Younis, Mudasir; Mirkov, Nikola; Savić, Ana; Pantović, Mirjana; Radenović, Stojan Some critical remarks on recent results concerning \(\digamma\)-contractions in \(b\)-metric spaces. (English) Zbl 07733388 Cubo 25, No. 1, 57-66 (2023). MSC: 54H25 47H10 54E40 PDF BibTeX XML Cite \textit{M. Younis} et al., Cubo 25, No. 1, 57--66 (2023; Zbl 07733388) Full Text: DOI
Goyal, A. K.; Garg, Gaurav Kumar Some common fixed point results in 2-Banach spaces for new rational expression. (English) Zbl 07731417 J. Rajasthan Acad. Phys. Sci. 22, No. 1-2, 52-56 (2023). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{A. K. Goyal} and \textit{G. K. Garg}, J. Rajasthan Acad. Phys. Sci. 22, No. 1--2, 52--56 (2023; Zbl 07731417) Full Text: Link
Barshad, Kay; Gibali, Aviv; Reich, Simeon Unrestricted Douglas-Rachford algorithms for solving convex feasibility problems in Hilbert space. (English) Zbl 07724375 Optim. Methods Softw. 38, No. 4, 655-667 (2023). MSC: 65-XX 47-XX PDF BibTeX XML Cite \textit{K. Barshad} et al., Optim. Methods Softw. 38, No. 4, 655--667 (2023; Zbl 07724375) Full Text: DOI arXiv
Bousselsal, Mahmoud; Debba, Mostefa Common fixed point theorems for generalized rational \(F_{\mathcal{R}}\)-contractive pairs of mappings. (English) Zbl 07714845 Thai J. Math. 21, No. 1, 101-110 (2023). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{M. Bousselsal} and \textit{M. Debba}, Thai J. Math. 21, No. 1, 101--110 (2023; Zbl 07714845) Full Text: Link
Cho, Sun Young A descent iterative method with perturbation to solve the common fixed point problems of a family of nonexpansive operators and split equilibrium problems. (English) Zbl 07708792 J. Nonlinear Convex Anal. 24, No. 4, 837-847 (2023). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{S. Y. Cho}, J. Nonlinear Convex Anal. 24, No. 4, 837--847 (2023; Zbl 07708792) Full Text: Link
Hu, Jennifer Shueh-Inn; Hu, Thakyin; Wang, Yuan Chia A Markov-Kakutani type theorem on hyperspace. (English) Zbl 07708775 J. Nonlinear Convex Anal. 24, No. 3, 527-533 (2023). MSC: 47H10 54A05 54A20 54B20 PDF BibTeX XML Cite \textit{J. S. I. Hu} et al., J. Nonlinear Convex Anal. 24, No. 3, 527--533 (2023; Zbl 07708775) Full Text: Link
Haddadi, M. R. New generalization of the best proximity point problem. (English) Zbl 07708027 J. Mahani Math. Res. Cent. 12, No. 2, 471-479 (2023). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{M. R. Haddadi}, J. Mahani Math. Res. Cent. 12, No. 2, 471--479 (2023; Zbl 07708027) Full Text: DOI
Sharma, Sunil K.; Verma, Sanjeev; Raj, Kuldip A common fixed point theorem via two and three mapping in Banach algebra. (English) Zbl 07707394 J. Math. Ext. 17, No. 2, Paper No. 8, 23 p. (2023). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{S. K. Sharma} et al., J. Math. Ext. 17, No. 2, Paper No. 8, 23 p. (2023; Zbl 07707394) Full Text: DOI
Kondo, Atsumasa Strong convergence to common fixed points using Ishikawa and hybrid methods for mean-demiclosed mappings in Hilbert spaces. (English) Zbl 07706394 Math. Model. Anal. 28, No. 2, 285-307 (2023). MSC: 47H09 47J20 47J26 PDF BibTeX XML Cite \textit{A. Kondo}, Math. Model. Anal. 28, No. 2, 285--307 (2023; Zbl 07706394) Full Text: DOI
Rezazgui, Amina-Zahra; Shatanawi, Wasfi; Tallafha, Abdalla Ahmad Common fixed point theorems in the setting of extended quasi \(b\)-metric spaces under extended \(A\)-contraction mappings. (English) Zbl 1516.54052 Nonlinear Funct. Anal. Appl. 28, No. 1, 251-263 (2023). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A.-Z. Rezazgui} et al., Nonlinear Funct. Anal. Appl. 28, No. 1, 251--263 (2023; Zbl 1516.54052) Full Text: Link
Saluja, G. S.; Hyun, Ho Geun; Kim, Jong Kyu Generalized integral type \(F\)-contraction in partial metric spaces and common fixed point. (English) Zbl 1514.54032 Nonlinear Funct. Anal. Appl. 28, No. 1, 107-121 (2023). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{G. S. Saluja} et al., Nonlinear Funct. Anal. Appl. 28, No. 1, 107--121 (2023; Zbl 1514.54032) Full Text: Link
Rehman, Habib Ur; Kumam, Poom; Suleiman, Yusuf I.; Kumam, Widaya An adaptive block iterative process for a class of multiple sets split variational inequality problems and common fixed point problems in Hilbert spaces. (English) Zbl 07704117 Numer. Algebra Control Optim. 13, No. 2, 273-298 (2023). MSC: 47H05 47H09 49M37 65K10 PDF BibTeX XML Cite \textit{H. U. Rehman} et al., Numer. Algebra Control Optim. 13, No. 2, 273--298 (2023; Zbl 07704117) Full Text: DOI
Godwin, Emeka Chigaemezu; Taiwo, Adeolu; Mewomo, Oluwatosin Temitope Iterative method for solving split common fixed point problem of asymptotically demicontractive mappings in Hilbert spaces. (English) Zbl 07704115 Numer. Algebra Control Optim. 13, No. 2, 239-257 (2023). MSC: 47J25 49J40 65K05 90C25 90C48 PDF BibTeX XML Cite \textit{E. C. Godwin} et al., Numer. Algebra Control Optim. 13, No. 2, 239--257 (2023; Zbl 07704115) Full Text: DOI
Hooda, Rahul; Kamra, Mamta; Malik, Archana Common fixed point results for three and four mappings on vector-\(b\)-metric space with a graph. (English) Zbl 07703381 Rend. Circ. Mat. Palermo (2) 72, No. 4, 2721-2743 (2023). MSC: 47H10 47H07 PDF BibTeX XML Cite \textit{R. Hooda} et al., Rend. Circ. Mat. Palermo (2) 72, No. 4, 2721--2743 (2023; Zbl 07703381) Full Text: DOI
Aremu, Kazeem Olalekan; Jolaoso, Lateef Olakunle; Oyewole, Olawale Kazeem A self-adaptive extragradient method for fixed-point and pseudomonotone equilibrium problems in Hadamard spaces. (English) Zbl 07702974 Fixed Point Theory Algorithms Sci. Eng. 2023, Paper No. 4, 22 p. (2023). MSC: 65K15 47J25 65J15 90C33 PDF BibTeX XML Cite \textit{K. O. Aremu} et al., Fixed Point Theory Algorithms Sci. Eng. 2023, Paper No. 4, 22 p. (2023; Zbl 07702974) Full Text: DOI
Charoensawan, Phakdi; Dangskul, Supreedee; Varnakovida, Pariwate Common best proximity points for a pair of mappings with certain dominating property. (English) Zbl 07690109 Demonstr. Math. 56, Article ID 20220215, 12 p. (2023). MSC: 47H09 47H10 26A33 PDF BibTeX XML Cite \textit{P. Charoensawan} et al., Demonstr. Math. 56, Article ID 20220215, 12 p. (2023; Zbl 07690109) Full Text: DOI
Kondo, Atsumasa Strong convergence theorems by Martinez-Yanes–Xu projection method for mean-demiclosed mappings in Hilbert spaces. (English) Zbl 1515.47116 Rend. Mat. Appl., VII. Ser. 44, No. 1-2, 27-51 (2023). MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{A. Kondo}, Rend. Mat. Appl., VII. Ser. 44, No. 1--2, 27--51 (2023; Zbl 1515.47116) Full Text: Link
Nazari, Esmaeil Shrinking projection algorithms for the split common fixed point problem between Hilbert and Banach space. (English) Zbl 1517.47116 J. Anal. 31, No. 2, 1527-1537 (2023). MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{E. Nazari}, J. Anal. 31, No. 2, 1527--1537 (2023; Zbl 1517.47116) Full Text: DOI
Castillo, René E.; Morales, José R.; Rojas, Edixon M. Some Boyd-Wong contraction type mappings in \(b\)-metric spaces. (English) Zbl 1511.54027 J. Anal. 31, No. 2, 911-944 (2023). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{R. E. Castillo} et al., J. Anal. 31, No. 2, 911--944 (2023; Zbl 1511.54027) Full Text: DOI
Espínola, Rafael; Japón, Maria; Souza, Daniel Fixed points and common fixed points for orbit-nonexpansive mappings in metric spaces. (English) Zbl 1511.54030 Mediterr. J. Math. 20, No. 3, Paper No. 182, 17 p. (2023). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{R. Espínola} et al., Mediterr. J. Math. 20, No. 3, Paper No. 182, 17 p. (2023; Zbl 1511.54030) Full Text: DOI arXiv
Husain, Shamshad; Asad, Mohd An inertial extragradient algorithm for split problems in Hilbert spaces. (English) Zbl 07681035 Analysis, München 43, No. 2, 89-103 (2023). MSC: 46N10 47H10 47J25 47H09 65J15 PDF BibTeX XML Cite \textit{S. Husain} and \textit{M. Asad}, Analysis, München 43, No. 2, 89--103 (2023; Zbl 07681035) Full Text: DOI
Cheng, Lixin; Huang, Changchi On distal flows and common fixed point theorems in Banach spaces. (English) Zbl 07674138 J. Math. Anal. Appl. 523, No. 1, Article ID 126995, 10 p. (2023). Reviewer: Evgeniy Panov (Veliky Novgorod) MSC: 47H20 47H09 47H10 46B50 PDF BibTeX XML Cite \textit{L. Cheng} and \textit{C. Huang}, J. Math. Anal. Appl. 523, No. 1, Article ID 126995, 10 p. (2023; Zbl 07674138) Full Text: DOI
Kondo, Atsumasa Ishikawa type mean convergence theorems for finding common fixed points of nonlinear mappings in Hilbert spaces. (English) Zbl 07670403 Rend. Circ. Mat. Palermo (2) 72, No. 2, 1417-1435 (2023). MSC: 47H05 47H09 PDF BibTeX XML Cite \textit{A. Kondo}, Rend. Circ. Mat. Palermo (2) 72, No. 2, 1417--1435 (2023; Zbl 07670403) Full Text: DOI
Olatinwo, M. O.; Omidire, O. J. Some new convergence and stability results for Jungck generalized pseudo-contractive and Lipschitzian type operators using hybrid iterative techniques in the Hilbert space. (English) Zbl 07670383 Rend. Circ. Mat. Palermo (2) 72, No. 2, 1067-1086 (2023). MSC: 47H06 54H25 PDF BibTeX XML Cite \textit{M. O. Olatinwo} and \textit{O. J. Omidire}, Rend. Circ. Mat. Palermo (2) 72, No. 2, 1067--1086 (2023; Zbl 07670383) Full Text: DOI
Indubala, Thounaojam; Rohen, Yumnam; Khan, Mohammad Saeed; Fabiano, Nicola Common coupled fixed point theorems for a pair of \(S_b\)-metric spaces. (English) Zbl 07668229 J. Sib. Fed. Univ., Math. Phys. 16, No. 1, 121-134 (2023). MSC: 54Hxx 47Hxx 54Exx PDF BibTeX XML Cite \textit{T. Indubala} et al., J. Sib. Fed. Univ., Math. Phys. 16, No. 1, 121--134 (2023; Zbl 07668229) Full Text: MNR
Basil, Sushma; Antony, Santhi; Subramanian, Muralisankar Common fixed point theorems on \(\mathfrak{C}\)-conservative mappings via \(\mathcal{Z}_{\mathcal{B}_\lambda}\)-contraction and their application. (English) Zbl 1507.54019 J. Anal. 31, No. 1, 365-386 (2023). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{S. Basil} et al., J. Anal. 31, No. 1, 365--386 (2023; Zbl 1507.54019) Full Text: DOI
Agwu, Imo Kalu; Igbokwe, Donatus Ikechi New iteration algorithms for solving equilibrium problems and fixed point problems of two finite families of asymptotically demicontractive multivalued mappings. (English) Zbl 1516.47100 Sahand Commun. Math. Anal. 20, No. 2, 1-38 (2023). MSC: 47J25 47H09 47H04 49J40 PDF BibTeX XML Cite \textit{I. K. Agwu} and \textit{D. I. Igbokwe}, Sahand Commun. Math. Anal. 20, No. 2, 1--38 (2023; Zbl 1516.47100) Full Text: DOI
Kumar, Santosh; Aron, David Common fixed-point theorems for non-linear non-self contractive mappings in convex metric spaces. (English) Zbl 1516.54036 Topol. Algebra Appl. 11, Article ID 20220122, 12 p. (2023). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{D. Aron}, Topol. Algebra Appl. 11, Article ID 20220122, 12 p. (2023; Zbl 1516.54036) Full Text: DOI
Jain, Shobha; Radenovic, Stojan Interpolative fuzzy \(Z\)-contraction with its application to Fredholm nonlinear integral equation. (English) Zbl 1506.54020 Gulf J. Math. 14, No. 1, 84-98 (2023). MSC: 54H25 47H10 54A40 54E40 45B05 PDF BibTeX XML Cite \textit{S. Jain} and \textit{S. Radenovic}, Gulf J. Math. 14, No. 1, 84--98 (2023; Zbl 1506.54020) Full Text: DOI
Mitrovic, Zoran; Mani, Gunaseelan; Gnanaprakasam, Arul Joseph; George, Reny The existence of a solution of a nonlinear Fredholm integral equations over bicomplex \(b\)-metric spaces. (English) Zbl 1516.54040 Gulf J. Math. 14, No. 1, 69-83 (2023). MSC: 54H25 54E40 45B05 45G10 PDF BibTeX XML Cite \textit{Z. Mitrovic} et al., Gulf J. Math. 14, No. 1, 69--83 (2023; Zbl 1516.54040) Full Text: DOI
Zhao, Jing; Wang, Haixia; Zhao, Ningning Accelerated cyclic iterative algorithms for the multiple-set split common fixed-point problem of quasi-nonexpansive operators. (English) Zbl 07634120 J. Nonlinear Var. Anal. 7, No. 1, 1-22 (2023). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{J. Zhao} et al., J. Nonlinear Var. Anal. 7, No. 1, 1--22 (2023; Zbl 07634120) Full Text: DOI
Leyew, Bahru Tsegaye; Mewomo, Oluwatosin Temitope Common fixed point results for generalized orthogonal \(F\)-Suzuki contraction for family of multivalued mappings in orthogonal \(b\)-metric spaces. (English) Zbl 07741591 Commun. Korean Math. Soc. 37, No. 4, 1147-1170 (2022). MSC: 47H10 47H04 47H07 PDF BibTeX XML Cite \textit{B. T. Leyew} and \textit{O. T. Mewomo}, Commun. Korean Math. Soc. 37, No. 4, 1147--1170 (2022; Zbl 07741591) Full Text: DOI
Bantaojai, Thanatporn; Suanoom, Cholatis; Chanmanee, Chatsuda Approximation of common fixed points of Suzuki-square-\(\alpha\)-nonexpansive mappings in CAT(0) spaces. (English) Zbl 07732590 Thai J. Math., Spec. Iss.: Annual Meeting in Mathematics 2021, 113-123 (2022). MSC: 54H25 54E40 65J15 PDF BibTeX XML Cite \textit{T. Bantaojai} et al., Thai J. Math., 113--123 (2022; Zbl 07732590) Full Text: Link
Bouhadjera, Hakima A unique common fixed point for contractive mappings under a new concept. (English) Zbl 07726662 Bull. Transilv. Univ. Brașov, Ser. III, Math. Comput. Sci. 2(64), No. 2, 33-46 (2022). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{H. Bouhadjera}, Bull. Transilv. Univ. Brașov, Ser. III, Math. Comput. Sci. 2(64), No. 2, 33--46 (2022; Zbl 07726662) Full Text: DOI
Gupta, Vishal; Ansari, Arslan Hojat; Mani, Naveen; Sehgal, Ishit Fixed point theorem satisfying generalized weakly contractive condition of integral type using \(C\)-class functions. (English) Zbl 07713291 Thai J. Math. 20, No. 4, 1695-1706 (2022). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{V. Gupta} et al., Thai J. Math. 20, No. 4, 1695--1706 (2022; Zbl 07713291) Full Text: Link
Bhardwaj, Ved Prakash; Tiwari, Sourabh Common fixed point theorems for hybrid pairs of mappings using implicit relations in fuzzy metric space. (English) Zbl 07709162 Facta Univ., Ser. Math. Inf. 37, No. 5, 861-875 (2022). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{V. P. Bhardwaj} and \textit{S. Tiwari}, Facta Univ., Ser. Math. Inf. 37, No. 5, 861--875 (2022; Zbl 07709162) Full Text: DOI
Saluja, Gurucharan Singh On some common fixed point theorems for generalized integral type \(F\)-contractions in partial metric spaces. (English) Zbl 07709149 Facta Univ., Ser. Math. Inf. 37, No. 4, 667-682 (2022). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{G. S. Saluja}, Facta Univ., Ser. Math. Inf. 37, No. 4, 667--682 (2022; Zbl 07709149) Full Text: DOI
Beloul, Said; Tomar, Anita; Joshi, Meena On solutions to open problems and Volterra-Hammerstein non-linear integral equation. (English) Zbl 1514.54022 Appl. Math. E-Notes 22, 692-711 (2022). MSC: 54H25 54E40 45G10 PDF BibTeX XML Cite \textit{S. Beloul} et al., Appl. Math. E-Notes 22, 692--711 (2022; Zbl 1514.54022) Full Text: Link
Shoaib, Abdullah; Khaliq, Kheeba Fixed-point results for generalized contraction in \(K\)-sequentially complete ordered dislocated fuzzy quasimetric spaces. (English) Zbl 07702970 Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 27, 22 p. (2022). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{A. Shoaib} and \textit{K. Khaliq}, Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 27, 22 p. (2022; Zbl 07702970) Full Text: DOI
Belhenniche, Abdelkader; Guran, Liliana; Benahmed, Sfya; Lobo Pereira, Fernando Solving nonlinear and dynamic programming equations on extended \(b\)-metric spaces with the fixed-point technique. (English) Zbl 07702967 Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 24, 22 p. (2022). MSC: 47-XX 54-XX PDF BibTeX XML Cite \textit{A. Belhenniche} et al., Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 24, 22 p. (2022; Zbl 07702967) Full Text: DOI
Saluja, G. S. Some common fixed point theorems on \(S\)-metric spaces using simulation function. (English) Zbl 1514.54031 J. Adv. Math. Stud. 15, No. 3, 288-302 (2022). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{G. S. Saluja}, J. Adv. Math. Stud. 15, No. 3, 288--302 (2022; Zbl 1514.54031) Full Text: Link
Salisu, Sani; Kumam, Poom; Sriwongsa, Songpon Strong convergence theorems for fixed point of multi-valued mappings in Hadamard spaces. (English) Zbl 1514.47107 J. Inequal. Appl. 2022, Paper No. 143, 28 p. (2022). MSC: 47J26 47H09 47H04 47J22 54H25 PDF BibTeX XML Cite \textit{S. Salisu} et al., J. Inequal. Appl. 2022, Paper No. 143, 28 p. (2022; Zbl 1514.47107) Full Text: DOI
Bedane, Dejene Shewakena; Gebrie, Anteneh Getachew Hybrid shrinking projection extragradient-like algorithms for equilibrium and fixed point problems. (English) Zbl 07665245 Comput. Methods Differ. Equ. 10, No. 3, 639-655 (2022). MSC: 90C25 90C33 65K10 PDF BibTeX XML Cite \textit{D. S. Bedane} and \textit{A. G. Gebrie}, Comput. Methods Differ. Equ. 10, No. 3, 639--655 (2022; Zbl 07665245) Full Text: DOI
Wang, Chao; Fan, Honglei A fixed point theorem for a pair of generalized nonexpansive mappings in uniformly convex metric spaces. (English) Zbl 1516.54060 J. Math. Study 55, No. 4, 432-444 (2022). MSC: 54H25 54E40 65J15 PDF BibTeX XML Cite \textit{C. Wang} and \textit{H. Fan}, J. Math. Study 55, No. 4, 432--444 (2022; Zbl 1516.54060) Full Text: DOI
Wang, Yuanheng; Pan, Chanjuan Implicit iterative algorithms of the split common fixed point problem for Bregman quasi-nonexpansive mapping in Banach spaces. (English) Zbl 07662744 Front. Math. China 17, No. 5, 797-811 (2022); translation from Adv. Math., Beijing 51, No. 4, 704-716 (2022). MSC: 47H10 47J25 47H09 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{C. Pan}, Front. Math. China 17, No. 5, 797--811 (2022; Zbl 07662744); translation from Adv. Math., Beijing 51, No. 4, 704--716 (2022) Full Text: DOI
Nashine, Hemant Kumar; Kadelburg, Zoran Multivalued \(FG\)-contraction mappings on directed graphs. (English) Zbl 1511.54042 Kragujevac J. Math. 46, No. 6, 943-957 (2022). MSC: 54H25 54C60 54E40 PDF BibTeX XML Cite \textit{H. K. Nashine} and \textit{Z. Kadelburg}, Kragujevac J. Math. 46, No. 6, 943--957 (2022; Zbl 1511.54042) Full Text: DOI Link
Garai, Hiranmoy; Nashine, Hemant Kumar; Shil, Sourav; Dey, Lakshmi Kanta On solutions of system(s) of operator equations involving finitely many equality constraints. (English) Zbl 07659997 Indian J. Math. 64, No. 3, 323-341 (2022). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{H. Garai} et al., Indian J. Math. 64, No. 3, 323--341 (2022; Zbl 07659997)
Anjum, Ansari Shakeel; Aage, Chintaman Common fixed point theorem in \(\mathcal{F}\)-metric spaces. (English) Zbl 1509.54014 J. Adv. Math. Stud. 15, No. 4, 357-365 (2022). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{A. S. Anjum} and \textit{C. Aage}, J. Adv. Math. Stud. 15, No. 4, 357--365 (2022; Zbl 1509.54014) Full Text: Link
Yousefi, F.; Rahimi, H.; Soleimani Rad, G. \(\mathcal{E}\)-metric spaces and common fixed point theorems. (English) Zbl 1511.54058 J. Linear Topol. Algebra 11, No. 3, 159-168 (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{F. Yousefi} et al., J. Linear Topol. Algebra 11, No. 3, 159--168 (2022; Zbl 1511.54058) Full Text: DOI
Prasad, Koti N. V. V. Vara; Majumdar, Jyotsana Quadratic inequality for obtaining fixed point using property (E.A) in Menger spaces. (English) Zbl 1504.54038 J. Indones. Math. Soc. 28, No. 3, 304-315 (2022). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{K. N. V. V. V. Prasad} and \textit{J. Majumdar}, J. Indones. Math. Soc. 28, No. 3, 304--315 (2022; Zbl 1504.54038) Full Text: DOI
Prajisha, E.; Shaini, P. Coupled fixed point theorems for mappings satisfying rational type conditions in partially ordered metric spaces. (English) Zbl 1504.54037 Asian-Eur. J. Math. 15, No. 11, Article ID 2250194, 15 p. (2022). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{E. Prajisha} and \textit{P. Shaini}, Asian-Eur. J. Math. 15, No. 11, Article ID 2250194, 15 p. (2022; Zbl 1504.54037) Full Text: DOI
Panwar, Anju; Anita Multivalued \((g-F-\varphi)\) contractions obtaining common fixed points in \(G\)-metric spaces. (English) Zbl 1504.54036 Asian-Eur. J. Math. 15, No. 8, Article ID 2250149, 18 p. (2022). MSC: 54H25 54E50 PDF BibTeX XML Cite \textit{A. Panwar} and \textit{Anita}, Asian-Eur. J. Math. 15, No. 8, Article ID 2250149, 18 p. (2022; Zbl 1504.54036) Full Text: DOI
Ceng, Lu-Chuan; Zhu, Li-Jun; Yin, Tzu-Chien On generalized extragradient implicit method for systems of variational inequalities with constraints of variational inclusion and fixed point problems. (English) Zbl 1505.49012 Open Math. 20, 1770-1784 (2022). MSC: 49J40 49J27 49J45 47H09 47J20 49M05 PDF BibTeX XML Cite \textit{L.-C. Ceng} et al., Open Math. 20, 1770--1784 (2022; Zbl 1505.49012) Full Text: DOI
Kim, Kyung Soo Convergence theorems of mixed type implicit iteration for nonlinear mappings in convex metric spaces. (English) Zbl 07635264 Nonlinear Funct. Anal. Appl. 27, No. 4, 903-920 (2022). MSC: 47H09 47H10 54E35 54E50 PDF BibTeX XML Cite \textit{K. S. Kim}, Nonlinear Funct. Anal. Appl. 27, No. 4, 903--920 (2022; Zbl 07635264) Full Text: Link
Akkasriworn, Naknimit; Padcharoen, Anantachai; Hyun, Ho Geun Convergence theorems for a hybrid pair of single-valued and multi-valued nonexpansive mapping in \(\mathrm{CAT}(0)\) spaces. (English) Zbl 07635251 Nonlinear Funct. Anal. Appl. 27, No. 4, 731-742 (2022). MSC: 47H09 47H10 37C25 PDF BibTeX XML Cite \textit{N. Akkasriworn} et al., Nonlinear Funct. Anal. Appl. 27, No. 4, 731--742 (2022; Zbl 07635251) Full Text: Link
Büyükkaya, Abdurrahman; Öztürk, Mahpeyker Some common fixed point results for \(\mathcal{Z}_E\)-contractions in modular \(b\)-metric spaces. (English) Zbl 1510.54026 Topol. Algebra Appl. 10, 196-215 (2022). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{A. Büyükkaya} and \textit{M. Öztürk}, Topol. Algebra Appl. 10, 196--215 (2022; Zbl 1510.54026) Full Text: DOI
Tiwari, Surendra Kumar; Sonant, Bindeshwari Complex valued metric spaces for Das and Gupta contraction and fixed point and common fixed point theorems. (English) Zbl 07631968 JP J. Fixed Point Theory Appl. 17, No. 1, 11-38 (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. K. Tiwari} and \textit{B. Sonant}, JP J. Fixed Point Theory Appl. 17, No. 1, 11--38 (2022; Zbl 07631968) Full Text: DOI
Debnath, Pradip New common fixed point theorems for Górnicki-type mappings and enriched contractions. (English) Zbl 07626157 São Paulo J. Math. Sci. 16, No. 2, 1401-1408 (2022). MSC: 47H10 54H25 54E50 PDF BibTeX XML Cite \textit{P. Debnath}, São Paulo J. Math. Sci. 16, No. 2, 1401--1408 (2022; Zbl 07626157) Full Text: DOI
Petruşel, Adrian; Petruşel, Gabriela; Yao, J.-C. Common fixed point results for a general class of operators. (English) Zbl 1499.54195 J. Nonlinear Convex Anal. 23, No. 11, 2687-2694 (2022). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{A. Petruşel} et al., J. Nonlinear Convex Anal. 23, No. 11, 2687--2694 (2022; Zbl 1499.54195) Full Text: Link
Gebrie, Anteneh Getachew Weak and strong convergence adaptive algorithms for generalized split common fixed point problems. (English) Zbl 1508.47110 Optimization 71, No. 13, 3711-3736 (2022). MSC: 47J25 47H10 49J40 90C25 90C48 PDF BibTeX XML Cite \textit{A. G. Gebrie}, Optimization 71, No. 13, 3711--3736 (2022; Zbl 1508.47110) Full Text: DOI
Puvar, S. V.; Vyas, R. G. Ćirić-type results in quasi-metric spaces and \(G\)-metric spaces using simulation function. (English) Zbl 1498.54096 Probl. Anal. Issues Anal. 11(29), No. 2, 72-90 (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. V. Puvar} and \textit{R. G. Vyas}, Probl. Anal. Issues Anal. 11(29), No. 2, 72--90 (2022; Zbl 1498.54096) Full Text: DOI MNR
Kondo, Atsumasa Generalized common fixed point theorem for generalized hybrid mappings in Hilbert spaces. (English) Zbl 07623544 Demonstr. Math. 55, 752-759 (2022). MSC: 47H10 47H09 PDF BibTeX XML Cite \textit{A. Kondo}, Demonstr. Math. 55, 752--759 (2022; Zbl 07623544) Full Text: DOI
Duan, Peichao; Han, Yanyan; Liu, Xuemei; Zhang, Yiqun Viscosity and inertial algorithms for the split common fixed point problem with applications to compressed sensing. (English) Zbl 07623335 J. Nonlinear Var. Anal. 6, No. 4, 371-391 (2022). MSC: 47J26 94A12 90C25 PDF BibTeX XML Cite \textit{P. Duan} et al., J. Nonlinear Var. Anal. 6, No. 4, 371--391 (2022; Zbl 07623335) Full Text: DOI
Ugwunnadi, G. C.; Harbau, M. H.; Haruna, L. Y.; Darvish, V.; Yao, J. C. Inertial extrapolation method for solving split common fixed point problem and zeros of monotone operators in Hilbert spaces. (English) Zbl 07622170 J. Nonlinear Convex Anal. 23, No. 4, 769-791 (2022). MSC: 47H09 47H10 47J05 47J25 54H25 PDF BibTeX XML Cite \textit{G. C. Ugwunnadi} et al., J. Nonlinear Convex Anal. 23, No. 4, 769--791 (2022; Zbl 07622170) Full Text: Link
Lau, Anthony To-Ming; Zhang, Yong Some open problems related to fixed point properties. (English) Zbl 1513.43002 Southeast Asian Bull. Math. 46, No. 5, 609-618 (2022). MSC: 43A07 43A60 22D05 46B20 PDF BibTeX XML Cite \textit{A. T. M. Lau} and \textit{Y. Zhang}, Southeast Asian Bull. Math. 46, No. 5, 609--618 (2022; Zbl 1513.43002) Full Text: Link
Bahmanyar, Esmail; Naraghirad, Eskandar; Soltani, Rahmat On coincidence and common fixed points under homotopy of set-valued mapping families in \(b\)-metric spaces. (English) Zbl 1498.54060 J. Nonlinear Convex Anal. 23, No. 3, 421-433 (2022). MSC: 54H25 54C60 54E50 54F05 PDF BibTeX XML Cite \textit{E. Bahmanyar} et al., J. Nonlinear Convex Anal. 23, No. 3, 421--433 (2022; Zbl 1498.54060) Full Text: Link
Moradi, Sirous; Adegani, Ebrahim Analouei; Farajzadeh, Ali; Wen, Ching-Feng Coupled coincidence point for mixed monotone operators in partially ordered \(G\)-metric spaces. (English) Zbl 1498.54088 J. Nonlinear Convex Anal. 23, No. 2, 297-319 (2022). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{S. Moradi} et al., J. Nonlinear Convex Anal. 23, No. 2, 297--319 (2022; Zbl 1498.54088) Full Text: Link
Safari-Hafshejani, Akram Optimal common fixed point results in complete metric spaces with w-distance. (English) Zbl 07618963 Sahand Commun. Math. Anal. 19, No. 4, 117-132 (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A. Safari-Hafshejani}, Sahand Commun. Math. Anal. 19, No. 4, 117--132 (2022; Zbl 07618963) Full Text: DOI
Afshari, Hojjat; Shojaat, Hadi; Fulga, Andreea Common new fixed point results on \(b\)-cone Banach spaces over Banach algebras. (English) Zbl 1510.54021 Appl. Gen. Topol. 23, No. 1, 145-156 (2022). Reviewer: Mewomo Oluwatosin Temitope (Durban) MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{H. Afshari} et al., Appl. Gen. Topol. 23, No. 1, 145--156 (2022; Zbl 1510.54021) Full Text: DOI
Saluja, G. S.; Kim, Jong Kyu; Lim, Won Hee Coincidence point and fixed point theorems in partial metric spaces for contractive type mappings with applications. (English) Zbl 1498.54104 J. Appl. Math. Inform. 40, No. 5-6, 1053-1071 (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{G. S. Saluja} et al., J. Appl. Math. Inform. 40, No. 5--6, 1053--1071 (2022; Zbl 1498.54104) Full Text: DOI
Saluja, G. S. Some common fixed point theorems on partial metric spaces involving auxiliary function. (English) Zbl 1497.54075 Aligarh Bull. Math. 41, No. 1, 1-26 (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{G. S. Saluja}, Aligarh Bull. Math. 41, No. 1, 1--26 (2022; Zbl 1497.54075) Full Text: Link
Singh, Ram Milan Study of fixed point theorem in complex valued intuitionistic fuzzy metric space. (English) Zbl 1498.54111 J. Hyperstruct. 11, No. 1, 109-114 (2022). MSC: 54H25 54A40 54E35 PDF BibTeX XML Cite \textit{R. M. Singh}, J. Hyperstruct. 11, No. 1, 109--114 (2022; Zbl 1498.54111) Full Text: Link
Ranjbar, Ghorban Khalilzadeh Innovation fixed point theorems in \(0\)-\(\sigma\)-complete metric-like spaces with application in integral equations. (English) Zbl 1502.54057 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 29, No. 3, 231-244 (2022). MSC: 54H25 54E40 54E50 45H05 PDF BibTeX XML Cite \textit{G. K. Ranjbar}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 29, No. 3, 231--244 (2022; Zbl 1502.54057) Full Text: DOI
Abass, H. A.; Mebawondu, A. A.; Izuchukwu, C.; Narain, O. K. On split common fixed point and monotone inclusion problems in reflexive Banach spaces. (English) Zbl 07606911 Fixed Point Theory 23, No. 1, 3-20 (2022). MSC: 47H06 47H09 47J05 47J25 47H10 PDF BibTeX XML Cite \textit{H. A. Abass} et al., Fixed Point Theory 23, No. 1, 3--20 (2022; Zbl 07606911) Full Text: DOI
Censor, Yair; Reem, Daniel; Zaknoon, Maroun A generalized block-iterative projection method for the common fixed point problem induced by cutters. (English) Zbl 07606100 J. Glob. Optim. 84, No. 4, 967-987 (2022). MSC: 47H10 90C31 49K40 90C30 90C59 PDF BibTeX XML Cite \textit{Y. Censor} et al., J. Glob. Optim. 84, No. 4, 967--987 (2022; Zbl 07606100) Full Text: DOI arXiv
Adegani, Ebrahim Analouei; Motamednezad, Ahmad Some common fixed point theorems in complex valued metric spaces. (English) Zbl 1496.54024 Thai J. Math. 20, No. 3, 1363-1374 (2022). MSC: 54H25 47H10 54E40 PDF BibTeX XML Cite \textit{E. A. Adegani} and \textit{A. Motamednezad}, Thai J. Math. 20, No. 3, 1363--1374 (2022; Zbl 1496.54024) Full Text: Link
Saelee, Sompob; Kumam, Poom; Martinez-Moreno, Juan Convergence theorem for solving split equality fixed point problem of asymtotically quasi-nonexpansive semigroups in Hilbert spaces. (English) Zbl 07603536 Thai J. Math. 20, No. 3, 1287-1301 (2022). MSC: 47H20 47H09 47H05 46N10 PDF BibTeX XML Cite \textit{S. Saelee} et al., Thai J. Math. 20, No. 3, 1287--1301 (2022; Zbl 07603536) Full Text: Link
Puvar, Sejal V.; Vyas, Rajendra G. Coincidence and common fixed point results in \(G\)-metric spaces using generalized cyclic contraction. (English) Zbl 1496.54058 Thai J. Math. 20, No. 3, 1109-1117 (2022). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{S. V. Puvar} and \textit{R. G. Vyas}, Thai J. Math. 20, No. 3, 1109--1117 (2022; Zbl 1496.54058) Full Text: Link
Temir, Seyit Convergence of three-step iteration scheme for common fixed point of three Berinde nonexpansive mappings. (English) Zbl 1504.47111 Thai J. Math. 20, No. 2, 971-979 (2022). MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{S. Temir}, Thai J. Math. 20, No. 2, 971--979 (2022; Zbl 1504.47111) Full Text: Link
Haile, Gizachew; Koyas, Kidane; Girma, Aynalem Common fixed point theorems for expansive type mappings in cone heptagonal metric spaces. (English) Zbl 1500.54012 Thai J. Math. 20, No. 2, 639-652 (2022). MSC: 54H25 47H10 20M12 PDF BibTeX XML Cite \textit{G. Haile} et al., Thai J. Math. 20, No. 2, 639--652 (2022; Zbl 1500.54012) Full Text: Link
Morales, José R.; Rojas, Edixon M. Generalized Ćirić’s pairs of maps and some systems of nonlinear integral equations. (English) Zbl 1497.54066 Thai J. Math. 20, No. 2, 611-628 (2022). MSC: 54H25 54E40 45D05 PDF BibTeX XML Cite \textit{J. R. Morales} and \textit{E. M. Rojas}, Thai J. Math. 20, No. 2, 611--628 (2022; Zbl 1497.54066) Full Text: Link
Agnihotri, Swati; Dubey, K. K.; Gupta, V. K. Common fixed point of compatible type \((K)\) mappings in fuzzy metric space. (English) Zbl 1513.54106 South East Asian J. Math. Math. Sci. 18, No. 2, 245-258 (2022). MSC: 54H25 47H10 54A40 PDF BibTeX XML Cite \textit{S. Agnihotri} et al., South East Asian J. Math. Math. Sci. 18, No. 2, 245--258 (2022; Zbl 1513.54106) Full Text: Link
Roy, Kakali; Tiwary, Kalishankar Common fixed point theorem for six mappings. (English) Zbl 1496.54060 South East Asian J. Math. Math. Sci. 18, No. 2, 229-244 (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{K. Roy} and \textit{K. Tiwary}, South East Asian J. Math. Math. Sci. 18, No. 2, 229--244 (2022; Zbl 1496.54060) Full Text: Link
Saejung, Satit; Kraikaew, Rapeepan A unified algorithm for finding a fixed point of demicontractive mappings and its application to split common fixed point problem. (English) Zbl 1511.47084 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 4, Paper No. 190, 11 p. (2022). MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{S. Saejung} and \textit{R. Kraikaew}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 4, Paper No. 190, 11 p. (2022; Zbl 1511.47084) Full Text: DOI
Ranjbar, Ghorban Khalilzadeh Common fixed point of a tripled power graphic \((F, \psi)\)-contraction pair on tripled partial \(b\)-metric spaces with application. (English) Zbl 07596000 J. Geom. Anal. 32, No. 12, Paper No. 301, 22 p. (2022). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{G. K. Ranjbar}, J. Geom. Anal. 32, No. 12, Paper No. 301, 22 p. (2022; Zbl 07596000) Full Text: DOI
Kerim, Hanaa; Shatanawi, Wasfi; Tallafha, Abdalla Common fixed point theorems for set-valued maps on modular \(b\)-gauge spaces. (English) Zbl 1495.54033 Palest. J. Math. 11, No. 3, 626-635 (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{H. Kerim} et al., Palest. J. Math. 11, No. 3, 626--635 (2022; Zbl 1495.54033) Full Text: Link
Cai, Tao; Zhang, Xiangshuai; Zhao, Liangshi Common fixed points of a pair of mappings concerning contractive inequalities of integral type. (English) Zbl 1495.54027 Nonlinear Funct. Anal. Appl. 27, No. 3, 603-620 (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{T. Cai} et al., Nonlinear Funct. Anal. Appl. 27, No. 3, 603--620 (2022; Zbl 1495.54027) Full Text: Link
Swapna, P.; Phaneendra, T.; Rajashekar, M. N. Common fixed point for reciprocally continuous and weakly compatible maps in a \(G\)-metric space. (English) Zbl 1495.54040 Nonlinear Funct. Anal. Appl. 27, No. 3, 569-585 (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{P. Swapna} et al., Nonlinear Funct. Anal. Appl. 27, No. 3, 569--585 (2022; Zbl 1495.54040) Full Text: Link
Okeke, Godwin Amechi; Francis, Daniel; Abbas, Mujahid Common fixed point theorems in modular metric spaces with applications to nonlinear integral equation of Urysohn type. (English) Zbl 1495.54035 J. Anal. 30, No. 3, 1069-1114 (2022). MSC: 54H25 54E40 45G15 PDF BibTeX XML Cite \textit{G. A. Okeke} et al., J. Anal. 30, No. 3, 1069--1114 (2022; Zbl 1495.54035) Full Text: DOI
Jain, Shishir; Sharma, Yogita Coincidence point and common fixed point of \((\mathcal{Z}_G),g)\)-\(b\)-simulation type contraction on modular b-metric spaces. (English) Zbl 1497.54056 J. Adv. Math. Stud. 15, No. 2, 209-222 (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. Jain} and \textit{Y. Sharma}, J. Adv. Math. Stud. 15, No. 2, 209--222 (2022; Zbl 1497.54056) Full Text: Link
Amiri, Pari; Afshari, Hojjat Common fixed point results for multi-valued mappings in complex-valued double controlled metric spaces and their applications to the existence of solution of fractional integral inclusion systems. (English) Zbl 1498.45004 Chaos Solitons Fractals 154, Article ID 111622, 15 p. (2022). MSC: 45G10 26A33 47H10 54C60 54H25 PDF BibTeX XML Cite \textit{P. Amiri} and \textit{H. Afshari}, Chaos Solitons Fractals 154, Article ID 111622, 15 p. (2022; Zbl 1498.45004) Full Text: DOI
Garodia, Chanchal; Uddin, Izhar; Baleanu, Dumitru On constrained minimization, variational inequality and split feasibility problem via new iteration scheme in Banach spaces. (English) Zbl 1510.47086 Bull. Iran. Math. Soc. 48, No. 4, 1493-1512 (2022). MSC: 47J25 47H09 49J40 PDF BibTeX XML Cite \textit{C. Garodia} et al., Bull. Iran. Math. Soc. 48, No. 4, 1493--1512 (2022; Zbl 1510.47086) Full Text: DOI
Seshagiri Rao, N.; Kalyani, K. Fixed point results of \((\phi,\psi)\)-weak contractions in ordered \(b\)-metric spaces. (English) Zbl 1493.54043 Cubo 24, No. 2, 343-368 (2022). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{N. Seshagiri Rao} and \textit{K. Kalyani}, Cubo 24, No. 2, 343--368 (2022; Zbl 1493.54043) Full Text: DOI
Nguyen Buong Steepest-descent block-iterative methods for a finite family of quasi-nonexpansive mappings. (English) Zbl 1513.47124 J. Ind. Manag. Optim. 18, No. 5, 3735-3748 (2022). MSC: 47J25 47H09 47N10 PDF BibTeX XML Cite \textit{Nguyen Buong}, J. Ind. Manag. Optim. 18, No. 5, 3735--3748 (2022; Zbl 1513.47124) Full Text: DOI
Reich, Simeon; Truong Minh Tuyen A generalized cyclic iterative method for solving variational inequalities over the solution set of a split common fixed point problem. (English) Zbl 1498.65085 Numer. Algorithms 91, No. 1, 1-17 (2022). MSC: 65J99 65K15 47H10 49J40 90C25 90C48 PDF BibTeX XML Cite \textit{S. Reich} and \textit{Truong Minh Tuyen}, Numer. Algorithms 91, No. 1, 1--17 (2022; Zbl 1498.65085) Full Text: DOI
Alrashedi, Naif R.; Alshammari, Fahad S.; George, Reny Common fixed points of a pair of \(H^\beta\)-Hausdorff multivalued operators in \(b\)-metric space and application to integral equations. (English) Zbl 1492.54017 J. Math. Ext. 16, No. 11, Paper No. 10, 19 p. (2022). MSC: 54H25 47H10 54E40 PDF BibTeX XML Cite \textit{N. R. Alrashedi} et al., J. Math. Ext. 16, No. 11, Paper No. 10, 19 p. (2022; Zbl 1492.54017) Full Text: DOI
Seshagiri Rao, N.; Kalyani, K. Some fixed point results of \((\phi, \psi,\theta)\)-contractive mappings in ordered \(b\)-metric spaces. (English) Zbl 1494.54068 Math. Sci., Springer 16, No. 2, 163-175 (2022). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{N. Seshagiri Rao} and \textit{K. Kalyani}, Math. Sci., Springer 16, No. 2, 163--175 (2022; Zbl 1494.54068) Full Text: DOI
Redjel, Najeh; Dehici, Abdelkader On the fixed point property for orbital contractions in Banach spaces. (English) Zbl 1500.47081 J. Anal. 30, No. 2, 621-635 (2022). Reviewer: Jarosław Górnicki (Rzeszów) MSC: 47H10 47H09 47H20 PDF BibTeX XML Cite \textit{N. Redjel} and \textit{A. Dehici}, J. Anal. 30, No. 2, 621--635 (2022; Zbl 1500.47081) Full Text: DOI
Yadav, Devendra; Tiwari, Surendra Kumar New results of common fixed-point theorems for T- contraction type mappings in cone metric spaces with c-distance. (English) Zbl 07564688 J. Ramanujan Soc. Math. Math. Sci. 9, No. 2, 185-198 (2022). MSC: 47H09 47H10 54H25 PDF BibTeX XML Cite \textit{D. Yadav} and \textit{S. K. Tiwari}, J. Ramanujan Soc. Math. Math. Sci. 9, No. 2, 185--198 (2022; Zbl 07564688) Full Text: Link
Censor, Yair; Levy, Eliahu Limits of eventual families of sets with application to algorithms for the common fixed point problem. (English) Zbl 07563241 Set-Valued Var. Anal. 30, No. 3, 1077-1088 (2022). MSC: 47H10 PDF BibTeX XML Cite \textit{Y. Censor} and \textit{E. Levy}, Set-Valued Var. Anal. 30, No. 3, 1077--1088 (2022; Zbl 07563241) Full Text: DOI arXiv