. 1, 1--12 (2019; Zbl 07273986)
Olatinwo, M. O. Some common fixed point theorems of Jungck-Fisher type for \(A\)-type mappings. (English) Zbl 07273939 J. Adv. Math. Stud. 12, No. 3, 333-340 (2019). MSC: 47H06 54H25 PDF BibTeX XML Cite \textit{M. O. Olatinwo}, J. Adv. Math. Stud. 12, No. 3, 333--340 (2019; Zbl 07273939)
Sadhu, R.; Nahak, C. Generalized \(\alpha\)-nonexpansive multivalued mappings in \(\mathrm{CAT}(0)\) space. (English) Zbl 07273933 J. Adv. Math. Stud. 12, No. 3, 268-283 (2019). MSC: 90C20 90C30 PDF BibTeX XML Cite \textit{R. Sadhu} and \textit{C. Nahak}, J. Adv. Math. Stud. 12, No. 3, 268--283 (2019; Zbl 07273933)
Saluja, G. S. Some fixed point results on S-metric spaces satisfying implicit relation. (English) Zbl 1452.54036 J. Adv. Math. Stud. 12, No. 3, 256-267 (2019). MSC: 54H25 54E99 PDF BibTeX XML Cite \textit{G. S. Saluja}, J. Adv. Math. Stud. 12, No. 3, 256--267 (2019; Zbl 1452.54036)
Liu, Yanyan; Yang, Liping Common fixed point theorems for weak Meir-Keeler type functions in cone metric spaces. (English) Zbl 07273931 J. Adv. Math. Stud. 12, No. 3, 241-255 (2019). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{L. Yang}, J. Adv. Math. Stud. 12, No. 3, 241--255 (2019; Zbl 07273931)
Negi, Smita; Gairola, U. C. Common fixed points for generalized multivalued contraction mappings on weak partial metric spaces. (English) Zbl 07273230 Jñānābha 49, No. 2, 34-44 (2019). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{S. Negi} and \textit{U. C. Gairola}, Jñānābha 49, No. 2, 34--44 (2019; Zbl 07273230)
Babu, G. V. R.; Babu, D. Ratna Common fixed points of rational type and Geraghty-Suzuki type contraction maps in partial metric spaces. (English) Zbl 07273210 J. Int. Math. Virtual Inst. 9, No. 2, 341-359 (2019). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{G. V. R. Babu} and \textit{D. R. Babu}, J. Int. Math. Virtual Inst. 9, No. 2, 341--359 (2019; Zbl 07273210) Full Text: DOI
Nandal, Ashish; Chugh, Renu; Kumari, Sudesh Convergence analysis of algorithms for variational inequalities involving strictly pseudo-contractive operators. (English) Zbl 07273201 Poincare J. Anal. Appl. 2019, No. 2, 123-136 (2019). MSC: 47H05 47H10 47J20 47J25 PDF BibTeX XML Cite \textit{A. Nandal} et al., Poincare J. Anal. Appl. 2019, No. 2, 123--136 (2019; Zbl 07273201)
Akkouchi, Mohamed A common fixed point result for two pairs of weakly tangential maps in B-metric spaces. (English) Zbl 07273195 J. Int. Math. Virtual Inst. 9, No. 1, 189-204 (2019). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{M. Akkouchi}, J. Int. Math. Virtual Inst. 9, No. 1, 189--204 (2019; Zbl 07273195) Full Text: DOI
Gutti, Venkata Ravindranadh Babu; Pathina, Sudheer Kumar Common fixed points of almost generalized \((\alpha,\psi,\varphi,F)\)-contraction type mapping in \(b\)-metric spaces. (English) Zbl 07273191 J. Int. Math. Virtual Inst. 9, No. 1, 123-137 (2019). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{V. R. B. Gutti} and \textit{S. K. Pathina}, J. Int. Math. Virtual Inst. 9, No. 1, 123--137 (2019; Zbl 07273191) Full Text: DOI
Zhang, Shuyi; Zhang, Xinyu Strong convergence theorem of iterative sequence for strictly pseudocontractive semigroups. (Chinese. English summary) Zbl 07266632 J. Anhui Univ., Nat. Sci. 43, No. 6, 20-25 (2019). MSC: 47J25 47H10 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{X. Zhang}, J. Anhui Univ., Nat. Sci. 43, No. 6, 20--25 (2019; Zbl 07266632) Full Text: DOI
Razavi, S. S.; Masiha, H. P. Common fixed point theorems in C*-algebra-valued b-metric spaces with applications to integral equations. (English) Zbl 1444.54036 Fixed Point Theory 20, No. 2, 649-662 (2019). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. S. Razavi} and \textit{H. P. Masiha}, Fixed Point Theory 20, No. 2, 649--662 (2019; Zbl 1444.54036) Full Text: Link
Neog, Murchana; Debnath, Pradip; Radenović, Stojan New extension of some common fixed point theorems in complete metric spaces. (English) Zbl 07262288 Fixed Point Theory 20, No. 2, 567-580 (2019). MSC: 47H10 54H25 54E50 PDF BibTeX XML Cite \textit{M. Neog} et al., Fixed Point Theory 20, No. 2, 567--580 (2019; Zbl 07262288) Full Text: Link
Rehman, Saif Ur; Jabeenb, Shamoona; Muhammad; Ullah, Hayat; Hanifullah Some multi-valued contraction theorems on \(\mathcal{H} \)-cone metric. (English) Zbl 07255192 J. Adv. Stud. Topol. 10, No. 2, 11-24 (2019). MSC: 54 PDF BibTeX XML Cite \textit{S. U. Rehman} et al., J. Adv. Stud. Topol. 10, No. 2, 11--24 (2019; Zbl 07255192) Full Text: DOI
Phudolsitthiphat, Narawadee; Khemphet, Anchalee Coincidence point theorems for Geraghty’s type contraction in generalized metric spaces endowed with a directed graph. (English) Zbl 07248530 Thai J. Math., Spec. Iss.: Annual Meeting in Mathematics 2018, 288-303 (2019). MSC: 47H04 47H10 PDF BibTeX XML Cite \textit{N. Phudolsitthiphat} and \textit{A. Khemphet}, Thai J. Math. , 288--303 (2019; Zbl 07248530) Full Text: Link
Thangthong, Chaiporn; Charoensawan, Phakdi Common fixed point theorems for some admissible contraction mapping in JS-metric spaces. (English) Zbl 07248528 Thai J. Math., Spec. Iss.: Annual Meeting in Mathematics 2018, 257-271 (2019). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{C. Thangthong} and \textit{P. Charoensawan}, Thai J. Math. , 257--271 (2019; Zbl 07248528) Full Text: Link
Zoto, Kastriot; Kumari, Panda Sumati Fixed point theorems for \(s\)-\(\alpha\) contractions in dislocated and \(b\)-dislocated metric spaces. (English) Zbl 1441.47072 Thai J. Math. 17, No. 1, 263-276 (2019). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{K. Zoto} and \textit{P. S. Kumari}, Thai J. Math. 17, No. 1, 263--276 (2019; Zbl 1441.47072) Full Text: Link
Rouzkard, Fayyaz Common fixed point theorems for two pairs of self-mappings in complex-valued metric spaces. (English) Zbl 07240663 Eurasian Math. J. 10, No. 2, 75-83 (2019). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{F. Rouzkard}, Eurasian Math. J. 10, No. 2, 75--83 (2019; Zbl 07240663) Full Text: DOI MNR
Atiponrat, Watchareepan; Dangskul, Supreedee; Khemphet, Anchalee Coincidence point theorems for \(KC\)-contraction mappings in \(JS\)-metric spaces endowed with a directed graph. (English) Zbl 07238234 Carpathian J. Math. 35, No. 3, 263-272 (2019). MSC: 47H04 47H10 54H25 PDF BibTeX XML Cite \textit{W. Atiponrat} et al., Carpathian J. Math. 35, No. 3, 263--272 (2019; Zbl 07238234)
Saksirikun, Warut; Berinde, Vasile; Petrot, Narin Coincidence point theorems for cyclic multi-valued and hybrid contractive mappings. (English) Zbl 07238219 Carpathian J. Math. 35, No. 1, 85-94 (2019). MSC: 54H25 54C60 PDF BibTeX XML Cite \textit{W. Saksirikun} et al., Carpathian J. Math. 35, No. 1, 85--94 (2019; Zbl 07238219)