×

Coupling adaptively refined multi-patch spline discretizations via boundary compatibility. (English) Zbl 1397.65273

Summary: The present paper studies adaptive refinement on multi-patch domains in isogeometric analysis. In particular, we investigate the gluing construction for adaptively refined spline spaces to obtain discretizations that are \(C^0\) smooth across interfaces. We will see that this is closely related to the concept of boundary compatibility of an adaptive spline construction.
Given a spline basis (or, more generally, a generating system if linear independence is not guaranteed) on a \(d\)-dimensional box domain, there are two possibilities for constructing the spline basis on the domain boundary. Firstly, one can simply restrict the basis functions to the boundary. Secondly, one may restrict the underlying mesh to the boundary and construct the spline basis on the resulting mesh. The two constructions do not necessarily produce the same set of functions. If they do, then the spline bases are said to be compatible.
We study this property for hierarchical (HB-) and truncated hierarchical B-splines (THB-splines) and identify sufficient conditions. These conditions are weaker for THB- than for HB-splines. Finally we demonstrate the importance of boundary compatibility for geometric modeling and for adaptive refinement in isogeometric analysis, in particular when considering multi-patch domains.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65D07 Numerical computation using splines

Software:

ISOGAT; IETI
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cottrell, J.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, (2009), Wiley Chichester · Zbl 1378.65009
[2] Hughes, T. J.R.; Cottrell, J.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195, (2005) · Zbl 1151.74419
[3] Beirão da Veiga, L.; Buffa, A.; Rivas, J.; Sangalli, G., Some estimates for \(h\)-\(p\)-\(k\)-refinement in isogeometric analysis, Numer. Math., 118, 271-305, (2011) · Zbl 1222.41010
[4] Sederberg, T. W.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and T-nurccs, ACM Trans. Graph., 22, 3, 477-484, (2003)
[5] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 229-263, (2010) · Zbl 1227.74123
[6] Dörfel, M. R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local \(h\)-refinement with T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 264-275, (2010) · Zbl 1227.74125
[7] Beirão da Veiga, L.; Buffa, A.; Sangalli, G.; Vázquez, R., Analysis-suitable T-splines of arbitrary degree: definition, linear independence and approximation properites, Math. Models Methods Appl. Sci., 23, 11, 1979-2003, (2013) · Zbl 1270.65009
[8] Morgenstern, P.; Peterseim, D., Analysis-suitable adaptive T-mesh refinement with linear complexity, Comput. Aided Geom. Design, 34, 50-66, (2015) · Zbl 1375.65035
[9] Scott, M. A.; Thomas, D. C.; Evans, E. J., Isogeometric spline forests, Comput. Methods Appl. Mech. Engrg., 269, 222-264, (2014) · Zbl 1296.65023
[10] Scott, M. A.; Li, X.; Sederberg, T. W.; Hughes, T. J.R., Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213-216, 206-222, (2012) · Zbl 1243.65030
[11] Forsey, D. R.; Bartels, R. H., Hierarchical B-spline refinement, (Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’88, (1988), ACM New York, NY, USA), 205-212
[12] Kraft, R., Adaptive and linearly independent multilevel B-splines, (Le Méhauté, A.; Rabut, C.; Schumaker, L. L., Surface Fitting and Multiresolution Methods, (1997), Vanderbilt University Press Nashville), 209-218 · Zbl 0937.65014
[13] Vuong, A.-V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 49-52, 3554-3567, (2011) · Zbl 1239.65013
[14] Temizer, İ.; Hesch, C., Hierarchical NURBS in frictionless contact, Comput. Methods Appl. Mech. Engrg., 299, 161-186, (2016) · Zbl 1425.74493
[15] Giannelli, C.; Jüttler, B.; Speleers, H., THB-splines: the truncated basis for hierarchical splines, Comput. Aided Geom. Design, 29, 7, 485-498, (2012) · Zbl 1252.65030
[16] Giannelli, C.; Jüttler, B.; Kleiss, S. K.; Mantzaflaris, A.; Simeon, B.; Špeh, J., THB-splines: an effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 299, 337-365, (2016) · Zbl 1425.65026
[17] Giannelli, C.; Jüttler, B.; Speleers, H., Strongly stable bases for adaptively refined multilevel spline spaces, Adv. Comput. Math., 40, 2, 459-490, (2014) · Zbl 1298.41010
[18] Hennig, P.; Müller, S.; Kästner, M., Bézier extraction and adaptive refinement of truncated hierarchical NURBS, Comput. Methods Appl. Mech. Engrg., 305, 316-339, (2016) · Zbl 1425.65031
[19] Kiss, G.; Giannelli, C.; Zore, U.; Jüttler, B.; Großmann, D.; Barner, J., Adaptive CAD model (re-)construction with THB-splines, Graph. Models, 76, 5, 273-288, (2014), Geometric Modeling and Processing 2014
[20] Wei, X.; Zhang, Y. J.; Hughes, T. J.R.; Scott, M. A., Extended truncated hierarchical catmull-Clark subdivision, Comput. Methods Appl. Mech. Engrg., 299, 316-336, (2016) · Zbl 1425.65037
[21] Deng, J.; Chen, F.; Li, X.; Hu, C.; Tong, W.; Yang, Z.; Feng, Y., Polynomial splines over hierarchical T-meshes, Graph. Models, 70, 76-86, (2008)
[22] Nguyen-Thanh, N.; Nguyen-Xuan, H.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids, Comput. Methods Appl. Mech. Engrg., 200, 21-22, 1892-1908, (2011) · Zbl 1228.74091
[23] Wu, M.; Xu, J.; Wang, R.; Yang, Z., Hierarchical bases of spline spaces with highest order smoothness over hierarchical T-subdivisions, Comput. Aided Geom. Design, 29, 7, 499-509, (2012) · Zbl 1259.65022
[24] Bressan, A., Some properties of LR-splines, Comput. Aided Geom. Design, 30, 8, 778-794, (2013) · Zbl 1284.65024
[25] Dokken, T.; Lyche, T.; Pettersen, K. F., Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Design, 30, 3, 331-356, (2013) · Zbl 1264.41011
[26] Johannessen, K. A.; Kvamsdal, T.; Dokken, T., Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Engrg., 269, 471-514, (2014) · Zbl 1296.65021
[27] Johannessen, K. A.; Remonato, F.; Kvamsdal, T., On the similarities and differences between classical hierarchical, truncated hierarchical and LR B-splines, Comput. Methods Appl. Mech. Engrg., 291, 64-101, (2015) · Zbl 1425.65027
[28] Li, X.; Chen, F. L.; Kang, H. M.; Deng, J. S., A survey on the local refinable splines, Sci. China Math., 59, 4, 617-644, (2016) · Zbl 1338.65034
[29] Buchegger, F.; Jüttler, B., Planar multi-patch domain parameterization via patch adjacency graphs, Comput.-Aided Des., 82, 2-12, (2017)
[30] Nguyen, D.-M.; Pauley, M.; Jüttler, B., Isogeometric segmentation: construction of auxiliary curves, Comput.-Aided Des., 70, 89-99, (2016), {SPM} 2015
[31] Pauley, M.; Nguyen, D.-M.; Mayer, D.; Špeh, J.; Weeger, O.; Jüttler, B., The isogeometric segmentation pipeline, 51-72, (2015), Springer International Publishing Cham · Zbl 1334.65045
[32] Cottrell, J. A.; Hughes, T. J.R.; Reali, A., Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Engrg., 196, 4160-4183, (2007) · Zbl 1173.74407
[33] Hofer, C.; Langer, U., Dual-primal isogeometric tearing and interconnecting solvers for multipatch dg-iga equations, Comput. Methods Appl. Mech. Engrg., 316, 2-21, (2017), Special Issue on Isogeometric Analysis: Progress and Challenges
[34] Beirão da Veiga, L.; Cho, D.; Pavarino, L. F.; Scacchi, S., Isogeometric Schwarz preconditioners for linear elasticity systems, Comput. Methods Appl. Mech. Engrg., 253, 0, 439-454, (2013) · Zbl 1297.74113
[35] Brivadis, E.; Buffa, A.; Wohlmuth, B.; Wunderlich, L., Isogeometric mortar methods, Comput. Methods Appl. Mech. Engrg., 284, 292-319, (2015), Isogeometric Analysis Special Issue · Zbl 1425.65150
[36] Hesch, C.; Betsch, P., Isogeometric analysis and domain decomposition methods, Comput. Methods Appl. Mech. Engrg., 213-216, 104-112, (2012) · Zbl 1243.74182
[37] Kleiss, S. K.; Pechstein, C.; Jüttler, B.; Tomar, S., IETI-isogeometric tearing and interconnecting, Comput. Methods Appl. Mech. Engrg., 247-248, 0, 201-215, (2012) · Zbl 1352.65628
[38] Apostolatos, A.; Schmidt, R.; Wüchner, R.; Bletzinger, K.-U., A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis, Internat. J. Numer. Methods Engrg., 97, 7, 473-504, (2014) · Zbl 1352.74315
[39] Hofer, C.; Toulopoulos, I., Discontinuous Galerkin isogeometric analysis of elliptic problems on segmentations with non-matching interfaces, Comput. Math. Appl., 72, 7, 1811-1827, (2016) · Zbl 1361.65088
[40] Buchegger, F.; Jüttler, B.; Mantzaflaris, A., Adaptively refined multi-patch b-splines with enhanced smoothness, Appl. Math. Comput., 272, P1, 159-172, (2016) · Zbl 1410.65028
[41] Coox, L.; Greco, F.; Atak, O.; Vandepitte, D.; Desmet, W., A robust patch coupling method for NURBS-based isogeometric analysis of non-conforming multipatch surfaces, Comput. Methods Appl. Mech. Engrg., 316, 235-260, (2017), Special Issue on Isogeometric Analysis: Progress and Challenges
[42] Falini, A.; Špeh, J.; Jüttler, B., Planar domain parameterization with THB-splines, Comput. Aided Geom. Design, 35-36, (2015) · Zbl 1417.65066
[43] Gravesen, J.; Evgrafov, A.; Nguyen, D. M.; Nørtoft, P., Planar parametrization in isogeometric analysis, (Mathematical Methods for Curves and Surfaces, (2014), Springer), 189-212 · Zbl 1356.65157
[44] Nguyen, T.; Jüttler, B., Parameterization of contractible domains using sequences of harmonic maps, (Curves and Surfaces, (2012), Springer), 501-514 · Zbl 1352.65073
[45] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Parameterization of computational domain in isogeometric analysis: methods and comparison, Comput. Methods Appl. Mech. Engrg., 200, 23-24, 2021-2031, (2011) · Zbl 1228.65232
[46] Carstensen, C., Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis, ZAMM - J. Appl. Math. Mech. / Z. Angew. Math. Mech., 84, 1, 3-21, (2004) · Zbl 1073.65120
[47] Dörfler, W., A convergent adaptive algorithm for poisson’s equation, SIAM J. Numer. Anal., 33, 3, 1106-1124, (1996) · Zbl 0854.65090
[48] Hennig, P.; Kästner, M.; Morgenstern, P.; Peterseim, D., Adaptive mesh refinement strategies in isogeometric analysis - A computational comparison, Comput. Methods Appl. Mech. Engrg., 316, 424-448, (2017), Special Issue on Isogeometric Analysis: Progress and Challenges
[49] Ainsworth, M.; Oden, J. T., (A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Math., (2000), Wiley) · Zbl 1008.65076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.