Ha, Hoang Hai; Ho, Ky Multiplicity results for double phase problems involving a new type of critical growth. (English) Zbl 07759017 J. Math. Anal. Appl. 530, No. 1, Article ID 127659, 36 p. (2024). MSC: 35J62 35A01 35A15 PDF BibTeX XML Cite \textit{H. H. Ha} and \textit{K. Ho}, J. Math. Anal. Appl. 530, No. 1, Article ID 127659, 36 p. (2024; Zbl 07759017) Full Text: DOI arXiv
Mo, Xiu-ming; Mao, An-min; Wang, Xiang-xiang Solutions for Schrödinger-Poisson system involving nonlocal term and critical Exponent. (English) Zbl 07754473 Appl. Math., Ser. B (Engl. Ed.) 38, No. 3, 357-372 (2023). MSC: 35J05 35J20 35J60 PDF BibTeX XML Cite \textit{X.-m. Mo} et al., Appl. Math., Ser. B (Engl. Ed.) 38, No. 3, 357--372 (2023; Zbl 07754473) Full Text: DOI
Sun, Xueqi; Yang, Baoling; Song, Yueqiang Multiplicity of solutions for the noncooperative Choquard-Kirchhoff system involving Hardy-Littlewood-Sobolev critical exponent on the Heisenberg group. (English) Zbl 07753845 Rend. Circ. Mat. Palermo (2) 72, No. 7, 3439-3457 (2023). MSC: 35R03 35B33 35J57 PDF BibTeX XML Cite \textit{X. Sun} et al., Rend. Circ. Mat. Palermo (2) 72, No. 7, 3439--3457 (2023; Zbl 07753845) Full Text: DOI
Dou, Xilin; He, Xiaoming Multiplicity of solutions for a fractional Kirchhoff type equation with a critical nonlocal term. (English) Zbl 07748691 Fract. Calc. Appl. Anal. 26, No. 4, 1941-1963 (2023). MSC: 35R11 35J60 35J20 35A15 PDF BibTeX XML Cite \textit{X. Dou} and \textit{X. He}, Fract. Calc. Appl. Anal. 26, No. 4, 1941--1963 (2023; Zbl 07748691) Full Text: DOI
Rădulescu, Vicenţiu D.; dos Santos, Gelson C. G.; Tavares, Leandro S. Nonhomogeneous multiparameter problems in Orlicz-Sobolev spaces. (English) Zbl 07747126 Math. Nachr. 296, No. 6, 2555-2574 (2023). Reviewer: Patrick Winkert (Berlin) MSC: 35J62 35J25 35A01 35A15 PDF BibTeX XML Cite \textit{V. D. Rădulescu} et al., Math. Nachr. 296, No. 6, 2555--2574 (2023; Zbl 07747126) Full Text: DOI
Zhang, Xinrui; He, Xiaoming Fractional Schrödinger-Poisson system with critical growth and potentials vanishing at infinity. (English) Zbl 07747104 Math. Nachr. 296, No. 5, 2167-2191 (2023). MSC: 35R11 35B35 35B40 35K57 92C17 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{X. He}, Math. Nachr. 296, No. 5, 2167--2191 (2023; Zbl 07747104) Full Text: DOI
Wu, Dong-Lun Homoclinic solutions for a class of asymptotically autonomous Hamiltonian systems with indefinite sign nonlinearities. (English) Zbl 07742365 Electron. J. Qual. Theory Differ. Equ. 2023, Paper No. 31, 27 p. (2023). MSC: 34C37 37J06 PDF BibTeX XML Cite \textit{D.-L. Wu}, Electron. J. Qual. Theory Differ. Equ. 2023, Paper No. 31, 27 p. (2023; Zbl 07742365) Full Text: DOI
Tao, Chunxia; Wang, Yike Integral inequalities with an extended Poisson kernel and the existence of the extremals. (English) Zbl 07741158 Adv. Nonlinear Stud. 23, Article ID 20230104, 21 p. (2023). MSC: 35A23 39B72 PDF BibTeX XML Cite \textit{C. Tao} and \textit{Y. Wang}, Adv. Nonlinear Stud. 23, Article ID 20230104, 21 p. (2023; Zbl 07741158) Full Text: DOI
Zhang, Zhongyi; Repovš, Dušan D. On degenerate fractional Schrödinger-Kirchhoff-Poisson equations with upper critical nonlinearity and electromagnetic fields. (English) Zbl 1518.35656 Complex Var. Elliptic Equ. 68, No. 7, 1219-1238 (2023). MSC: 35R11 35A15 35B33 35J62 47G20 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{D. D. Repovš}, Complex Var. Elliptic Equ. 68, No. 7, 1219--1238 (2023; Zbl 1518.35656) Full Text: DOI arXiv
Ahmed, Ahmed; Vall, Mohamed Saad Bouh Elemine Minimization of elliptic non-local functionals involving \(\vec{p}(\cdot)\)-Laplacian. (English) Zbl 07695143 J. Elliptic Parabol. Equ. 9, No. 1, 331-354 (2023). Reviewer: Hans-Bert Rademacher (Leipzig) MSC: 58E30 35D30 35J60 58E12 PDF BibTeX XML Cite \textit{A. Ahmed} and \textit{M. S. B. E. Vall}, J. Elliptic Parabol. Equ. 9, No. 1, 331--354 (2023; Zbl 07695143) Full Text: DOI
Chaker, Jamil; Kim, Minhyun; Weidner, Marvin The concentration-compactness principle for the nonlocal anisotropic \(p\)-Laplacian of mixed order. (English) Zbl 1516.35454 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 232, Article ID 113254, 18 p. (2023). MSC: 35R11 35A01 35J92 49J35 46E35 46B50 PDF BibTeX XML Cite \textit{J. Chaker} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 232, Article ID 113254, 18 p. (2023; Zbl 1516.35454) Full Text: DOI arXiv
Zheng, Tian-Tian; Lei, Chun-Yu; Liao, Jia-Feng Multiple positive solutions for a Schrödinger-Poisson-Slater equation with critical growth. (English) Zbl 1514.35226 J. Math. Anal. Appl. 525, No. 2, Article ID 127206, 26 p. (2023). MSC: 35J91 35J15 35A01 35A15 PDF BibTeX XML Cite \textit{T.-T. Zheng} et al., J. Math. Anal. Appl. 525, No. 2, Article ID 127206, 26 p. (2023; Zbl 1514.35226) Full Text: DOI
Xia, Jiankang; Zhang, Xu Normalized saddle solutions for a mass supercritical Choquard equation. (English) Zbl 1514.35198 J. Differ. Equations 364, 471-497 (2023). MSC: 35J61 35A01 35J20 PDF BibTeX XML Cite \textit{J. Xia} and \textit{X. Zhang}, J. Differ. Equations 364, 471--497 (2023; Zbl 1514.35198) Full Text: DOI
Zhang, Youpei; Qin, Dongdong Existence of solutions for a critical Choquard-Kirchhoff problem with variable exponents. (English) Zbl 1514.35211 J. Geom. Anal. 33, No. 7, Paper No. 200, 28 p. (2023). MSC: 35J62 35A01 35A15 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{D. Qin}, J. Geom. Anal. 33, No. 7, Paper No. 200, 28 p. (2023; Zbl 1514.35211) Full Text: DOI
Wang, Ji-xiu; Gao, Qi On the existence of ground state solutions to a quasilinear Schrödinger equation involving \(p\)-Laplacian. (English) Zbl 1514.35247 Acta Math. Appl. Sin., Engl. Ser. 39, No. 2, 381-395 (2023). MSC: 35J92 35B33 35J20 PDF BibTeX XML Cite \textit{J.-x. Wang} and \textit{Q. Gao}, Acta Math. Appl. Sin., Engl. Ser. 39, No. 2, 381--395 (2023; Zbl 1514.35247) Full Text: DOI
Guo, Qing; Zhao, Leiga Positive solutions with high energy for fractional Schrödinger equations. (English) Zbl 07682812 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 3, 1116-1130 (2023). MSC: 35J60 35J92 58E05 PDF BibTeX XML Cite \textit{Q. Guo} and \textit{L. Zhao}, Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 3, 1116--1130 (2023; Zbl 07682812) Full Text: DOI
Baldelli, Laura; Filippucci, Roberta Existence of solutions for critical \((p,q)\)-Laplacian equations in \(\mathbb{R}^N\). (English) Zbl 1514.35230 Commun. Contemp. Math. 25, No. 5, Article ID 2150109, 26 p. (2023). MSC: 35J92 35A01 35J20 PDF BibTeX XML Cite \textit{L. Baldelli} and \textit{R. Filippucci}, Commun. Contemp. Math. 25, No. 5, Article ID 2150109, 26 p. (2023; Zbl 1514.35230) Full Text: DOI
Han, Yazhou Integral equations on compact manifold with boundary. (English) Zbl 1509.45008 Math. Inequal. Appl. 26, No. 1, 161-182 (2023). MSC: 45N05 58E30 58J32 45G15 45E10 PDF BibTeX XML Cite \textit{Y. Han}, Math. Inequal. Appl. 26, No. 1, 161--182 (2023; Zbl 1509.45008) Full Text: DOI
Anoop, T. V.; Das, Ujjal On the generalised Brézis-Nirenberg problem. (English) Zbl 1510.35041 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 4, 36 p. (2023). Reviewer: Tobias König (Frankfurt am Main) MSC: 35B33 35J60 35J92 58E30 PDF BibTeX XML Cite \textit{T. V. Anoop} and \textit{U. Das}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 4, 36 p. (2023; Zbl 1510.35041) Full Text: DOI arXiv
Hu, Jiaqing; Mao, Anmin Normalized solutions to the Kirchhoff equation with a perturbation term. (English) Zbl 1513.35236 Differ. Integral Equ. 36, No. 3-4, 289-312 (2023). Reviewer: Dian K. Palagachev (Bari) MSC: 35J60 35A15 35B38 PDF BibTeX XML Cite \textit{J. Hu} and \textit{A. Mao}, Differ. Integral Equ. 36, No. 3--4, 289--312 (2023; Zbl 1513.35236)
Tian, Guaiqi; Suo, Hongmin; An, Yucheng Multiple positive solutions for a bi-nonlocal Kirchhoff-Schrödinger-Poisson system with critical growth. (English) Zbl 1514.35178 Electron Res. Arch. 30, No. 12, 4493-4506 (2022). MSC: 35J57 35B09 35A01 PDF BibTeX XML Cite \textit{G. Tian} et al., Electron Res. Arch. 30, No. 12, 4493--4506 (2022; Zbl 1514.35178) Full Text: DOI
Li, Dongliang; Zhu, Maochun Concentration-compactness principle associated with Adams’ inequality in Lorentz-Sobolev space. (English) Zbl 1517.46025 Adv. Nonlinear Stud. 22, 711-724 (2022). Reviewer: Şerban Costea (Piteşti) MSC: 46E35 46E30 PDF BibTeX XML Cite \textit{D. Li} and \textit{M. Zhu}, Adv. Nonlinear Stud. 22, 711--724 (2022; Zbl 1517.46025) Full Text: DOI
Wang, Xumin; Shen, Yansheng Existence results for fractional Brezis-Nirenberg type problems in unbounded domains. (English) Zbl 1509.35363 Topol. Methods Nonlinear Anal. 60, No. 2, 517-546 (2022). MSC: 35R11 35A15 35A23 46E35 PDF BibTeX XML Cite \textit{X. Wang} and \textit{Y. Shen}, Topol. Methods Nonlinear Anal. 60, No. 2, 517--546 (2022; Zbl 1509.35363) Full Text: DOI Link
Panda, Akasmika; Choudhuri, Debajyoti Infinitely many solutions for a doubly nonlocal fractional problem involving two critical nonlinearities. (English) Zbl 1501.35444 Complex Var. Elliptic Equ. 67, No. 12, 2835-2865 (2022). MSC: 35R11 35B33 35D30 35J92 46E35 PDF BibTeX XML Cite \textit{A. Panda} and \textit{D. Choudhuri}, Complex Var. Elliptic Equ. 67, No. 12, 2835--2865 (2022; Zbl 1501.35444) Full Text: DOI
Zhang, Zhongyi On the critical fractional Schrödinger-Kirchhoff-Poisson equations with electromagnetic fields. (English) Zbl 1500.35308 Open Math. 20, 878-893 (2022). MSC: 35R11 35A15 35B25 35J61 47G20 PDF BibTeX XML Cite \textit{Z. Zhang}, Open Math. 20, 878--893 (2022; Zbl 1500.35308) Full Text: DOI
Chung, Nguyen Thanh; Ho, Ky On a \(p (\cdot)\)-biharmonic problem of Kirchhoff type involving critical growth. (English) Zbl 1498.35310 Appl. Anal. 101, No. 16, 5700-5726 (2022). MSC: 35J92 35A01 PDF BibTeX XML Cite \textit{N. T. Chung} and \textit{K. Ho}, Appl. Anal. 101, No. 16, 5700--5726 (2022; Zbl 1498.35310) Full Text: DOI arXiv
Duy, Nguyen Tuan; Phi, Le Long Finsler Trudinger-Moser inequalities on \(\mathbb{R}^2\). (English) Zbl 1496.35018 Sci. China, Math. 65, No. 9, 1803-1826 (2022). MSC: 35A23 26D15 46E35 PDF BibTeX XML Cite \textit{N. T. Duy} and \textit{L. L. Phi}, Sci. China, Math. 65, No. 9, 1803--1826 (2022; Zbl 1496.35018) Full Text: DOI
Pucci, Patrizia; Ye, Yiwei Existence of nontrivial solutions for critical Kirchhoff-Poisson systems in the Heisenberg group. (English) Zbl 1495.35175 Adv. Nonlinear Stud. 22, 361-371 (2022). MSC: 35R03 35A15 35J57 35J61 35R09 47J20 PDF BibTeX XML Cite \textit{P. Pucci} and \textit{Y. Ye}, Adv. Nonlinear Stud. 22, 361--371 (2022; Zbl 1495.35175) Full Text: DOI
Lv, Huilin; Zheng, Shenzhou Existence and multiplicity for fractional \(p\)-Kirchhoff problem with competitive nonlinearities and critical growth. (English) Zbl 1494.35164 Anal. Math. Phys. 12, No. 4, Paper No. 96, 30 p. (2022). MSC: 35R11 35A15 35B33 35J92 47G20 PDF BibTeX XML Cite \textit{H. Lv} and \textit{S. Zheng}, Anal. Math. Phys. 12, No. 4, Paper No. 96, 30 p. (2022; Zbl 1494.35164) Full Text: DOI
Hang, Fengbo Aubin type almost sharp Moser-Trudinger inequality revisited. (English) Zbl 1501.35013 J. Geom. Anal. 32, No. 9, Paper No. 230, 40 p. (2022). Reviewer: Tobias König (Frankfurt am Main) MSC: 35A23 58C05 PDF BibTeX XML Cite \textit{F. Hang}, J. Geom. Anal. 32, No. 9, Paper No. 230, 40 p. (2022; Zbl 1501.35013) Full Text: DOI arXiv
Sun, Mingzhe; Shi, Shaoyun; Repovš, Dušan D. Degenerate fractional Kirchhoff-type system with magnetic fields and upper critical growth. (English) Zbl 1492.35128 Mediterr. J. Math. 19, No. 4, Paper No. 170, 23 p. (2022). MSC: 35J62 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{M. Sun} et al., Mediterr. J. Math. 19, No. 4, Paper No. 170, 23 p. (2022; Zbl 1492.35128) Full Text: DOI arXiv
Chen, Caixia; Qian, Aixia Multiple positive solutions for the Schrödinger-Poisson equation with critical growth. (English) Zbl 1497.35101 Math. Found. Comput. 5, No. 2, 113-128 (2022). MSC: 35J05 35J57 35A01 35A15 PDF BibTeX XML Cite \textit{C. Chen} and \textit{A. Qian}, Math. Found. Comput. 5, No. 2, 113--128 (2022; Zbl 1497.35101) Full Text: DOI
Liu, Zhisu; Rădulescu, Vicenţiu D.; Tang, Chunlei; Zhang, Jianjun Another look at planar Schrödinger-Newton systems. (English) Zbl 1491.35175 J. Differ. Equations 328, 65-104 (2022). MSC: 35J47 35J61 35J20 PDF BibTeX XML Cite \textit{Z. Liu} et al., J. Differ. Equations 328, 65--104 (2022; Zbl 1491.35175) Full Text: DOI
Lv, Huilin; Zheng, Shenzhou Ground states for Schrödinger-Kirchhoff equations of fractional \(p\)-Laplacian involving logarithmic and critical nonlinearity. (English) Zbl 1489.35302 Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106438, 15 p. (2022). MSC: 35R11 35A15 35J92 35R09 47G20 PDF BibTeX XML Cite \textit{H. Lv} and \textit{S. Zheng}, Commun. Nonlinear Sci. Numer. Simul. 111, Article ID 106438, 15 p. (2022; Zbl 1489.35302) Full Text: DOI
Du, Lele; Gao, Fashun; Yang, Minbo On elliptic equations with Stein-Weiss type convolution parts. (English) Zbl 1490.35179 Math. Z. 301, No. 2, 2185-2225 (2022). MSC: 35J91 35J05 35B33 35B06 35B65 PDF BibTeX XML Cite \textit{L. Du} et al., Math. Z. 301, No. 2, 2185--2225 (2022; Zbl 1490.35179) Full Text: DOI arXiv
Eddine, Nabil Chems Existence of solutions for a critical \((p_1(x), \dots, p_n(x))\)-Kirchhoff-type potential systems. (English) Zbl 1490.35144 Appl. Anal. 101, No. 6, 2239-2253 (2022). MSC: 35J57 35J62 35B33 35A01 PDF BibTeX XML Cite \textit{N. C. Eddine}, Appl. Anal. 101, No. 6, 2239--2253 (2022; Zbl 1490.35144) Full Text: DOI
Saifia, Ouarda; Vélin, Jean Existence result for variable exponents elliptic system with lack of compactness. (English) Zbl 1490.35147 Appl. Anal. 101, No. 6, 2119-2143 (2022). MSC: 35J57 35J92 35A01 PDF BibTeX XML Cite \textit{O. Saifia} and \textit{J. Vélin}, Appl. Anal. 101, No. 6, 2119--2143 (2022; Zbl 1490.35147) Full Text: DOI
Liang, Shuaishuai; Song, Yueqiang Nontrivial solutions of quasilinear Choquard equation involving the \(p\)-Laplacian operator and critical nonlinearities. (English) Zbl 07511583 Differ. Integral Equ. 35, No. 5-6, 359-370 (2022). MSC: 35J20 35J60 35J62 PDF BibTeX XML Cite \textit{S. Liang} and \textit{Y. Song}, Differ. Integral Equ. 35, No. 5--6, 359--370 (2022; Zbl 07511583)
Zhang, Youpei; Tang, Xianhua; Rădulescu, Vicenţiu D. High and low perturbations of Choquard equations with critical reaction and variable growth. (English) Zbl 07481828 Discrete Contin. Dyn. Syst. 42, No. 4, 1971-2003 (2022). MSC: 47G20 35B38 58E50 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Discrete Contin. Dyn. Syst. 42, No. 4, 1971--2003 (2022; Zbl 07481828) Full Text: DOI
de Pablo, Arturo; Quirós, Fernando; Ritorto, Antonella Extremals in Hardy-Littlewood-Sobolev inequalities for stable processes. (English) Zbl 1480.35199 J. Math. Anal. Appl. 507, No. 1, Article ID 125742, 18 p. (2022). MSC: 35J61 35R11 PDF BibTeX XML Cite \textit{A. de Pablo} et al., J. Math. Anal. Appl. 507, No. 1, Article ID 125742, 18 p. (2022; Zbl 1480.35199) Full Text: DOI arXiv
Nyamoradi, Nemat; Razani, Abdolrahman Existence to fractional critical equation with Hardy-Littlewood-Sobolev nonlinearities. (English) Zbl 1513.35054 Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 4, 1321-1332 (2021). MSC: 35B33 35A15 35R11 PDF BibTeX XML Cite \textit{N. Nyamoradi} and \textit{A. Razani}, Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 4, 1321--1332 (2021; Zbl 1513.35054) Full Text: DOI
Figueiredo, Giovany M.; Silva, Leticia S. Existence of positive solutions of a critical system in \(\mathbb{R}^N\). (English) Zbl 1491.35174 Palest. J. Math. 10, No. 2, 502-532 (2021). MSC: 35J47 35J61 35A01 35J50 58E05 PDF BibTeX XML Cite \textit{G. M. Figueiredo} and \textit{L. S. Silva}, Palest. J. Math. 10, No. 2, 502--532 (2021; Zbl 1491.35174) Full Text: Link
Wang, Yile Existence of stable standing waves for the nonlinear Schrödinger equation with inverse-power potential and combined power-type and Choquard-type nonlinearities. (English) Zbl 1485.35348 AIMS Math. 6, No. 6, 5837-5850 (2021). MSC: 35Q55 PDF BibTeX XML Cite \textit{Y. Wang}, AIMS Math. 6, No. 6, 5837--5850 (2021; Zbl 1485.35348) Full Text: DOI
Zhu, Maochun; Li, Dongliang Concentration-compactness principle for Trudinger-Moser-Lorentz type inequalities on the whole space. (Chinese. English summary) Zbl 1499.46073 Acta Math. Appl. Sin. 44, No. 2, 294-306 (2021). MSC: 46E35 26D07 46E30 PDF BibTeX XML Cite \textit{M. Zhu} and \textit{D. Li}, Acta Math. Appl. Sin. 44, No. 2, 294--306 (2021; Zbl 1499.46073)
Xu, Zhiguo Infinitely many solutions for the fractional \(p\)&\(q\) problem with critical Sobolev-Hardy exponents and sign-changing weight functions. (English) Zbl 07442506 Differ. Integral Equ. 34, No. 9-10, 519-537 (2021). Reviewer: Stepan Agop Tersian (Rousse) MSC: 35R11 35A15 47G20 PDF BibTeX XML Cite \textit{Z. Xu}, Differ. Integral Equ. 34, No. 9--10, 519--537 (2021; Zbl 07442506)
Amiri, Shahla; Nyamoradi, Nemat; Behzadi, Abolfazl; Ambrosio, Vincenzo Existence and multiplicity of positive solutions to fractional Laplacian systems with combined critical Sobolev terms. (English) Zbl 1479.35910 Positivity 25, No. 4, 1373-1402 (2021). MSC: 35R11 35B09 35B33 35A15 35J61 PDF BibTeX XML Cite \textit{S. Amiri} et al., Positivity 25, No. 4, 1373--1402 (2021; Zbl 1479.35910) Full Text: DOI
Esteban, Maria J.; Lewin, Mathieu; Séré, Éric Dirac-Coulomb operators with general charge distribution. II: The lowest eigenvalue. (English) Zbl 1481.35292 Proc. Lond. Math. Soc. (3) 123, No. 4, 345-383 (2021). MSC: 35P05 35A15 49J35 49R05 81Q10 PDF BibTeX XML Cite \textit{M. J. Esteban} et al., Proc. Lond. Math. Soc. (3) 123, No. 4, 345--383 (2021; Zbl 1481.35292) Full Text: DOI arXiv
Dinh, Van Duong Non-radial scattering theory for nonlinear Schrödinger equations with potential. (English) Zbl 1476.35156 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 6, Paper No. 61, 42 p. (2021). MSC: 35P25 35Q55 PDF BibTeX XML Cite \textit{V. D. Dinh}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 6, Paper No. 61, 42 p. (2021; Zbl 1476.35156) Full Text: DOI arXiv
Chen, Wenjing; Rădulescu, Vicenţiu D.; Zhang, Binlin Fractional Choquard-Kirchhoff problems with critical nonlinearity and Hardy potential. (English) Zbl 1479.35419 Anal. Math. Phys. 11, No. 3, Paper No. 132, 25 p. (2021). Reviewer: Leszek Gasiński (Kraków) MSC: 35J62 35R11 35A01 35J20 PDF BibTeX XML Cite \textit{W. Chen} et al., Anal. Math. Phys. 11, No. 3, Paper No. 132, 25 p. (2021; Zbl 1479.35419) Full Text: DOI
Gao, Yongshuai; Li, Shuai Constraint minimizers of inhomogeneous mass subcritical minimization problems. (English) Zbl 1473.35151 Math. Methods Appl. Sci. 44, No. 13, 10062-10075 (2021). MSC: 35J20 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{S. Li}, Math. Methods Appl. Sci. 44, No. 13, 10062--10075 (2021; Zbl 1473.35151) Full Text: DOI
Dehsari, Iraj; Nyamoradi, Nemat Solutions for the fractional \(p\)-Laplacian systems with several critical Sobolev-Hardy terms. (English) Zbl 1488.35058 Differ. Equ. Appl. 13, No. 1, 15-33 (2021). MSC: 35B33 35J60 35J65 PDF BibTeX XML Cite \textit{I. Dehsari} and \textit{N. Nyamoradi}, Differ. Equ. Appl. 13, No. 1, 15--33 (2021; Zbl 1488.35058) Full Text: DOI
Pucci, Patrizia; Temperini, Letizia Existence for fractional \((p,q)\) systems with critical and Hardy terms in \(\mathbb{R}^N\). (English) Zbl 1470.35408 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 211, Article ID 112477, 33 p. (2021). MSC: 35R11 35B08 35J47 35J50 35B33 47G20 PDF BibTeX XML Cite \textit{P. Pucci} and \textit{L. Temperini}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 211, Article ID 112477, 33 p. (2021; Zbl 1470.35408) Full Text: DOI
Gonçalves, Felipe; Oliveira e Silva, Diogo; Ramos, João P. G. On regularity and mass concentration phenomena for the sign uncertainty principle. (English) Zbl 1469.42015 J. Geom. Anal. 31, No. 6, 6080-6101 (2021). MSC: 42A82 42B10 46A11 42A38 PDF BibTeX XML Cite \textit{F. Gonçalves} et al., J. Geom. Anal. 31, No. 6, 6080--6101 (2021; Zbl 1469.42015) Full Text: DOI arXiv
Álvarez-Caudevilla, Pablo; Colorado, Eduardo; Ortega, Alejandro Existence of positive solutions for Brezis-Nirenberg type problems involving an inverse operator. (English) Zbl 1467.35170 Electron. J. Differ. Equ. 2021, Paper No. 52, 24 p. (2021). MSC: 35J91 35J25 35B09 35A01 35A15 PDF BibTeX XML Cite \textit{P. Álvarez-Caudevilla} et al., Electron. J. Differ. Equ. 2021, Paper No. 52, 24 p. (2021; Zbl 1467.35170) Full Text: arXiv Link
Lv, Ying; Xue, Yan-Fang; Tang, Chun-Lei Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. (English) Zbl 1472.37065 Discrete Contin. Dyn. Syst., Ser. B 26, No. 3, 1627-1652 (2021). Reviewer: Zdzisław Dzedzej (Gdańsk) MSC: 37J46 37J51 37C29 PDF BibTeX XML Cite \textit{Y. Lv} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 3, 1627--1652 (2021; Zbl 1472.37065) Full Text: DOI
Shen, Zupei; Yu, Jianshe Multiple solutions for weighted Kirchhoff equations involving critical Hardy-Sobolev exponent. (English) Zbl 1466.35196 Adv. Nonlinear Anal. 10, 673-683 (2021). MSC: 35J62 35B33 35A01 PDF BibTeX XML Cite \textit{Z. Shen} and \textit{J. Yu}, Adv. Nonlinear Anal. 10, 673--683 (2021; Zbl 1466.35196) Full Text: DOI
Liang, Sihua; Pu, Hongling; Rădulescu, Vicenţiu D. High perturbations of critical fractional Kirchhoff equations with logarithmic nonlinearity. (English) Zbl 1462.35444 Appl. Math. Lett. 116, Article ID 107027, 6 p. (2021). MSC: 35R11 35J62 35J25 35J92 PDF BibTeX XML Cite \textit{S. Liang} et al., Appl. Math. Lett. 116, Article ID 107027, 6 p. (2021; Zbl 1462.35444) Full Text: DOI
Zhang, Shutao; Han, Yazhou Extremal problems of Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds. (English) Zbl 1470.46062 J. Math. Anal. Appl. 495, No. 2, Article ID 124750, 13 p. (2021). MSC: 46E35 53C21 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{Y. Han}, J. Math. Anal. Appl. 495, No. 2, Article ID 124750, 13 p. (2021; Zbl 1470.46062) Full Text: DOI arXiv
Aouaoui, Sami; Jlel, Rahma New weighted sharp Trudinger-Moser inequalities defined on the whole euclidean space \(\mathbb{R}^N\) and applications. (English) Zbl 1458.35007 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 50, 45 p. (2021); correction ibid. 62, No. 5, Paper No. 154, 3 p. (2023). MSC: 35A23 26D15 35A15 35B33 35D30 35J20 35J62 46E35 PDF BibTeX XML Cite \textit{S. Aouaoui} and \textit{R. Jlel}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 50, 45 p. (2021; Zbl 1458.35007) Full Text: DOI
Ho, Ky; Sim, Inbo An existence result for \(( p , q )\)-Laplace equations involving sandwich-type and critical growth. (English) Zbl 1445.35183 Appl. Math. Lett. 111, Article ID 106646, 8 p. (2021). MSC: 35J92 35J20 35J25 PDF BibTeX XML Cite \textit{K. Ho} and \textit{I. Sim}, Appl. Math. Lett. 111, Article ID 106646, 8 p. (2021; Zbl 1445.35183) Full Text: DOI
Duan, Xueliang; Wei, Gongming; Yang, Haitao Positive solutions and infinitely many solutions for a weakly coupled system. (English) Zbl 1513.35217 Acta Math. Sci., Ser. B, Engl. Ed. 40, No. 5, 1585-1601 (2020). MSC: 35J47 35J50 35J91 35B09 PDF BibTeX XML Cite \textit{X. Duan} et al., Acta Math. Sci., Ser. B, Engl. Ed. 40, No. 5, 1585--1601 (2020; Zbl 1513.35217) Full Text: DOI
Che, Guofeng; Chen, Haibo Existence and concentration result for Kirchhoff equations with critical exponent and Hartree nonlinearity. (English) Zbl 1471.35019 J. Appl. Anal. Comput. 10, No. 5, 2121-2144 (2020). Reviewer: Shuangjie Peng (Wuhan) MSC: 35B25 35B38 35J62 35B33 PDF BibTeX XML Cite \textit{G. Che} and \textit{H. Chen}, J. Appl. Anal. Comput. 10, No. 5, 2121--2144 (2020; Zbl 1471.35019) Full Text: DOI
Dinh, Van Duong Existence, non-existence and blow-up behaviour of minimizers for the mass-critical fractional non-linear Schrödinger equations with periodic potentials. (English) Zbl 1459.35376 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3252-3292 (2020). MSC: 35R11 35A15 35B44 35J61 35Q55 PDF BibTeX XML Cite \textit{V. D. Dinh}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3252--3292 (2020; Zbl 1459.35376) Full Text: DOI arXiv
Sun, Xia; Teng, Kaimin Existence of normalized solutions for fractional Schrödinger-Poisson system. (Chinese. English summary) Zbl 1463.35469 Math. Appl. 33, No. 3, 666-680 (2020). MSC: 35Q55 35R11 PDF BibTeX XML Cite \textit{X. Sun} and \textit{K. Teng}, Math. Appl. 33, No. 3, 666--680 (2020; Zbl 1463.35469)
Benmansour, Safia; Messirdi, Sofiane; Matallah, Atika Existence and nonexistence results for elliptic equations involving two critical singular nonlinearities at the same pole. (English) Zbl 1463.35216 Afr. Mat. 31, No. 5-6, 949-957 (2020). MSC: 35J20 35J50 35B33 PDF BibTeX XML Cite \textit{S. Benmansour} et al., Afr. Mat. 31, No. 5--6, 949--957 (2020; Zbl 1463.35216) Full Text: DOI
Liu, Yanjun Concentration-compactness principle of singular Trudinger-Moser inequality involving \(N\)-Finsler-Laplacian operator. (English) Zbl 1465.46038 Int. J. Math. 31, No. 11, Article ID 2050085, 20 p. (2020). MSC: 46E35 26D10 PDF BibTeX XML Cite \textit{Y. Liu}, Int. J. Math. 31, No. 11, Article ID 2050085, 20 p. (2020; Zbl 1465.46038) Full Text: DOI arXiv
Dong, Siyu; Feng, Xiaojing Ground state solution to Schr\"dinger-Poisson system with critical term. (Chinese. English summary) Zbl 1463.35457 Basic Sci. J. Text. Univ. 33, No. 1, 75-80 (2020). MSC: 35Q55 35Q51 PDF BibTeX XML Cite \textit{S. Dong} and \textit{X. Feng}, Basic Sci. J. Text. Univ. 33, No. 1, 75--80 (2020; Zbl 1463.35457) Full Text: DOI
Li, Xinfu; Zhao, Junying Orbital stability of standing waves for Schrödinger type equations with slowly decaying linear potential. (English) Zbl 1443.35146 Comput. Math. Appl. 79, No. 2, 303-316 (2020). MSC: 35Q55 35B35 35C08 PDF BibTeX XML Cite \textit{X. Li} and \textit{J. Zhao}, Comput. Math. Appl. 79, No. 2, 303--316 (2020; Zbl 1443.35146) Full Text: DOI arXiv
Wang, Xu Min Singular supercritical Trudinger-Moser inequalities and the existence of extremals. (English) Zbl 1448.35201 Acta Math. Sin., Engl. Ser. 36, No. 8, 873-888 (2020). MSC: 35J60 42B35 42B37 46E35 35A23 PDF BibTeX XML Cite \textit{X. M. Wang}, Acta Math. Sin., Engl. Ser. 36, No. 8, 873--888 (2020; Zbl 1448.35201) Full Text: DOI
Dinh, Van Duong Existence and blow-up behavior of standing waves for the Gross-Pitaevskii functional with a higher order interaction. (English) Zbl 1448.35139 Math. Methods Appl. Sci. 43, No. 12, 7087-7105 (2020). MSC: 35J20 35A15 35B44 35J35 35Q55 PDF BibTeX XML Cite \textit{V. D. Dinh}, Math. Methods Appl. Sci. 43, No. 12, 7087--7105 (2020; Zbl 1448.35139) Full Text: DOI
Dinh, van Duong Existence and limiting behavior of minimizers for attractive Schrödinger-Poisson systems with periodic potentials. (English) Zbl 1446.35006 Math. Methods Appl. Sci. 43, No. 7, 4781-4797 (2020). MSC: 35A15 35B44 35J20 PDF BibTeX XML Cite \textit{v. D. Dinh}, Math. Methods Appl. Sci. 43, No. 7, 4781--4797 (2020; Zbl 1446.35006) Full Text: DOI
He, Xiaoming; Zou, Wenming Bifurcation and multiplicity of positive solutions for nonhomogeneous fractional Schrödinger equations with critical growth. (English) Zbl 1448.35126 Sci. China, Math. 63, No. 8, 1571-1612 (2020). MSC: 35J10 35R11 35A15 35B33 PDF BibTeX XML Cite \textit{X. He} and \textit{W. Zou}, Sci. China, Math. 63, No. 8, 1571--1612 (2020; Zbl 1448.35126) Full Text: DOI
Chu, Changmu; Sun, Jiaojiao Multiplicity of positive solutions for a class of \(p\)-Kirchhoff equation with critical exponent. (English) Zbl 1447.35136 Ann. Funct. Anal. 11, No. 4, 1126-1140 (2020). MSC: 35J25 35J60 35B09 35B33 35A15 PDF BibTeX XML Cite \textit{C. Chu} and \textit{J. Sun}, Ann. Funct. Anal. 11, No. 4, 1126--1140 (2020; Zbl 1447.35136) Full Text: DOI
Lu, Guozhen; Shen, Yansheng Existence of solutions to fractional \(p\)-Laplacian systems with homogeneous nonlinearities of critical Sobolev growth. (English) Zbl 1445.35306 Adv. Nonlinear Stud. 20, No. 3, 579-597 (2020). MSC: 35R11 35B33 35J50 35J57 39B72 45G15 PDF BibTeX XML Cite \textit{G. Lu} and \textit{Y. Shen}, Adv. Nonlinear Stud. 20, No. 3, 579--597 (2020; Zbl 1445.35306) Full Text: DOI
Li, Lin; Pucci, Patrizia; Tang, Xianhua Ground state solutions for the nonlinear Schrödinger-Bopp-Podolsky system with critical Sobolev exponent. (English) Zbl 1453.35079 Adv. Nonlinear Stud. 20, No. 3, 511-538 (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35J50 35J48 35Q60 PDF BibTeX XML Cite \textit{L. Li} et al., Adv. Nonlinear Stud. 20, No. 3, 511--538 (2020; Zbl 1453.35079) Full Text: DOI
Dinh, Van Duong Blow-up behavior of prescribed mass minimizers for nonlinear Choquard equations with singular potentials. (English) Zbl 1442.35127 Monatsh. Math. 192, No. 3, 551-589 (2020). MSC: 35J61 35B44 35A15 PDF BibTeX XML Cite \textit{V. D. Dinh}, Monatsh. Math. 192, No. 3, 551--589 (2020; Zbl 1442.35127) Full Text: DOI
Song, Yueqiang; Zhao, Fu; Pu, Hongling; Shi, Shaoyun Existence results for Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity. (English) Zbl 1442.35141 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111900, 15 p. (2020). MSC: 35J62 35A01 35A15 PDF BibTeX XML Cite \textit{Y. Song} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111900, 15 p. (2020; Zbl 1442.35141) Full Text: DOI
Liang, Sihua; Wen, Lixi; Zhang, Binlin Solutions for a class of quasilinear Choquard equations with Hardy-Littlewood-Sobolev critical nonlinearity. (English) Zbl 1442.35139 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111888, 17 p. (2020). MSC: 35J62 35A01 35A15 PDF BibTeX XML Cite \textit{S. Liang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111888, 17 p. (2020; Zbl 1442.35139) Full Text: DOI
Song, Yueqiang; Shi, Shaoyun Multiplicity results for Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity. (English) Zbl 1440.35119 J. Dyn. Control Syst. 26, No. 3, 469-480 (2020). MSC: 35J60 35J20 PDF BibTeX XML Cite \textit{Y. Song} and \textit{S. Shi}, J. Dyn. Control Syst. 26, No. 3, 469--480 (2020; Zbl 1440.35119) Full Text: DOI
Shen, Zupei; Han, Zhiqing Existence of nontrivial solutions for a class of Kirchhoff equation with indefinite and 3-linear nonlinearity. (English) Zbl 1440.35155 Appl. Math. Lett. 103, Article ID 106205, 7 p. (2020). MSC: 35J62 35A01 35A15 PDF BibTeX XML Cite \textit{Z. Shen} and \textit{Z. Han}, Appl. Math. Lett. 103, Article ID 106205, 7 p. (2020; Zbl 1440.35155) Full Text: DOI
Zhang, Caifeng Concentration-compactness principle for Trudinger-Moser inequalities with logarithmic weights and their applications. (English) Zbl 1440.35123 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111845, 21 p. (2020). MSC: 35J60 35B33 46E30 PDF BibTeX XML Cite \textit{C. Zhang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111845, 21 p. (2020; Zbl 1440.35123) Full Text: DOI
Liang, Sihua; Liu, Zeyi; Pu, Hongling Multiplicity of solutions to the generalized extensible beam equations with critical growth. (English) Zbl 1440.35086 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111835, 9 p. (2020). MSC: 35J30 35J60 35A15 PDF BibTeX XML Cite \textit{S. Liang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111835, 9 p. (2020; Zbl 1440.35086) Full Text: DOI
Gao, Fashun; Da Silva, Edcarlos D.; Yang, Minbo; Zhou, Jiazheng Existence of solutions for critical Choquard equations via the concentration-compactness method. (English) Zbl 1437.35213 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 921-954 (2020). MSC: 35J20 35J60 35A15 PDF BibTeX XML Cite \textit{F. Gao} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 921--954 (2020; Zbl 1437.35213) Full Text: DOI arXiv
Zhang, Caifeng; Li, Jungang; Chen, Lu Ground state solutions of polyharmonic equations with potentials of positive low bound. (English) Zbl 1437.35245 Pac. J. Math. 305, No. 1, 353-384 (2020). MSC: 35J30 31B30 35A01 PDF BibTeX XML Cite \textit{C. Zhang} et al., Pac. J. Math. 305, No. 1, 353--384 (2020; Zbl 1437.35245) Full Text: DOI
Chung, Nguyen Thanh Infinitely many solutions for a class of \(p(x)\)-Kirchhoff type problems with critical exponents. (English) Zbl 1464.35137 Ann. Pol. Math. 124, No. 2, 129-149 (2020). MSC: 35J92 35J25 35B33 35A15 PDF BibTeX XML Cite \textit{N. T. Chung}, Ann. Pol. Math. 124, No. 2, 129--149 (2020; Zbl 1464.35137) Full Text: DOI
Che, Guofeng; Chen, Haibo Existence and multiplicity of positive solutions for Kirchhoff-Schrödinger-Poisson system with critical growth. (English) Zbl 1437.35254 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 78, 27 p. (2020). MSC: 35J47 35J60 35B33 35A15 PDF BibTeX XML Cite \textit{G. Che} and \textit{H. Chen}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 78, 27 p. (2020; Zbl 1437.35254) Full Text: DOI
Álvarez-Caudevilla, P.; Colorado, E.; Ortega, Alejandro Positive solutions for semilinear fractional elliptic problems involving an inverse fractional operator. (English) Zbl 1429.35192 Nonlinear Anal., Real World Appl. 51, Article ID 102960, 21 p. (2020). MSC: 35R11 35A15 35B09 PDF BibTeX XML Cite \textit{P. Álvarez-Caudevilla} et al., Nonlinear Anal., Real World Appl. 51, Article ID 102960, 21 p. (2020; Zbl 1429.35192) Full Text: DOI arXiv
Xiang, Mingqi; Zhang, Binlin; Rădulescu, Vicenţiu D. Superlinear Schrödinger-Kirchhoff type problems involving the fractional \(p\)-Laplacian and critical exponent. (English) Zbl 1427.35340 Adv. Nonlinear Anal. 9, 690-709 (2020). MSC: 35R11 35J60 35J20 35A15 47G20 PDF BibTeX XML Cite \textit{M. Xiang} et al., Adv. Nonlinear Anal. 9, 690--709 (2020; Zbl 1427.35340) Full Text: DOI
Che, Guofeng; Shi, Hongxia; Wang, Zewei Existence and concentration of positive ground states for a 1-Laplacian problem in \(\mathbb{R}^N\). (English) Zbl 1428.35021 Appl. Math. Lett. 100, Article ID 106045, 7 p. (2020). MSC: 35B25 35J61 PDF BibTeX XML Cite \textit{G. Che} et al., Appl. Math. Lett. 100, Article ID 106045, 7 p. (2020; Zbl 1428.35021) Full Text: DOI
Wu, Tsung-Fang On a class of nonlocal nonlinear Schrödinger equations with potential well. (English) Zbl 1423.35113 Adv. Nonlinear Anal. 9, 665-689 (2020). MSC: 35J61 35J10 35B09 34B40 35J20 PDF BibTeX XML Cite \textit{T.-F. Wu}, Adv. Nonlinear Anal. 9, 665--689 (2020; Zbl 1423.35113) Full Text: DOI
Zheng, Wenxuan; Gan, Wenbin; Liu, Shibo Existence of positive ground state solutions of Schrödinger-Poisson system involving negative nonlocal term and critical exponent on bounded domain. (English) Zbl 07634329 Bound. Value Probl. 2019, Paper No. 185, 10 p. (2019). MSC: 35J57 35J50 35B33 PDF BibTeX XML Cite \textit{W. Zheng} et al., Bound. Value Probl. 2019, Paper No. 185, 10 p. (2019; Zbl 07634329) Full Text: DOI
Yun, Yongzhen; An, Tianqing; Ye, Guoju Existence and multiplicity of solutions for fractional Schödinger equation involving a critical nonlinearity. (English) Zbl 1487.35427 Adv. Difference Equ. 2019, Paper No. 466, 15 p. (2019). MSC: 35R11 26A33 35D30 PDF BibTeX XML Cite \textit{Y. Yun} et al., Adv. Difference Equ. 2019, Paper No. 466, 15 p. (2019; Zbl 1487.35427) Full Text: DOI
Lv, Ying; Xue, Yan-Fang; Tang, Chun-Lei Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. (English) Zbl 1489.37078 Commun. Pure Appl. Anal. 18, No. 5, 2855-2878 (2019). MSC: 37J46 37J51 37C29 PDF BibTeX XML Cite \textit{Y. Lv} et al., Commun. Pure Appl. Anal. 18, No. 5, 2855--2878 (2019; Zbl 1489.37078) Full Text: DOI
Yang, Liu; Liu, Zhisu Infinitely many solutions for a zero mass Schödinger-Poisson-Slater problem with critical growth. (English) Zbl 1465.35251 J. Appl. Anal. Comput. 9, No. 5, 1706-1718 (2019). MSC: 35J91 35B33 35A15 PDF BibTeX XML Cite \textit{L. Yang} and \textit{Z. Liu}, J. Appl. Anal. Comput. 9, No. 5, 1706--1718 (2019; Zbl 1465.35251) Full Text: DOI
Yu, Chun; Wan, Youyan The ground state of the Chern-Simons-Schrödinger system. (English) Zbl 1449.35195 J. Math., Wuhan Univ. 39, No. 6, 823-834 (2019). MSC: 35J10 35J50 PDF BibTeX XML Cite \textit{C. Yu} and \textit{Y. Wan}, J. Math., Wuhan Univ. 39, No. 6, 823--834 (2019; Zbl 1449.35195) Full Text: DOI
Kong, Yuzhen; Zhao, Dun; Wang, Qingxuan Semiclassical asymptotic behavior of ground state for the two-component Hartree system. (English) Zbl 1433.35070 Math. Methods Appl. Sci. 42, No. 18, 7135-7159 (2019). MSC: 35J50 35Q40 35Q55 PDF BibTeX XML Cite \textit{Y. Kong} et al., Math. Methods Appl. Sci. 42, No. 18, 7135--7159 (2019; Zbl 1433.35070) Full Text: DOI
Liang, Sihua; Zhang, Binlin Fractional \(p\)-Kirchhoff problems involving critical exponents and sign-changing weight functions. (English) Zbl 1461.35214 Asymptotic Anal. 115, No. 1-2, 47-61 (2019). MSC: 35R11 35R09 35B33 35J92 35J25 PDF BibTeX XML Cite \textit{S. Liang} and \textit{B. Zhang}, Asymptotic Anal. 115, No. 1--2, 47--61 (2019; Zbl 1461.35214) Full Text: DOI
Ardila, Alex H. Existence and stability of a two-parameter family of solitary waves for a logarithmic NLS-KdV system. (English) Zbl 1434.35146 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111563, 23 p. (2019). MSC: 35Q53 35B35 35Q55 35A15 35A01 35C08 PDF BibTeX XML Cite \textit{A. H. Ardila}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111563, 23 p. (2019; Zbl 1434.35146) Full Text: DOI
Chen, Wenjing; Gui, Yuyan Multiple solutions for a fractional \(p\)-Kirchhoff problem with Hardy nonlinearity. (English) Zbl 1429.35080 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 316-338 (2019). MSC: 35J60 35R11 PDF BibTeX XML Cite \textit{W. Chen} and \textit{Y. Gui}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 316--338 (2019; Zbl 1429.35080) Full Text: DOI
Chung, Nguyen Thanh On a class of noncooperative fourth-order elliptic systems with nonlocal terms and critical growth. (English) Zbl 1433.35050 J. Korean Math. Soc. 56, No. 5, 1419-1439 (2019). MSC: 35J35 35J50 35B33 PDF BibTeX XML Cite \textit{N. T. Chung}, J. Korean Math. Soc. 56, No. 5, 1419--1439 (2019; Zbl 1433.35050) Full Text: DOI