×

An asymptotically compatible treatment of traction loading in linearly elastic peridynamic fracture. (English) Zbl 1506.74506

Summary: Meshfree discretizations of state-based peridynamic models are attractive due to their ability to naturally describe fracture of general materials. However, two factors conspire to prevent meshfree discretizations of state-based peridynamics from converging to corresponding local solutions as resolution is increased: quadrature error prevents an accurate prediction of bulk mechanics, and the lack of an explicit boundary representation presents challenges when applying traction loads. In this paper, we develop a reformulation of the linear peridynamic solid (LPS) model to address these shortcomings, using improved meshfree quadrature, a reformulation of the nonlocal dilatation, and a consistent handling of the nonlocal traction condition to construct a model with rigorous accuracy guarantees. In particular, these improvements are designed to enforce discrete consistency in the presence of evolving fractures, whose a priori unknown location render consistent treatment difficult. In the absence of fracture, when a corresponding classical continuum mechanics model exists, our improvements provide asymptotically compatible convergence to corresponding local solutions, eliminating surface effects and issues with traction loading which have historically plagued peridynamic discretizations. When fracture occurs, our formulation automatically provides a sharp representation of the fracture surface by breaking bonds, avoiding the loss of mass. We provide rigorous error analysis and demonstrate convergence for a number of benchmarks, including manufactured solutions, free-surface, nonhomogeneous traction loading, and composite material problems. Finally, we validate simulations of brittle fracture against a recent experiment of dynamic crack branching in soda-lime glass, providing evidence that the scheme yields accurate predictions for practical engineering problems.

MSC:

74S99 Numerical and other methods in solid mechanics
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
74A70 Peridynamics

Software:

Compadre; LAMMPS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209 (2000) · Zbl 0970.74030
[2] Seleson, P.; Parks, M. L.; Gunzburger, M.; Lehoucq, R. B., Peridynamics as an upscaling of molecular dynamics, Multiscale Model. Simul., 8, 1, 204-227 (2009) · Zbl 1375.82073
[3] Parks, M. L.; Lehoucq, R. B.; Plimpton, S. J.; Silling, S. A., Implementing peridynamics within a molecular dynamics code, Comput. Phys. Comm., 179, 11, 777-783 (2008) · Zbl 1197.82014
[4] Zimmermann, M., A Continuum Theory with Long-Range Forces for Solids (2005), Massachusetts Institute of Technology, (Ph.D. thesis)
[5] Emmrich, E.; Weckner, O., Analysis and numerical approximation of an integro-differential equation modeling non-local effects in linear elasticity, Math. Mech. Solids, 12, 4, 363-384 (2007) · Zbl 1175.74013
[6] Du, Q.; Zhou, K., Mathematical analysis for the peridynamic nonlocal continuum theory, ESAIM Math. Model. Numer. Anal., 45, 02, 217-234 (2011) · Zbl 1269.45005
[7] Bobaru, F.; Foster, J. T.; Geubelle, P. H.; Silling, S. A., Handbook of Peridynamic Modeling (2016), CRC Press · Zbl 1351.74001
[8] Baz̆ant, Z. P.; Jirásek, M., Nonlocal integral formulations of plasticity and damage: survey of progress, J. Eng. Mech., 128, 11, 1119-1149 (2002)
[9] Du, Q.; Gunzburger, M.; Lehoucq, R. B.; Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., 23, 03, 493-540 (2013) · Zbl 1266.26020
[10] Tian, X.; Du, Q., Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J. Numer. Anal., 52, 4, 1641-1665 (2014) · Zbl 1303.65098
[11] D’Elia, M.; Du, Q.; Glusa, C.; Gunzburger, M.; Tian, X.; Zhou, Z., Numerical methods for nonlocal and fractional models (2020), arXiv preprint arXiv:2002.01401
[12] Leng, Y.; Tian, X.; Trask, N.; Foster, J. T., Asymptotically compatible reproducing kernel collocation and meshfree integration for nonlocal diffusion (2019), arXiv preprint arXiv:1907.12031
[13] Pasetto, M.; Leng, Y.; Chen, J.-S.; Foster, J. T.; Seleson, P., A reproducing kernel enhanced approach for peridynamic solutions, Comput. Methods Appl. Mech. Engrg., 340, 1044-1078 (2018) · Zbl 1440.74478
[14] Hillman, M.; Pasetto, M.; Zhou, G., Generalized reproducing kernel peridynamics: unification of local and non-local meshfree methods, non-local derivative operations, and an arbitrary-order state-based peridynamic formulation, Comput. Part. Mech., 7, 2, 435-469 (2020)
[15] Seleson, P.; Littlewood, D. J., Convergence studies in meshfree peridynamic simulations, Comput. Math. Appl., 71, 11, 2432-2448 (2016) · Zbl 1443.65253
[16] Du, Q., Local limits and asymptotically compatible discretizations, (Handbook of Peridynamic Modeling (2016), Chapman and Hall/CRC), 87-108
[17] Trask, N.; You, H.; Yu, Y.; Parks, M. L., An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics, Comput. Methods Appl. Mech. Engrg., 343, 151-165 (2019) · Zbl 1440.74463
[18] You, H.; Lu, X.; Trask, N.; Yu, Y., An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems, ESAIM Math. Model. Numer. Anal., 54, 4, 1373-1413 (2020) · Zbl 1474.45069
[19] You, H.; Yu, Y.; Kamensky, D., An asymptotically compatible formulation for local-to-nonlocal coupling problems without overlapping regions, Comput. Methods Appl. Mech. Engrg., 366, Article 113038 pp. (2020) · Zbl 1442.74244
[20] Tao, Y.; Tian, X.; Du, Q., Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations, Appl. Math. Comput., 305, 282-298 (2017) · Zbl 1411.74058
[21] Silling, S. A.; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comput. Struct., 83, 17-18, 1526-1535 (2005)
[22] Bessa, M.; Foster, J.; Belytschko, T.; Liu, W. K., A meshfree unification: reproducing kernel peridynamics, Comput. Mech., 53, 6, 1251-1264 (2014) · Zbl 1398.74452
[23] Bobaru, F.; Yang, M.; Alves, L. F.; Silling, S. A.; Askari, E.; Xu, J., Convergence, adaptive refinement, and scaling in 1D peridynamics, Internat. J. Numer. Methods Engrg., 77, 6, 852-877 (2009) · Zbl 1156.74399
[24] Lipton, R., Dynamic brittle fracture as a small horizon limit of peridynamics, J. Elasticity, 117, 1, 21-50 (2014) · Zbl 1309.74065
[25] Parks, M. L.; Seleson, P.; Plimpton, S. J.; Lehoucq, R. B.; Silling, S. A., Peridynamics with LAMMPS: A User Guide V0.2 Beta (2008), Sandia National Laboraties: Sandia National Laboraties Albuquerque, NM
[26] Diehl, P.; Prudhomme, S.; Lévesque, M., A review of benchmark experiments for the validation of peridynamics models, J. Peridyn. Nonlocal Model., 1, 1, 14-35 (2019)
[27] Javili, A.; Morasata, R.; Oterkus, E.; Oterkus, S., Peridynamics review, Math. Mech. Solids, 24, 11, 3714-3739 (2019) · Zbl 07273389
[28] Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N., How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Ration. Mech. Anal., 187, 1, 137-156 (2008) · Zbl 1145.35060
[29] Ha, Y. D.; Bobaru, F., Characteristics of dynamic brittle fracture captured with peridynamics, Eng. Fract. Mech., 78, 6, 1156-1168 (2011)
[30] Bobaru, F.; Ha, Y. D., Adaptive refinement and multiscale modeling in 2D peridynamics, Int. J. Multiscale Comput. Eng., 9, 6 (2011)
[31] Du, Q.; Lehoucq, R. B.; Tartakovsky, A. M., Integral approximations to classical diffusion and smoothed particle hydrodynamics, Comput. Methods Appl. Mech. Engrg., 286, 216-229 (2015) · Zbl 1423.76363
[32] D’Elia, M.; Tian, X.; Yu, Y., A physically consistent, flexible, and efficient strategy to convert local boundary conditions into nonlocal volume constraints, SIAM J. Sci. Comput., 42, 4, A1935-A1949 (2020) · Zbl 1474.45073
[33] Le, Q.; Bobaru, F., Surface corrections for peridynamic models in elasticity and fracture, Comput. Mech., 61, 4, 499-518 (2018) · Zbl 1446.74084
[34] Madenci, E.; Oterkus, E., Coupling of the peridynamic theory and finite element method, (Peridynamic Theory and its Applications (2014), Springer), 191-202
[35] Oterkus, E., Peridynamic Theory for Modeling Three-Dimensional Damage Growth in Metallic and Composite Structures (2010), The University of Arizona, (Ph.D. thesis)
[36] Macek, R. W.; Silling, S. A., Peridynamics via finite element analysis, Finite Elem. Anal. Des., 43, 15, 1169-1178 (2007)
[37] Du, Q.; Tao, Y.; Tian, X., A peridynamic model of fracture mechanics with bond-breaking, J. Elasticity, 1-22 (2017)
[38] Madenci, E.; Oterkus, E., Peridynamic theory, (Peridynamic Theory and its Applications (2014), Springer), 19-43
[39] Oterkus, S., Peridynamics for the Solution of Multiphysics Problems (2015), The University of Arizona
[40] Lipton, R.; Jha, P. K., Classic dynamic fracture recovered as the limit of a nonlocal peridynamic model: The single edge notch in tension (2019), arXiv preprint arXiv:1908.07589
[41] Madenci, E.; Dorduncu, M.; Barut, A.; Phan, N., Weak form of peridynamics for nonlocal essential and natural boundary conditions, Comput. Methods Appl. Mech. Engrg., 337, 598-631 (2018) · Zbl 1440.74030
[42] Aksoylu, B.; Gazonas, G. A., On nonlocal problems with inhomogeneous local boundary conditions, J. Peridyn. Nonlocal Model., 1-25 (2020)
[43] Emmrich, E.; Weckner, O., On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity, Commun. Math. Sci., 5, 4, 851-864 (2007) · Zbl 1133.35098
[44] Lipton, R., Cohesive dynamics and brittle fracture, J. Elasticity, 124, 2, 143-191 (2016) · Zbl 1386.74127
[45] Jha, P. K.; Lipton, R. P., Kinetic relations and local energy balance for LEFM from a nonlocal peridynamic model, Int. J. Fract., 226, 1, 81-95 (2020)
[46] Lipton, R. P.; Jha, P. K., Plane elastodynamic solutions for running cracks as the limit of double well nonlocal dynamics (2020), arXiv preprint arXiv:2001.00313
[47] Mengesha, T., Nonlocal Korn-type characterization of Sobolev vector fields, Commun. Contemp. Math., 14, 04, Article 1250028 pp. (2012) · Zbl 1250.46021
[48] Mengesha, T.; Du, Q., The bond-based peridynamic system with Dirichlet-type volume constraint, Proc. Roy. Soc. Edinburgh Sect. A, 144, 1, 161-186 (2014) · Zbl 1381.35177
[49] Mengesha, T.; Du, Q., Nonlocal constrained value problems for a linear peridynamic Navier equation, J. Elasticity, 116, 1, 27-51 (2014) · Zbl 1297.74051
[50] Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P., An improved SPH method: Towards higher order convergence, J. Comput. Phys., 225, 2, 1472-1492 (2007) · Zbl 1118.76050
[51] Silling, S. A.; Lehoucq, R. B., Convergence of peridynamics to classical elasticity theory, J. Elasticity, 93, 1, 13-37 (2008) · Zbl 1159.74316
[52] Wendland, H., Scattered Data Approximation, Vol. 17 (2004), Cambridge University Press
[53] Silling, S.; Lehoucq, R., Peridynamic theory of solid mechanics, Adv. Appl. Mech., 44, 1, 73-166 (2010)
[54] Folland, G. B., How to integrate a polynomial over a sphere, Amer. Math. Monthly, 108, 5, 446-448 (2001) · Zbl 1046.26503
[55] Kuberry, P.; Bosler, P.; Trask, N., Compadre toolkit version 1.0.1 (2019)
[56] Seibold, B., Minimal positive stencils in meshfree finite difference methods for the Poisson equation, Comput. Methods Appl. Mech. Engrg., 198, 3-4, 592-601 (2008) · Zbl 1228.65209
[57] Silling, S. A.; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comput. Struct., 83, 1526-1535 (2005)
[58] Capodaglio, G.; D’Elia, M.; Bochev, P.; Gunzburger, M., An energy-based coupling approach to nonlocal interface problems, Comput. & Fluids, Article 104593 pp. (2020) · Zbl 1521.76117
[59] Trask, N.; Perego, M.; Bochev, P., A high-order staggered meshless method for elliptic problems, SIAM J. Sci. Comput., 39, 2, A479-A502 (2017) · Zbl 1365.65264
[60] Zhang, H.; Qiao, P., A state-based peridynamic model for quantitative fracture analysis, Int. J. Fract., 211, 1-2, 217-235 (2018)
[61] Bobaru, F.; Zhang, G., Why do cracks branch? A peridynamic investigation of dynamic brittle fracture, Int. J. Fract., 196, 1-2, 59-98 (2015)
[62] Dondeti, S.; Tippur, H., A comparative study of dynamic fracture of soda-lime glass using photoelasticity, digital image correlation and digital gradient sensing techniques, Exp. Mech., 60, 2, 217-233 (2020)
[63] Ha, Y. D.; Bobaru, F., Studies of dynamic crack propagation and crack branching with peridynamics, Int. J. Fract., 162, 1-2, 229-244 (2010) · Zbl 1425.74416
[64] Gu, X.; Zhang, Q.; Xia, X., Voronoi-based peridynamics and cracking analysis with adaptive refinement, Internat. J. Numer. Methods Engrg., 112, 13, 2087-2109 (2017)
[65] Zhou, X.; Wang, Y.; Qian, Q., Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics, Eur. J. Mech. A Solids, 60, 277-299 (2016) · Zbl 1406.74621
[66] Bowden, F.; Brunton, J.; Field, J.; Heyes, A., Controlled fracture of brittle solids and interruption of electrical current, Nature, 216, 5110, 38-42 (1967)
[67] Bußler, M.; Diehl, P.; Pflüger, D.; Frey, S.; Sadlo, F.; Ertl, T.; Schweitzer, M. A., Visualization of fracture progression in peridynamics, Comput. Graph., 67, 45-57 (2017)
[68] Yu, Y.; Bargos, F. F.; You, H.; Parks, M. L.; Bittencourt, M. L.; Karniadakis, G. E., A partitioned coupling framework for peridynamics and classical theory: analysis and simulations, Comput. Methods Appl. Mech. Engrg., 340, 905-931 (2018) · Zbl 1440.74045
[69] Sundaram, B. M.; Tippur, H. V., Dynamic fracture of soda-lime glass: A full-field optical investigation of crack initiation, propagation and branching, J. Mech. Phys. Solids, 120, 132-153 (2018)
[70] Mehrmashhadi, J.; Bahadori, M.; Bobaru, F., Comparison of Peridynamic and Phase-Field Models for Dynamic Brittle Fracture in Glassy Materials (2020), engrXiv
[71] Rabczuk, T.; Belytschko, T., Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Internat. J. Numer. Methods Engrg., 61, 13, 2316-2343 (2004) · Zbl 1075.74703
[72] Abd-Allah, N.; El-Fadaly, M.; Megahed, M.; Eleiche, A., Fracture toughness properties of high-strength martensitic steel within a wide hardness range, J. Mater. Eng. Perform., 10, 5, 576-585 (2001)
[73] Bathe, K.; Bolourchi, S.; Ramaswamy, S.; Snyder, M., Some computational capabilities for nonlinear finite element analysis, Nucl. Eng. Des., 46, 2, 429-455 (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.