Can, Mahir Bilen; Casimiro, Ana; Malheiro, António Idempotent varieties of incidence monoids and bipartite posets. (English) Zbl 07768214 Algebr. Represent. Theory 26, No. 5, 1975-2000 (2023). MSC: 20M32 20M17 20E45 PDF BibTeX XML Cite \textit{M. B. Can} et al., Algebr. Represent. Theory 26, No. 5, 1975--2000 (2023; Zbl 07768214) Full Text: DOI arXiv
Sarkar, Paltu; Kar, Sukhendu Characterization of \(k\)-regularities in semigroups. (English) Zbl 07729264 Afr. Mat. 34, No. 3, Paper No. 47, 14 p. (2023). MSC: 20N25 20M10 PDF BibTeX XML Cite \textit{P. Sarkar} and \textit{S. Kar}, Afr. Mat. 34, No. 3, Paper No. 47, 14 p. (2023; Zbl 07729264) Full Text: DOI
Arhancet, Cédric; Kriegler, Christoph Projections, multipliers and decomposable maps on noncommutative \(L^p\)-spaces. (Projections, multiplicateurs et applications décomposables sur des espaces \(L^p\) noncommutatifs.) (English. French summary) Zbl 07715774 Mém. Soc. Math. Fr., Nouv. Sér. 177, vi, 185 p. (2023). MSC: 46L52 46L51 46L07 43A07 43A15 43A22 43A30 43A35 43A40 47L25 PDF BibTeX XML Cite \textit{C. Arhancet} and \textit{C. Kriegler}, Mém. Soc. Math. Fr., Nouv. Sér. 177, vi, 185 p. (2023; Zbl 07715774) Full Text: DOI arXiv
Jamadar, Amlan; Hansda, Kalyan On right inverse ordered semigroups. (English) Zbl 07715057 Discuss. Math., Gen. Algebra Appl. 43, No. 1, 75-84 (2023). MSC: 06F05 20M17 20M18 PDF BibTeX XML Cite \textit{A. Jamadar} and \textit{K. Hansda}, Discuss. Math., Gen. Algebra Appl. 43, No. 1, 75--84 (2023; Zbl 07715057) Full Text: DOI
Fuchs, Peter R. Kernels of covered groups over completely regular inverse semigroups. (English) Zbl 07664528 Commun. Algebra 51, No. 4, 1556-1564 (2023). MSC: 16Y30 20M20 20E36 51J99 PDF BibTeX XML Cite \textit{P. R. Fuchs}, Commun. Algebra 51, No. 4, 1556--1564 (2023; Zbl 07664528) Full Text: DOI
Azeef Muhammed, P. A.; Volkov, Mikhail V.; Auinger, Karl Cross-connection structure of locally inverse semigroups. (English) Zbl 1511.20220 Int. J. Algebra Comput. 33, No. 1, 123-159 (2023). MSC: 20M18 20M10 20M17 20M50 18B40 PDF BibTeX XML Cite \textit{P. A. Azeef Muhammed} et al., Int. J. Algebra Comput. 33, No. 1, 123--159 (2023; Zbl 1511.20220) Full Text: DOI arXiv
Kar, S.; Roy, A.; Dutta, I. Ordered power ternary semigroups. (English) Zbl 1509.06010 Asian-Eur. J. Math. 15, No. 10, Article ID 2250180, 14 p. (2022). MSC: 06F05 20N10 PDF BibTeX XML Cite \textit{S. Kar} et al., Asian-Eur. J. Math. 15, No. 10, Article ID 2250180, 14 p. (2022; Zbl 1509.06010) Full Text: DOI
Smirne, Andrea; Megier, Nina; Vacchini, Bassano On the use of total state decompositions for the study of reduced dynamics. (English) Zbl 1516.81142 Open Syst. Inf. Dyn. 29, No. 2, Article ID 2250008, 20 p. (2022). MSC: 81S22 62H20 46L07 81P16 46C05 20M17 PDF BibTeX XML Cite \textit{A. Smirne} et al., Open Syst. Inf. Dyn. 29, No. 2, Article ID 2250008, 20 p. (2022; Zbl 1516.81142) Full Text: DOI arXiv
Liu, Jingguo Blocks of epigroups. (English) Zbl 1517.20086 Semigroup Forum 105, No. 3, 719-744 (2022). Reviewer: Peeter Normak (Tallinn) MSC: 20M17 20M05 20M10 20M18 20M19 PDF BibTeX XML Cite \textit{J. Liu}, Semigroup Forum 105, No. 3, 719--744 (2022; Zbl 1517.20086) Full Text: DOI
Phuapong, S.; Boonmee, A. Maximal left regular submonoids and right regular submonoids of \(Hyp_G(n)\). (English) Zbl 07589884 J. Algebra Appl. Math. 20, No. 2, 167-181 (2022). MSC: 20B30 20M05 20M17 PDF BibTeX XML Cite \textit{S. Phuapong} and \textit{A. Boonmee}, J. Algebra Appl. Math. 20, No. 2, 167--181 (2022; Zbl 07589884)
Sadhya, Shauli; Hansda, Kalyan Generalized Green’s relations and \(GV\)-ordered semigroups. (English) Zbl 1495.06010 Quasigroups Relat. Syst. 30, No. 1, 161-168 (2022). MSC: 06F05 20M10 PDF BibTeX XML Cite \textit{S. Sadhya} and \textit{K. Hansda}, Quasigroups Relat. Syst. 30, No. 1, 161--168 (2022; Zbl 1495.06010) Full Text: Link
Sarkar, Mosarof; Singh, Shubh N. Comments on: “Semigroups of transformations whose restrictions belong to a given semigroup”. (English) Zbl 1516.20132 Semigroup Forum 104, No. 3, 758-759 (2022). Reviewer: Kıvanç Ersoy (Berlin) MSC: 20M20 PDF BibTeX XML Cite \textit{M. Sarkar} and \textit{S. N. Singh}, Semigroup Forum 104, No. 3, 758--759 (2022; Zbl 1516.20132) Full Text: DOI
Nouri, Leila; Saany, Hossein Mohammadzadeh (Completely) weak simple semigroups and (completely) weak 0-simple semigroups. (English) Zbl 1496.20095 Proyecciones 41, No. 1, 83-99 (2022). MSC: 20M10 20M12 PDF BibTeX XML Cite \textit{L. Nouri} and \textit{H. M. Saany}, Proyecciones 41, No. 1, 83--99 (2022; Zbl 1496.20095) Full Text: DOI
Boonmee, Ampika Maximal intra-regular submonoids and relationship between some regular submonoids of \(\mathrm{Hyp}_G(n)\). (English) Zbl 1499.20135 Int. J. Math. Comput. Sci. 17, No. 1, 41-50 (2022). MSC: 20M10 20M17 08A40 PDF BibTeX XML Cite \textit{A. Boonmee}, Int. J. Math. Comput. Sci. 17, No. 1, 41--50 (2022; Zbl 1499.20135) Full Text: Link
Petrich, Mario Relations on some varieties of completely regular semigroups. (English) Zbl 1499.20131 Southeast Asian Bull. Math. 45, No. 5, 571-590 (2021). MSC: 20M07 20M17 PDF BibTeX XML Cite \textit{M. Petrich}, Southeast Asian Bull. Math. 45, No. 5, 571--590 (2021; Zbl 1499.20131) Full Text: Link
Yan, Qingfu; Wang, Shoufeng Some results on semigroups of transformations with restricted range. (English) Zbl 1484.20113 Open Math. 19, 69-76 (2021). MSC: 20M20 20M10 20M17 20M19 PDF BibTeX XML Cite \textit{Q. Yan} and \textit{S. Wang}, Open Math. 19, 69--76 (2021; Zbl 1484.20113) Full Text: DOI
Barge, Marcy; Kellendonk, Johannes Complete regularity of Ellis semigroups of \(\mathbb{Z}\)-actions. (English) Zbl 1483.37014 Ergodic Theory Dyn. Syst. 41, No. 12, 3593-3609 (2021). MSC: 37B05 37B02 20M17 PDF BibTeX XML Cite \textit{M. Barge} and \textit{J. Kellendonk}, Ergodic Theory Dyn. Syst. 41, No. 12, 3593--3609 (2021; Zbl 1483.37014) Full Text: DOI arXiv
Liu, Yun; Guo, Yuqi; Jin, Lianyan On Hua semigroups. (English) Zbl 1509.20084 Commun. Algebra 49, No. 8, 3315-3334 (2021). MSC: 20M10 20M15 20M17 PDF BibTeX XML Cite \textit{Y. Liu} et al., Commun. Algebra 49, No. 8, 3315--3334 (2021; Zbl 1509.20084) Full Text: DOI
Petrich, Mario Bases for certain varieties of completely regular semigroups. (English) Zbl 07396210 Commentat. Math. Univ. Carol. 62, No. 1, 41-65 (2021). MSC: 20M07 20M10 PDF BibTeX XML Cite \textit{M. Petrich}, Commentat. Math. Univ. Carol. 62, No. 1, 41--65 (2021; Zbl 07396210) Full Text: DOI
Can, Mahir Bilen Incidence monoids: automorphisms and complexity. (English) Zbl 1492.20005 Semigroup Forum 103, No. 2, 414-438 (2021). Reviewer: Alvaro Rittatore (Montevideo) MSC: 20M32 13F65 16W20 06A11 14M25 20M30 PDF BibTeX XML Cite \textit{M. B. Can}, Semigroup Forum 103, No. 2, 414--438 (2021; Zbl 1492.20005) Full Text: DOI arXiv
Luangchaisri, Panuwat; Changphas, Thawhat On completely regular 2-duo semigroups. (English) Zbl 1467.20076 Quasigroups Relat. Syst. 29, No. 1, 89-96 (2021). MSC: 20M17 20M12 PDF BibTeX XML Cite \textit{P. Luangchaisri} and \textit{T. Changphas}, Quasigroups Relat. Syst. 29, No. 1, 89--96 (2021; Zbl 1467.20076)
Yan, Qing-fu; Wang, Shou-feng Some results on semigroups of transformations restricted by an equivalence. (English) Zbl 1496.20121 Bull. Iran. Math. Soc. 47, No. 4, 1289-1300 (2021). MSC: 20M20 20M10 PDF BibTeX XML Cite \textit{Q.-f. Yan} and \textit{S.-f. Wang}, Bull. Iran. Math. Soc. 47, No. 4, 1289--1300 (2021; Zbl 1496.20121) Full Text: DOI
Kad’ourek, Jiří On bases of identities of finite central locally orthodox completely regular semigroups. (English) Zbl 1480.20129 Semigroup Forum 102, No. 3, 697-724 (2021). Reviewer: Yuan Ying (Xi’an) MSC: 20M07 20M17 20M19 PDF BibTeX XML Cite \textit{J. Kad'ourek}, Semigroup Forum 102, No. 3, 697--724 (2021; Zbl 1480.20129) Full Text: DOI
Kehayopulu, Niovi From \(\vee e\)-semigroups to hypersemigroups. (English) Zbl 1491.06039 Discuss. Math., Gen. Algebra Appl. 41, No. 1, 113-126 (2021). MSC: 06F05 06F99 20M75 20M17 PDF BibTeX XML Cite \textit{N. Kehayopulu}, Discuss. Math., Gen. Algebra Appl. 41, No. 1, 113--126 (2021; Zbl 1491.06039) Full Text: DOI
Bhuniya, A. K.; Hansda, K. Nil extensions of simple regular ordered semigroups. (English) Zbl 1477.06051 Asian-Eur. J. Math. 14, No. 3, Article ID 2150044, 15 p. (2021). MSC: 06F05 20M10 20M17 PDF BibTeX XML Cite \textit{A. K. Bhuniya} and \textit{K. Hansda}, Asian-Eur. J. Math. 14, No. 3, Article ID 2150044, 15 p. (2021; Zbl 1477.06051) Full Text: DOI arXiv
Salame, Khadime Invariant means and actions of semitopological semigroups on completely regular spaces and applications. (English) Zbl 1459.43001 Bull. Aust. Math. Soc. 103, No. 1, 162-173 (2021). Reviewer: Amir Sahami (Tehran) MSC: 43A07 43A05 54H25 PDF BibTeX XML Cite \textit{K. Salame}, Bull. Aust. Math. Soc. 103, No. 1, 162--173 (2021; Zbl 1459.43001) Full Text: DOI
Jin, Ying-Ying; Xie, Li-Hong; Yan, Peng-Fei On separation properties in semitopological groups. (English) Zbl 1490.54023 Quest. Answers Gen. Topology 38, No. 1, 53-58 (2020). Reviewer: Zhiqiang Xiao (Taizhou) MSC: 54H11 54D10 54D15 22A15 22A20 PDF BibTeX XML Cite \textit{Y.-Y. Jin} et al., Quest. Answers Gen. Topology 38, No. 1, 53--58 (2020; Zbl 1490.54023)
Kar, Sukhendu; Roy, Agni; Dutta, Indrani On regularities in po-ternary semigroups. (English) Zbl 1454.06011 Quasigroups Relat. Syst. 28, No. 1, 149-158 (2020). MSC: 06F05 06F99 20N10 20M12 PDF BibTeX XML Cite \textit{S. Kar} et al., Quasigroups Relat. Syst. 28, No. 1, 149--158 (2020; Zbl 1454.06011) Full Text: Link
Hansda, Kalyan; Jamadar, Amlan Characterization of inverse ordered semigroups by their ordered idempotents and bi-ideals. (English) Zbl 1454.06009 Quasigroups Relat. Syst. 28, No. 1, 77-88 (2020). MSC: 06F05 20M10 20M18 20M12 PDF BibTeX XML Cite \textit{K. Hansda} and \textit{A. Jamadar}, Quasigroups Relat. Syst. 28, No. 1, 77--88 (2020; Zbl 1454.06009) Full Text: Link
Casimiro, Ana; Skapinakis, Eduardo Basis reduction for cryptogroups and orthogroups. (English) Zbl 1508.20073 Semigroup Forum 101, No. 3, 779-785 (2020). MSC: 20M07 20M17 PDF BibTeX XML Cite \textit{A. Casimiro} and \textit{E. Skapinakis}, Semigroup Forum 101, No. 3, 779--785 (2020; Zbl 1508.20073) Full Text: DOI Link
Bhuniya, A. K.; Hansda, K. On completely regular and Clifford ordered semigroups. (English) Zbl 1463.06082 Afr. Mat. 31, No. 5-6, 1029-1045 (2020). MSC: 06F05 20M10 20M17 PDF BibTeX XML Cite \textit{A. K. Bhuniya} and \textit{K. Hansda}, Afr. Mat. 31, No. 5--6, 1029--1045 (2020; Zbl 1463.06082) Full Text: DOI arXiv
Tian, Zhenji; Hu, Yunhua; Tao, Yuhua Completely regular semigroups whose lattice of completely regular subsemigroups is semimodular. (Chinese. English summary) Zbl 1463.20077 J. Lanzhou Univ. Technol. 46, No. 2, 155-157 (2020). MSC: 20M17 06C10 20M10 PDF BibTeX XML Cite \textit{Z. Tian} et al., J. Lanzhou Univ. Technol. 46, No. 2, 155--157 (2020; Zbl 1463.20077)
Petrich, Mario Relations on a lattice of varieties of completely regular semigroups. (English) Zbl 07250707 Math. Bohem. 145, No. 3, 225-240 (2020). Reviewer: Jaak Henno (Tallinn) MSC: 20M07 20M17 08B15 PDF BibTeX XML Cite \textit{M. Petrich}, Math. Bohem. 145, No. 3, 225--240 (2020; Zbl 07250707) Full Text: DOI
Petrich, Mario A semilattice of varieties of completely regular semigroups. (English) Zbl 1474.20104 Math. Bohem. 145, No. 1, 1-14 (2020). Reviewer: Jorge Almeida (Porto) MSC: 20M07 20M17 PDF BibTeX XML Cite \textit{M. Petrich}, Math. Bohem. 145, No. 1, 1--14 (2020; Zbl 1474.20104) Full Text: DOI
Petrich, Mario On some intervals of varieties of completely regular semigroups. (English) Zbl 1467.20054 Semigroup Forum 100, No. 2, 513-541 (2020). MSC: 20M07 20M17 PDF BibTeX XML Cite \textit{M. Petrich}, Semigroup Forum 100, No. 2, 513--541 (2020; Zbl 1467.20054) Full Text: DOI
Maity, S. K.; Ghosh, R. Quasi-orthodox quasi completely regular semirings. (English) Zbl 1449.16098 Southeast Asian Bull. Math. 43, No. 6, 847-854 (2019). MSC: 16Y60 20M17 PDF BibTeX XML Cite \textit{S. K. Maity} and \textit{R. Ghosh}, Southeast Asian Bull. Math. 43, No. 6, 847--854 (2019; Zbl 1449.16098)
Kunama, Pornpimol; Leeratanavalee, Sorasak All maximal completely regular submonoids of \(\mathrm{Hyp}_G(n)\). (English) Zbl 1472.08003 East-West J. Math. 21, No. 2, 182-192 (2019). MSC: 08A40 20M07 08B05 PDF BibTeX XML Cite \textit{P. Kunama} and \textit{S. Leeratanavalee}, East-West J. Math. 21, No. 2, 182--192 (2019; Zbl 1472.08003)
Gu, Rui End-completely-regular generalized lexicographic products of bipartite graphs. (English) Zbl 1474.05180 Ars Comb. 146, 3-15 (2019). Reviewer: Robert Jajcay (Bratislava) MSC: 05C25 20M20 PDF BibTeX XML Cite \textit{R. Gu}, Ars Comb. 146, 3--15 (2019; Zbl 1474.05180)
Araújo, João; Kinyon, Michael; Robert, Yves Varieties of regular semigroups with uniquely defined inversion. (English) Zbl 1468.20098 Port. Math. (N.S.) 76, No. 2, 205-228 (2019). MSC: 20M07 20M17 20M18 PDF BibTeX XML Cite \textit{J. Araújo} et al., Port. Math. (N.S.) 76, No. 2, 205--228 (2019; Zbl 1468.20098) Full Text: DOI
Boonmee, Ampika; Leeratanavalee, Sorasak All intra-regular generalized hypersubstitutions of type (2). (English) Zbl 1470.20029 Acta Univ. Sapientiae, Math. 11, No. 1, 29-39 (2019). MSC: 20M05 20M17 PDF BibTeX XML Cite \textit{A. Boonmee} and \textit{S. Leeratanavalee}, Acta Univ. Sapientiae, Math. 11, No. 1, 29--39 (2019; Zbl 1470.20029) Full Text: DOI
Maity, Sunil Kumar; Kapuria, Uma; Mitra, Biswajit Congruences on nil-extension of a b-lattice of skew-rings. (English) Zbl 1443.16055 Quasigroups Relat. Syst. 27, No. 2, 273-280 (2019). MSC: 16Y60 20M10 20M07 PDF BibTeX XML Cite \textit{S. K. Maity} et al., Quasigroups Relat. Syst. 27, No. 2, 273--280 (2019; Zbl 1443.16055) Full Text: Link
Reilly, Norman R. Kernel classes of varieties of completely regular semigroups. II. (English) Zbl 1467.20056 Semigroup Forum 99, No. 3, 840-869 (2019). MSC: 20M07 20M17 08B15 PDF BibTeX XML Cite \textit{N. R. Reilly}, Semigroup Forum 99, No. 3, 840--869 (2019; Zbl 1467.20056) Full Text: DOI
Reilly, Norman R. Kernel classes of varieties of completely regular semigroups. I. (English) Zbl 1467.20055 Semigroup Forum 99, No. 3, 814-839 (2019). MSC: 20M07 20M17 08B15 PDF BibTeX XML Cite \textit{N. R. Reilly}, Semigroup Forum 99, No. 3, 814--839 (2019; Zbl 1467.20055) Full Text: DOI arXiv
Moravec, Primož Idempotent-fixing automorphisms of completely regular semigroups. (English) Zbl 1471.20042 Semigroup Forum 99, No. 2, 517-521 (2019). Reviewer: Zhengpan Wang (Chongqing) MSC: 20M17 20M15 20M10 PDF BibTeX XML Cite \textit{P. Moravec}, Semigroup Forum 99, No. 2, 517--521 (2019; Zbl 1471.20042) Full Text: DOI
Kad’ourek, Jiří On singleton kernel classes in the lattice of varieties of completely regular semigroups. (English) Zbl 1472.20127 Int. J. Algebra Comput. 29, No. 8, 1383-1407 (2019). MSC: 20M07 20M05 20M17 08B15 PDF BibTeX XML Cite \textit{J. Kad'ourek}, Int. J. Algebra Comput. 29, No. 8, 1383--1407 (2019; Zbl 1472.20127) Full Text: DOI
Özalan, Nurten Urlu; Çevik, A. Sinan; Karpuz, Eylem Güzel A new semigroup obtained via known ones. (English) Zbl 1468.20096 Asian-Eur. J. Math. 12, No. 6, Article ID 2040008, 13 p. (2019). MSC: 20M05 20M17 20M10 PDF BibTeX XML Cite \textit{N. U. Özalan} et al., Asian-Eur. J. Math. 12, No. 6, Article ID 2040008, 13 p. (2019; Zbl 1468.20096) Full Text: DOI
Wang, Ying; Guo, Junying; Wu, Haochi; Guo, Xiaojiang Some characterizations of cryptic rpp semigroups. (Chinese. English summary) Zbl 1438.20057 J. Jiangxi Norm. Univ., Nat. Sci. Ed. 43, No. 1, 22-27 (2019). MSC: 20M10 20M17 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Jiangxi Norm. Univ., Nat. Sci. Ed. 43, No. 1, 22--27 (2019; Zbl 1438.20057) Full Text: DOI
Sadhya, Shauli; Hansda, Kalyan Characterization of \(\pi\)-\(t\)-simple ordered semigroups by their ordered idempotents. (English) Zbl 1436.06040 Quasigroups Relat. Syst. 27, No. 1, 119-126 (2019). MSC: 06F05 20M10 PDF BibTeX XML Cite \textit{S. Sadhya} and \textit{K. Hansda}, Quasigroups Relat. Syst. 27, No. 1, 119--126 (2019; Zbl 1436.06040)
Hansda, Kalyan Minimal bi-ideals in regular and completely regular ordered semigroups. (English) Zbl 1436.06037 Quasigroups Relat. Syst. 27, No. 1, 63-72 (2019). MSC: 06F05 20M12 PDF BibTeX XML Cite \textit{K. Hansda}, Quasigroups Relat. Syst. 27, No. 1, 63--72 (2019; Zbl 1436.06037) Full Text: arXiv
Sawatraksa, Nares; Namnak, Chaiwat; Chinram, Ronnason Left and right regular elements of the semigroups of transformations preserving an equivalence relation and a cross-section. (English) Zbl 1484.20112 Asian-Eur. J. Math. 12, No. 4, Article ID 1950058, 13 p. (2019). MSC: 20M20 PDF BibTeX XML Cite \textit{N. Sawatraksa} et al., Asian-Eur. J. Math. 12, No. 4, Article ID 1950058, 13 p. (2019; Zbl 1484.20112) Full Text: DOI
Wang, Li-Min; Feng, Ying-Ying; Chen, Hong-Hua Some special congruences on completely regular semigroups. (English) Zbl 1453.20082 Commun. Algebra 47, No. 7, 2941-2953 (2019). MSC: 20M17 20M10 PDF BibTeX XML Cite \textit{L.-M. Wang} et al., Commun. Algebra 47, No. 7, 2941--2953 (2019; Zbl 1453.20082) Full Text: DOI arXiv
Almeida, Jorge; Klíma, Ondřej Pseudovarieties of ordered completely regular semigroups. (English) Zbl 1490.20036 Result. Math. 74, No. 2, Paper No. 78, 28 p. (2019); correction ibid. 74, No. 2, Paper No. 85, 3 p. (2019). MSC: 20M07 06F05 20M10 20M17 20M35 PDF BibTeX XML Cite \textit{J. Almeida} and \textit{O. Klíma}, Result. Math. 74, No. 2, Paper No. 78, 28 p. (2019; Zbl 1490.20036) Full Text: DOI arXiv
Green’s relations and regularity for the self-\(E\)-preserving transformation semigroups. (English) Zbl 1463.20080 Thai J. Math., Spec. Iss.: Annual Meeting in Mathematics 2017, 117-125 (2018). MSC: 20M20 20M10 20M17 PDF BibTeX XML Cite Thai J. Math., 117--125 (2018; Zbl 1463.20080) Full Text: Link
Gong, Chunmei; Feng, Lixia; Ren, Xueming \((*, \sim)\)-good congruences on completely \({\mathscr{T}^{*, \sim}}\)-simple semigroups. (Chinese. English summary) Zbl 1424.20058 J. Shandong Univ., Nat. Sci. 53, No. 6, 11-16 (2018). MSC: 20M10 20M17 PDF BibTeX XML Cite \textit{C. Gong} et al., J. Shandong Univ., Nat. Sci. 53, No. 6, 11--16 (2018; Zbl 1424.20058) Full Text: DOI
Luo, Xiaoqiang The relationship between cross*-regular semigroups and dihedral groups. (English) Zbl 1424.20064 J. Nanjing Univ., Math. Biq. 35, No. 1, 30-38 (2018). MSC: 20M17 20D99 PDF BibTeX XML Cite \textit{X. Luo}, J. Nanjing Univ., Math. Biq. 35, No. 1, 30--38 (2018; Zbl 1424.20064) Full Text: DOI
Kopperman, Ralph; Pajoohesh, Homeira Representing topologies using partially ordered semigroups. (English) Zbl 1454.06013 Topology Appl. 249, 135-149 (2018). MSC: 06F05 54E35 PDF BibTeX XML Cite \textit{R. Kopperman} and \textit{H. Pajoohesh}, Topology Appl. 249, 135--149 (2018; Zbl 1454.06013) Full Text: DOI
Petrich, Mario Ladders and canonical varieties of completely regular semigroups. (English) Zbl 1413.20039 Period. Math. Hung. 76, No. 2, 133-154 (2018). Reviewer: Peter R. Jones (Milwaukee) MSC: 20M07 PDF BibTeX XML Cite \textit{M. Petrich}, Period. Math. Hung. 76, No. 2, 133--154 (2018; Zbl 1413.20039) Full Text: DOI
Petrich, Mario On certain lattices of varieties of completely regular semigroups. (English) Zbl 1399.20061 Stud. Sci. Math. Hung. 55, No. 1, 1-22 (2018). Reviewer: Jaak Henno (Tallinn) MSC: 20M07 08B15 PDF BibTeX XML Cite \textit{M. Petrich}, Stud. Sci. Math. Hung. 55, No. 1, 1--22 (2018; Zbl 1399.20061) Full Text: DOI
Petrich, M. Clusters of varieties of completely regular semigroups. (English) Zbl 1399.20060 Acta Math. Hung. 154, No. 1, 429-456 (2018). Reviewer: Peeter Normak (Tallinn) MSC: 20M07 20M17 08B15 PDF BibTeX XML Cite \textit{M. Petrich}, Acta Math. Hung. 154, No. 1, 429--456 (2018; Zbl 1399.20060) Full Text: DOI
Pasku, Elton The adjoint semigroup of a \(\Gamma \)-semigroup. (English) Zbl 1474.20148 Novi Sad J. Math. 47, No. 2, 31-39 (2017). MSC: 20M75 20N99 20M10 20M12 20M17 PDF BibTeX XML Cite \textit{E. Pasku}, Novi Sad J. Math. 47, No. 2, 31--39 (2017; Zbl 1474.20148) Full Text: DOI
Kunama, Pornpimol; Leeratanavalee, Sorasak All maximal completely regular submonoids of \(\mathrm{Hyp}_G(2)\). (English) Zbl 1463.08007 Discuss. Math., Gen. Algebra Appl. 37, No. 1, 105-114 (2017). MSC: 08A40 20M07 08B05 PDF BibTeX XML Cite \textit{P. Kunama} and \textit{S. Leeratanavalee}, Discuss. Math., Gen. Algebra Appl. 37, No. 1, 105--114 (2017; Zbl 1463.08007) Full Text: DOI
Zhang, Jia; Yan, Chenshun The endomorphism monoid of 8-graph. (Chinese. English summary) Zbl 1399.20080 J. Lanzhou Univ., Nat. Sci. 53, No. 6, 832-836 (2017). MSC: 20M20 05C25 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{C. Yan}, J. Lanzhou Univ., Nat. Sci. 53, No. 6, 832--836 (2017; Zbl 1399.20080) Full Text: DOI
Ren, Ying Yuan Xueming; Shum, K. P. A structure theorem of left regular cyber-groups. (English) Zbl 1387.20047 Hacet. J. Math. Stat. 46, No. 6, 1093-1104 (2017). MSC: 20M10 20M17 PDF BibTeX XML Cite \textit{Y. Y. X. Ren} and \textit{K. P. Shum}, Hacet. J. Math. Stat. 46, No. 6, 1093--1104 (2017; Zbl 1387.20047) Full Text: DOI
Araújo, Francisco; Kinyon, Michael Commutativity theorems for groups and semigroups. (English) Zbl 1421.20019 Port. Math. (N.S.) 74, No. 3, 243-255 (2017). MSC: 20M10 20M17 20M18 PDF BibTeX XML Cite \textit{F. Araújo} and \textit{M. Kinyon}, Port. Math. (N.S.) 74, No. 3, 243--255 (2017; Zbl 1421.20019) Full Text: DOI arXiv
Naka, Krisanthi; Hila, Kostaq Regularity of ternary semihypergroups. (English) Zbl 1385.20026 Quasigroups Relat. Syst. 25, No. 2, 291-306 (2017). MSC: 20N20 20N15 20M17 PDF BibTeX XML Cite \textit{K. Naka} and \textit{K. Hila}, Quasigroups Relat. Syst. 25, No. 2, 291--306 (2017; Zbl 1385.20026)
Maity, Sunil Kumar The congruence \(\mathcal{Y}\) on completely regular semirings. (English) Zbl 1384.16042 Quasigroups Relat. Syst. 25, No. 2, 279-288 (2017). MSC: 16Y60 20M07 PDF BibTeX XML Cite \textit{S. K. Maity}, Quasigroups Relat. Syst. 25, No. 2, 279--288 (2017; Zbl 1384.16042)
Petrich, Mario New concepts for completely regular semigroups. (English) Zbl 1397.20067 Commun. Algebra 45, No. 11, 4588-4604 (2017). Reviewer: Chunmei Gong (York) MSC: 20M07 20M10 PDF BibTeX XML Cite \textit{M. Petrich}, Commun. Algebra 45, No. 11, 4588--4604 (2017; Zbl 1397.20067) Full Text: DOI
Cameron, Peter J.; Gadouleau, Maximilien; Mitchell, James D.; Peresse, Yann Chains of subsemigroups. (English) Zbl 1436.20112 Isr. J. Math. 220, No. 1, 479-508 (2017). Reviewer: Zhengpan Wang (Chongqing) MSC: 20M10 20M20 PDF BibTeX XML Cite \textit{P. J. Cameron} et al., Isr. J. Math. 220, No. 1, 479--508 (2017; Zbl 1436.20112) Full Text: DOI arXiv
Petrich, Mario Another lattice of varieties of completely regular semigroups. (English) Zbl 1373.20072 Commun. Algebra 45, No. 7, 2783-2794 (2017). Reviewer: Jaak Henno (Tallinn) MSC: 20M07 20M17 08B15 PDF BibTeX XML Cite \textit{M. Petrich}, Commun. Algebra 45, No. 7, 2783--2794 (2017; Zbl 1373.20072) Full Text: DOI
Hou, Hailong; Song, Yanhua; Gu, Rui The join of split graphs whose completely regular endomorphisms form a monoid. (English) Zbl 1367.05103 Open Math. 15, 833-839 (2017). MSC: 05C25 20M20 PDF BibTeX XML Cite \textit{H. Hou} et al., Open Math. 15, 833--839 (2017; Zbl 1367.05103) Full Text: DOI
Khan, Noor Mohammad; Davvaz, Bijan; Khan, Mohammad Aasim Ordered semigroups characterized in terms of generalized fuzzy ideals. (English) Zbl 1367.06007 J. Intell. Fuzzy Syst. 32, No. 1, 1045-1057 (2017). MSC: 06F05 06B10 PDF BibTeX XML Cite \textit{N. M. Khan} et al., J. Intell. Fuzzy Syst. 32, No. 1, 1045--1057 (2017; Zbl 1367.06007) Full Text: DOI
Petrich, Mario Polák theorem and B-relation on varieties of completely regular semigroups. (English) Zbl 1422.20026 Semigroup Forum 94, No. 2, 371-389 (2017). MSC: 20M07 20M17 PDF BibTeX XML Cite \textit{M. Petrich}, Semigroup Forum 94, No. 2, 371--389 (2017; Zbl 1422.20026) Full Text: DOI
Petrich, Mario On the variety of bands in completely regular semigroups. (English) Zbl 1389.20067 Publ. Math. Debr. 89, No. 1-2, 43-61 (2016). Reviewer: Peter R. Jones (Milwaukee) MSC: 20M07 20M10 20M17 PDF BibTeX XML Cite \textit{M. Petrich}, Publ. Math. Debr. 89, No. 1--2, 43--61 (2016; Zbl 1389.20067) Full Text: DOI
Zhu, QingShun Semilattices of nil-extensions of simple left (right) \(\pi\)-regular ordered semigroups. (English) Zbl 1474.06058 Novi Sad J. Math. 46, No. 1, 27-34 (2016). MSC: 06F05 20M10 20M17 PDF BibTeX XML Cite \textit{Q. Zhu}, Novi Sad J. Math. 46, No. 1, 27--34 (2016; Zbl 1474.06058)
Laysirikul, Ekkachai Semigroups of full transformations with the restriction on the fixed set is bijective. (English) Zbl 1362.20043 Thai J. Math. 14, No. 2, 497-503 (2016). MSC: 20M20 20M17 PDF BibTeX XML Cite \textit{E. Laysirikul}, Thai J. Math. 14, No. 2, 497--503 (2016; Zbl 1362.20043) Full Text: Link
Khan, Asghar; Jun, Young Bae; Shah, Syed Inayat Ali; Khan, Raees Applications of soft union sets in ordered semigroups via uni-soft quasi-ideals. (English) Zbl 1364.06008 J. Intell. Fuzzy Syst. 30, No. 1, 97-107 (2016). MSC: 06F05 06B10 PDF BibTeX XML Cite \textit{A. Khan} et al., J. Intell. Fuzzy Syst. 30, No. 1, 97--107 (2016; Zbl 1364.06008) Full Text: DOI
Sulochana, N.; Vasanthi, T. Properties of completely regular semirings. (English) Zbl 1374.16107 Southeast Asian Bull. Math. 40, No. 6, 923-930 (2016). MSC: 16Y60 20M17 PDF BibTeX XML Cite \textit{N. Sulochana} and \textit{T. Vasanthi}, Southeast Asian Bull. Math. 40, No. 6, 923--930 (2016; Zbl 1374.16107)
Mei, Yonggang Semilattices of rectangular bands and periodic groups. (Chinese. English summary) Zbl 1374.20052 Basic Sci. J. Text. Univ. 29, No. 3, 291-293 (2016). MSC: 20M10 20M17 20F50 PDF BibTeX XML Cite \textit{Y. Mei}, Basic Sci. J. Text. Univ. 29, No. 3, 291--293 (2016; Zbl 1374.20052) Full Text: DOI
Petrich, M. Malcev products of monoids and varieties of bands. (English) Zbl 1374.20049 Acta Math. Hung. 148, No. 2, 328-359 (2016). Reviewer: Peeter Normak (Tallinn) MSC: 20M07 20M10 08B15 PDF BibTeX XML Cite \textit{M. Petrich}, Acta Math. Hung. 148, No. 2, 328--359 (2016; Zbl 1374.20049) Full Text: DOI
Petrich, Mario Some relations on a semilattice of varieties of completely regular semigroups. (English) Zbl 1396.20067 Semigroup Forum 93, No. 3, 607-628 (2016). MSC: 20M07 08B15 PDF BibTeX XML Cite \textit{M. Petrich}, Semigroup Forum 93, No. 3, 607--628 (2016; Zbl 1396.20067) Full Text: DOI
Azeef Muhammed, P. A. Normal categories from completely simple semigroups. (English) Zbl 1357.20029 Rizvi, Syed Tariq (ed.) et al., Algebra and its applications. ICAA, Aligarh, India, December 15–17, 2014. Proceedings of the conference. Singapore: Springer (ISBN 978-981-10-1650-9/hbk; 978-981-10-1651-6/ebook). Springer Proceedings in Mathematics & Statistics 174, 387-396 (2016). MSC: 20M17 20M10 20M50 PDF BibTeX XML Cite \textit{P. A. Azeef Muhammed}, Springer Proc. Math. Stat. 174, 387--396 (2016; Zbl 1357.20029) Full Text: DOI
Almeida, J.; Klíma, O. Reducibility vs. definability for pseudovarieties of semigroups. (English) Zbl 1385.20017 Int. J. Algebra Comput. 26, No. 7, 1483-1495 (2016). MSC: 20M07 20M14 20M17 PDF BibTeX XML Cite \textit{J. Almeida} and \textit{O. Klíma}, Int. J. Algebra Comput. 26, No. 7, 1483--1495 (2016; Zbl 1385.20017) Full Text: DOI arXiv
Hou, Hailong; Gu, Rui Split graphs whose completely regular endomorphisms form a monoid. (English) Zbl 1413.05155 Ars Comb. 127, 79-88 (2016). MSC: 05C25 20M20 PDF BibTeX XML Cite \textit{H. Hou} and \textit{R. Gu}, Ars Comb. 127, 79--88 (2016; Zbl 1413.05155)
Azeef Muhammed, P. A.; Rajan, A. R. Cross-connections of completely simple semigroups. (English) Zbl 1378.20059 Asian-Eur. J. Math. 9, No. 3, Article ID 1650053, 21 p. (2016). MSC: 20M17 20M10 20M50 PDF BibTeX XML Cite \textit{P. A. Azeef Muhammed} and \textit{A. R. Rajan}, Asian-Eur. J. Math. 9, No. 3, Article ID 1650053, 21 p. (2016; Zbl 1378.20059) Full Text: DOI arXiv
Fan, Xingkui; Chen, Qianhua; Kong, Xiangjun Weak inverses modulo Green’s relation \(\mathcal{{H}}\) on \(E\)-inversive and group-closed semigroups. (English) Zbl 1356.20036 Semigroup Forum 92, No. 3, 691-711 (2016). Reviewer: Jaak Henno (Tallinn) MSC: 20M10 20M18 PDF BibTeX XML Cite \textit{X. Fan} et al., Semigroup Forum 92, No. 3, 691--711 (2016; Zbl 1356.20036) Full Text: DOI
Liu, Jingguo; Chen, Qinqin; Han, Chengmao Locally completely regular epigroups. (English) Zbl 1352.20041 Commun. Algebra 44, No. 10, 4546-4563 (2016). Reviewer: Peter R. Jones (Milwaukee) MSC: 20M10 20M07 PDF BibTeX XML Cite \textit{J. Liu} et al., Commun. Algebra 44, No. 10, 4546--4563 (2016; Zbl 1352.20041) Full Text: DOI
Bhuniya, Anjan Kumar; Hansda, Kalyan On the subsemigroup generated by ordered idempotents of a regular semigroup. (English) Zbl 1463.06083 Discuss. Math., Gen. Algebra Appl. 35, No. 2, 205-211 (2015). MSC: 06F05 20M10 20M17 PDF BibTeX XML Cite \textit{A. K. Bhuniya} and \textit{K. Hansda}, Discuss. Math., Gen. Algebra Appl. 35, No. 2, 205--211 (2015; Zbl 1463.06083) Full Text: DOI Link
Wang, Z.-P. Fundamental semilattices of semigroups. (English) Zbl 1374.20055 Acta Math. Hung. 146, No. 1, 22-39 (2015). Reviewer: Aleksandr V. Tishchenko (Moskva) MSC: 20M17 20M10 PDF BibTeX XML Cite \textit{Z. P. Wang}, Acta Math. Hung. 146, No. 1, 22--39 (2015; Zbl 1374.20055) Full Text: DOI
Petrich, M. An equation for operators on varieties of completely regular semigroups. (English) Zbl 1363.20049 Acta Math. Hung. 146, No. 2, 341-375 (2015). Reviewer: Peter R. Jones (Milwaukee) MSC: 20M07 20M17 PDF BibTeX XML Cite \textit{M. Petrich}, Acta Math. Hung. 146, No. 2, 341--375 (2015; Zbl 1363.20049) Full Text: DOI
Liu, Jingguo Epigroups in which the idempotent-generated subsemigroups are completely regular. (English) Zbl 1349.20052 J. Math. Res. Appl. 35, No. 5, 529-542 (2015). MSC: 20M17 20M05 PDF BibTeX XML Cite \textit{J. Liu}, J. Math. Res. Appl. 35, No. 5, 529--542 (2015; Zbl 1349.20052) Full Text: DOI
Gigoń, Roman S. Eventually regular perfect semigroups. (English) Zbl 1338.20053 Quasigroups Relat. Syst. 23, No. 2, 231-236 (2015). MSC: 20M10 20M17 08A30 PDF BibTeX XML Cite \textit{R. S. Gigoń}, Quasigroups Relat. Syst. 23, No. 2, 231--236 (2015; Zbl 1338.20053)
Kehayopulu, Niovi; Tsingelis, Michael Characterization of the set of regular elements in ordered semigroups. (English) Zbl 1389.06035 Math. Slovaca 65, No. 6, 1251-1260 (2015). MSC: 06F05 PDF BibTeX XML Cite \textit{N. Kehayopulu} and \textit{M. Tsingelis}, Math. Slovaca 65, No. 6, 1251--1260 (2015; Zbl 1389.06035) Full Text: DOI
Petrich, Mario New operators for varieties of completely regular semigroups. (English) Zbl 1341.20060 Semigroup Forum 91, No. 2, 415-449 (2015). Reviewer: Peter R. Jones (Milwaukee) MSC: 20M07 20M17 08B15 PDF BibTeX XML Cite \textit{M. Petrich}, Semigroup Forum 91, No. 2, 415--449 (2015; Zbl 1341.20060) Full Text: DOI
Wu, Qianqian; Gan, Aiping Globals of completely regular monoids. (English) Zbl 1340.20056 Commun. Math. Res. 31, No. 3, 222-228 (2015). MSC: 20M17 20M05 PDF BibTeX XML Cite \textit{Q. Wu} and \textit{A. Gan}, Commun. Math. Res. 31, No. 3, 222--228 (2015; Zbl 1340.20056) Full Text: DOI
Maity, S. K. The congruence \(\mathcal Y^*\) on GV-semigroups. (English) Zbl 1338.20054 Afr. Mat. 26, No. 7-8, 1371-1378 (2015). Reviewer: Jaak Henno (Tallinn) MSC: 20M10 20M17 PDF BibTeX XML Cite \textit{S. K. Maity}, Afr. Mat. 26, No. 7--8, 1371--1378 (2015; Zbl 1338.20054) Full Text: DOI
Jia, Li; Qiao, Zhanke The characterizations of some completely regular semirings. (Chinese. English summary) Zbl 1340.16049 Pure Appl. Math. 31, No. 1, 93-96 (2015). MSC: 16Y60 08A30 20M17 PDF BibTeX XML Cite \textit{L. Jia} and \textit{Z. Qiao}, Pure Appl. Math. 31, No. 1, 93--96 (2015; Zbl 1340.16049) Full Text: DOI
Petrich, Mario Certain relations on a lattice of varieties of completely regular semigroups. (English) Zbl 1339.20053 Commun. Algebra 43, No. 10, 4080-4096 (2015). Reviewer: Aleksandr V. Tishchenko (Moskva) MSC: 20M07 20M17 08B15 PDF BibTeX XML Cite \textit{M. Petrich}, Commun. Algebra 43, No. 10, 4080--4096 (2015; Zbl 1339.20053) Full Text: DOI
Almeida, Jorge; Costa, Alfredo A note on pseudovarieties of completely regular semigroups. (English) Zbl 1346.20074 Bull. Aust. Math. Soc. 92, No. 2, 233-237 (2015). Reviewer: Mikhail Volkov (Ekaterinburg) MSC: 20M07 20M17 20M05 22A15 PDF BibTeX XML Cite \textit{J. Almeida} and \textit{A. Costa}, Bull. Aust. Math. Soc. 92, No. 2, 233--237 (2015; Zbl 1346.20074) Full Text: DOI
Petrich, Mario Varieties of completely regular semigroups related to canonical varieties. (English) Zbl 1328.20077 Semigroup Forum 90, No. 1, 53-99 (2015). Reviewer: Peter R. Jones (Milwaukee) MSC: 20M07 20M17 08B15 PDF BibTeX XML Cite \textit{M. Petrich}, Semigroup Forum 90, No. 1, 53--99 (2015; Zbl 1328.20077) Full Text: DOI
Zhu, Yongwen Cayley-symmetric semigroups. (English) Zbl 1346.05119 Bull. Korean Math. Soc. 52, No. 2, 409-419 (2015). Reviewer: Behnam Khosravi (Zanjan) MSC: 05C25 20M12 20M17 PDF BibTeX XML Cite \textit{Y. Zhu}, Bull. Korean Math. Soc. 52, No. 2, 409--419 (2015; Zbl 1346.05119) Full Text: DOI Link