×

Impedance analysis of transmission line cells for EMC applications using Agros2D. (English) Zbl 1410.78020

Summary: When designing a TEM transmission line cell for electromagnetic compatibility susceptibility or immunity tests, its input impedance must be properly defined in order to deliver the maximum power to the device under test. The closed-form solution, relating the cell geometry with the characteristic impedance \(Z_{c}\), is possible only for the simplest “canonical” transmission line transverse cross-sections. The numerical methods must be used for arbitrary geometries instead. In this paper, we propose fast, robust, and accurate approach, based on fully \(hp\)-adaptive higher-order finite element electrostatic formulation. The approach is implemented in our in-house software Agros2D. The method applies for the impedance solution of an arbitrary TEM transmission line cell, any TEM transmission line with negligible losses, as well as for analyzing the effective electromagnetic properties of lossless complex stratified media.

MSC:

78A55 Technical applications of optics and electromagnetic theory
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory

Software:

COMSOL; Agros2D; Hermes2D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kubík, Z.; Nikolayev, D.; Karban, P.; Skála, J.; Hromádka, M., Optimization of electrical properties of parallel plate antenna for EMC testing, J. Comput. Appl. Math., 270, 283-293 (2014) · Zbl 1374.78188
[2] Groh, C.; Karst, J. P.; Koch, M.; Garbe, H., TEM waveguides for EMC measurements, IEEE Trans. Electromagn. Compat., 41, 440-445 (1999)
[3] Gavenda, J. D.; Foegelle, M. D., A strip-line TEM cell for measuring electromagnetic emissions, Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, 17-18 (1991)
[4] Chung, Y.; Kang, T.-W.; Park, D.-C., Design and construction of stripline for measuring electromagnetic immunity of vehicular electrical cables, Proceedings of the International Symposium on Electromagnetic Compatibility, 9-12 (1997)
[5] Polonis, J. J.; Cory, W. E.; Martinez, I. J.; Smith, D. A.; Walker, H. H., Tri-plate test fixture, Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, 153-158 (1998)
[6] Alotto, P.; Desideri, D.; Maschio, A., Parametric analysis and optimization of the shape of the transitions of a two-port rectangular TEM cell, Proceedings of the International Symposium on Electromagnetic Compatibility, 1-6 (2012)
[7] Pozar, D. M., Microwave Engineering (2012), Wiley: Wiley Hoboken NJ
[8] Stander, T.; Sinha, S., Development, simulation and construction of cost-effective GTEM cells’, Proceedings of the Twenty Third International Conference Radioelektronika, 39-44 (2013)
[9] Weiss, D., A users insight into radiated emission testing with GTEM cells, Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, 157-162 (1991)
[10] Murano, K.; Tayarani, M.; Kawahara, H., A generation method of rotating-EM field using four-septum TEM cell and its basic characteristics, Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, 565-568 (2006)
[11] Šolin, P.; Segeth, K.; Doležel, I., Higher-Order Finite Element Methods (2003), Chapman and Hall/CRC: Chapman and Hall/CRC London
[12] Balanis, C. A., Advanced Engineering Electromagnetics (2012), Wiley: Wiley Hoboken NJ
[13] Musa, S. M.; Sadiku, M. N.O., Using finite element method to calculate capacitance, inductance, characteristic impedance of open microstrip lines, Microw. Opt. Technol. Lett., 50, 611-614 (2008)
[14] Musa, S. M.; Sadiku, M. N.O., Modeling of open-coupled homogeneous striplines, J. Appl. Sci. Eng. Technol., 2, 21-28 (2008)
[15] Musa, S. M.; Sadiku, M. N.O., Modeling of shielded, suspended and inverted, microstrip lines, Proceedings of the IEEE Southeastcon, 309-313 (2008)
[16] Revuelto, I. G.; Garcia-Castillo, L. E.; Pardo, D.; Demkowicz, L. F., A two-dimensional self-adaptive hp finite element method for the analysis of open region problems in electromagnetics, Proceedings of the Twelfth Biennial IEEE Conference on Electromagnetic Field Computation, 30 (2006)
[17] Šolín, P.; Červený, J.; Doležel, I., Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM, Math. Comput. Simul., 77, 117-132 (2008) · Zbl 1135.65394
[18] Karban, P.; Mach, F.; Kůs, P.; Pánek, D.; Doležel, I., Numerical solution of coupled problems using code Agros2d, Computing, 95, 381-408 (2013)
[19] Šolín, P.; Korous, L.; Kůs, P., Hermes2d, a C++ library for rapid development of adaptive -FEM and -DG solvers, J. Comput. Appl. Math., 270, 152-165 (2014) · Zbl 1321.65204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.