He, Lin; Wang, Yong Vanishing viscosity limit of the compressible Navier-Stokes equations with finite energy and total mass. (English) Zbl 1481.35330 J. Differ. Equations 310, 327-361 (2022). MSC: 35Q35 35Q31 35B25 35B44 35L65 35L67 76N10 35R09 35R35 35D30 76X05 76B15 76N17 PDF BibTeX XML Cite \textit{L. He} and \textit{Y. Wang}, J. Differ. Equations 310, 327--361 (2022; Zbl 1481.35330) Full Text: DOI OpenURL
Marroquin, Daniel R. Recent progress on the study of the short wave-long wave interactions system for aurora-type phenomena. (English) Zbl 1458.76127 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS). AIMS Ser. Appl. Math. 10, 554-561 (2020). MSC: 76W05 76N10 76N30 35Q35 35Q55 PDF BibTeX XML Cite \textit{D. R. Marroquin}, AIMS Ser. Appl. Math. 10, 554--561 (2020; Zbl 1458.76127) OpenURL
Marroquin, Daniel R. Vanishing viscosity limit of short wave-long wave interactions in planar magnetohydrodynamics. (English) Zbl 1409.76151 J. Differ. Equations 266, No. 12, 8110-8163 (2019). MSC: 76W05 76N17 35Q35 35Q55 PDF BibTeX XML Cite \textit{D. R. Marroquin}, J. Differ. Equations 266, No. 12, 8110--8163 (2019; Zbl 1409.76151) Full Text: DOI arXiv OpenURL
Yang, Jianwei; Wang, Zhengyan; Ding, Fengxia Existence of global weak solutions for a 3D Navier-Stokes-Poisson-Korteweg equations. (English) Zbl 1460.35299 Appl. Anal. 97, No. 4, 528-537 (2018). MSC: 35Q35 35Q30 35Q40 35G25 35D30 35B65 35B40 35A01 76Y05 76X05 76N06 76W05 PDF BibTeX XML Cite \textit{J. Yang} et al., Appl. Anal. 97, No. 4, 528--537 (2018; Zbl 1460.35299) Full Text: DOI OpenURL
Andrasik, Richard; Vodak, Rostislav Rigorous derivation of a 1D model from the 3D non-steady Navier-Stokes equations for compressible nonlinearly viscous fluids. (English) Zbl 1392.35203 Electron. J. Differ. Equ. 2018, Paper No. 114, 21 p. (2018). MSC: 35Q30 35Q35 76N99 35B40 PDF BibTeX XML Cite \textit{R. Andrasik} and \textit{R. Vodak}, Electron. J. Differ. Equ. 2018, Paper No. 114, 21 p. (2018; Zbl 1392.35203) Full Text: Link OpenURL
Ding, Min; Zhu, Shengguo Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow with far field vacuum. (English. French summary) Zbl 1364.35266 J. Math. Pures Appl. (9) 107, No. 3, 288-314 (2017). MSC: 35Q35 35B40 35B35 85A05 35B65 76N17 76B15 PDF BibTeX XML Cite \textit{M. Ding} and \textit{S. Zhu}, J. Math. Pures Appl. (9) 107, No. 3, 288--314 (2017; Zbl 1364.35266) Full Text: DOI OpenURL
Wang, Teng Vanishing viscosity limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations with density-dependent viscosity. (English) Zbl 1315.35178 Commun. Math. Sci. 13, No. 2, 477-495 (2015). MSC: 35Q35 35L60 35L65 76N15 PDF BibTeX XML Cite \textit{T. Wang}, Commun. Math. Sci. 13, No. 2, 477--495 (2015; Zbl 1315.35178) Full Text: DOI OpenURL
Yuan, Hongjun; Meng, Qiu A strong solution for a class of compressible full non-Newtonian models. (English) Zbl 1320.76101 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 81, 224-235 (2013). MSC: 76N10 76A05 35Q35 PDF BibTeX XML Cite \textit{H. Yuan} and \textit{Q. Meng}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 81, 224--235 (2013; Zbl 1320.76101) Full Text: DOI OpenURL
Chen, Gui-Qiang; Perepelitsa, Mikhail Shallow water equations: viscous solutions and inviscid limit. (English) Zbl 1388.35124 Z. Angew. Math. Phys. 63, No. 6, 1067-1084 (2012). MSC: 35L60 35D40 76D09 35Q30 35Q31 35L65 35L45 35B35 76N17 76B15 35L80 35Q35 35B25 PDF BibTeX XML Cite \textit{G.-Q. Chen} and \textit{M. Perepelitsa}, Z. Angew. Math. Phys. 63, No. 6, 1067--1084 (2012; Zbl 1388.35124) Full Text: DOI OpenURL
Qin, Xulong; Yao, Zheng-An; Zhou, Wenshu Global solutions of real compressible reactive gas with density-dependent viscosity and self-gravitation for higher-order kinetics. (English) Zbl 1146.35300 J. Math. Anal. Appl. 346, No. 1, 205-217 (2008). MSC: 35A05 76N10 35R35 35L60 35Q35 35K57 PDF BibTeX XML Cite \textit{X. Qin} et al., J. Math. Anal. Appl. 346, No. 1, 205--217 (2008; Zbl 1146.35300) Full Text: DOI OpenURL
Chen, Gui-Qiang; Li, Tian-Hong Well-posedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge. (English) Zbl 1138.35057 J. Differ. Equations 244, No. 6, 1521-1550 (2008). MSC: 35L65 76N15 35L60 76N10 35L67 35Q35 35L50 PDF BibTeX XML Cite \textit{G.-Q. Chen} and \textit{T.-H. Li}, J. Differ. Equations 244, No. 6, 1521--1550 (2008; Zbl 1138.35057) Full Text: DOI arXiv OpenURL
Choquet, Catherine On a fully coupled nonlinear parabolic problem modelling miscible compressible displacement in porous media. (English) Zbl 1132.35043 J. Math. Anal. Appl. 339, No. 2, 1112-1133 (2008). Reviewer: Song Jiang (Beijing) MSC: 35K50 35K55 35A05 76S05 76N10 35Q35 PDF BibTeX XML Cite \textit{C. Choquet}, J. Math. Anal. Appl. 339, No. 2, 1112--1133 (2008; Zbl 1132.35043) Full Text: DOI OpenURL
Li, Jiequan; Yang, Hanchun Delta-shocks as limits of vanishing viscosity for multidimensional zero-pressure gas dynamics. (English) Zbl 1019.76040 Q. Appl. Math. 59, No. 2, 315-342 (2001). MSC: 76N10 76L05 35Q35 35L65 PDF BibTeX XML Cite \textit{J. Li} and \textit{H. Yang}, Q. Appl. Math. 59, No. 2, 315--342 (2001; Zbl 1019.76040) Full Text: DOI OpenURL
Boudin, Laurent A solution with bounded expansion rate to the model of viscous pressureless gases. (English) Zbl 0973.35057 SIAM J. Math. Anal. 32, No. 1, 172-193 (2000). Reviewer: Vladimir Shelukhin (Novosibirsk) MSC: 35D40 35L70 76N10 35Q30 35Q35 35R05 PDF BibTeX XML Cite \textit{L. Boudin}, SIAM J. Math. Anal. 32, No. 1, 172--193 (2000; Zbl 0973.35057) Full Text: DOI OpenURL
Mamontov, A. E. Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity. I. (English. Russian original) Zbl 0938.35121 Sib. Math. J. 40, No. 2, 351-362 (1999); translation from Sib. Mat. Zh. 40, No. 2, 408-420 (1999). Reviewer: V.Grebenev (Novosibirsk) MSC: 35Q30 35D05 35B45 46E30 76N10 PDF BibTeX XML Cite \textit{A. E. Mamontov}, Sib. Math. J. 40, No. 2, 351--362 (1999; Zbl 0938.35121); translation from Sib. Mat. Zh. 40, No. 2, 408--420 (1999) Full Text: DOI OpenURL
Mamontov, A. E. Global solvability of the multidimensional Navier–Stokes equations of a compressible nonlinear viscous fluid. II. (English. Russian original) Zbl 0928.35119 Sib. Math. J. 40, No. 3, 541-555 (1999); translation from Sib. Mat. Zh. 40, No. 3, 635-649 (1999). Reviewer: V.Grebenev (Novosibirsk) MSC: 35Q30 35D05 35B45 46E30 35A35 PDF BibTeX XML Cite \textit{A. E. Mamontov}, Sib. Math. J. 40, No. 3, 635--649 (1999; Zbl 0928.35119); translation from Sib. Mat. Zh. 40, No. 3, 635--649 (1999) Full Text: DOI OpenURL
Michelson, Daniel Initial-boundary value problems for incomplete singular perturbations of hyperbolic systems. (English) Zbl 0698.35005 J. Anal. Math. 53, 1-138 (1989). Reviewer: R.Leis MSC: 35-02 35L45 35L50 35A27 35B25 35L60 35B40 35N10 PDF BibTeX XML Cite \textit{D. Michelson}, J. Anal. Math. 53, 1--138 (1989; Zbl 0698.35005) Full Text: DOI OpenURL
Gauthier, Serge A spectral collocation method for two-dimensional compressible convection. (English) Zbl 0632.76105 J. Comput. Phys. 75, No. 1, 217-235 (1988). MSC: 76R50 65N35 76M99 PDF BibTeX XML Cite \textit{S. Gauthier}, J. Comput. Phys. 75, No. 1, 217--235 (1988; Zbl 0632.76105) Full Text: DOI OpenURL
McDonald, H.; Shamroth, S. J.; Briley, W. R. Transonic flows with viscous effects. (English) Zbl 0515.76062 Transonic, shock, and multidimensional flows: advances in scientific computing, Proc. Symp., Madison/Wis. 1981, 219-240 (1982). MSC: 76H05 35Q30 76M99 76N10 76D10 65N50 PDF BibTeX XML OpenURL