×

One-dimensional/two-dimensional coupling approach with quadrilateral confluence region for modeling river systems. (English) Zbl 1429.86003

Summary: We study shallow water flows in river systems. An accurate description of such flows can be obtained using the two-dimensional (2-D) shallow water equations, which can be numerically solved by a shock-capturing finite-volume method. This approach can, however, be inefficient and computationally unaffordable when a large river system with many tributaries and complex geometry is to be modeled. A popular simplified approach is to model flow in each uninterrupted section of the river (called a reach) as one-dimensional (1-D) and connect the reaches at the river junctions. The flow in every reach can then be modeled using the 1-D shallow water equations, whose numerical solution is dramatically less computationally expensive compared with solving its 2-D counterpart. Even though several point-junction models are available, most of them prove to be sufficiently accurate only in the case of a smooth flow though the junction. We propose a new 1-D/2-D river junction model, in which each reach of the river is modeled by the 1-D shallow water equations, while the confluence region, where the mixing of flows from the different directions occurs, is modeled by the 2-D ones. We define the confluence region to be a trapezoid with parallel vertical sides. This allows us to take into account both the average width of each reach and the angle between the directions of flow of the tributary and the principal river at the confluence. We choose a trapezoidal confluence region as it is consistent with the 1-D model of the river. We implement well-balanced positivity preserving second-order semi-discrete central-upwind schemes developed in [the third author and G. Petrova, Commun. Math. Sci. 5, No. 1, 133–160 (2007; Zbl 1226.76008)], 2007) for the 1-D shallow water equations and in [H. Shirkhani et al., Comput. Fluids 126, 25–40 (2016; Zbl 1390.76516)] for the 2-D shallow water equations using quadrilateral grids. For the 2-D junction simulations in the confluence region we choose a very coarse 2-D mesh as the goal of our model is not to resolve the fine details of complex 2-D vortices that form around the junction, but to efficiently compute average water depth and velocity in the connected 1-D reaches. A special ghost cell technique is developed for coupling the reaches to the confluence region, which is one of the most important parts of a good 1-D/2-D coupling method. The proposed approach leads to very significant computational savings compared to numerically solving the full 2-D problem. We perform several numerical experiments to demonstrate plausibility of the proposed 1-D/2-D coupling model.

MSC:

86A05 Hydrology, hydrography, oceanography
86-08 Computational methods for problems pertaining to geophysics
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barkau, R.L.: UNET: one-dimensional unsteady flow through a full network of open channels. User’s manual, tech. rep., US Army Corps of Engineers, Hydrologic Engineering Center, Davis CA, Version 4.0 (2001)
[2] Beljadid, A.; Mohammadian, A.; Kurganov, A., Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows, Comput. Fluids, 136, 193-206 (2016) · Zbl 1390.76395 · doi:10.1016/j.compfluid.2016.06.005
[3] Bellamoli, F.; Müller, LO; Toro, EF, A numerical method for junctions in networks of shallow-water channels, Appl. Math. Comput., 337, 190-213 (2018) · Zbl 1434.60136 · doi:10.1016/j.cam.2018.01.015
[4] Bleninger, T., Fenton, J.D., Zentgraf, R.: One-dimensional flow modelling and a case study of the River Rhine. In: River Flow 2006, Proceedings of International Conference on Fluvial Hydraulics, pp. 1963-1972 (2006)
[5] Brunner, G.: HEC-RAS: River analysis system, hydraulic reference manual, tech. rep., U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis CA, 2010. Version 4.1
[6] Bryson, S.; Epshteyn, Y.; Kurganov, A.; Petrova, G., Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system, M2AN Math. Model. Numer. Anal., 45, 423-446 (2011) · Zbl 1267.76068 · doi:10.1051/m2an/2010060
[7] Cunge, J.A., Holly, F.M., Verwey, A.: Practical Aspects of Computational River Hydraulics. Pitman, London (1980)
[8] de Saint-Venant, A.J.C.: Thèorie du mouvement non-permanent des eaux, avec application aux crues des rivière at à l’introduction des marèes dans leur lit. C.R. Acad. Sci. Paris 73, 147-154 (1871). 237-240 · JFM 03.0482.04
[9] Formaggia, L.; Nobile, F.; Quarteroni, A.; Veneziani, A., Multiscale modelling of the circulatory system: a preliminary analysis, Comput. Vis. Sci., 2, 75-83 (1999) · Zbl 1067.76624 · doi:10.1007/s007910050030
[10] Fread, DL, Technique for implicit dynamic routing in rivers with tributaries, Water Resour. Res., 9, 918-926 (1973) · doi:10.1029/WR009i004p00918
[11] Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws, vol. 118. Springer, New York (1996) · Zbl 1063.65080 · doi:10.1007/978-1-4612-0713-9
[12] Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack (2011) · Zbl 1241.65064 · doi:10.1142/7498
[13] Gottlieb, S.; Shu, C-W; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 89-112 (2001) · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[14] Gouta, N.; Maurel, F., A finite volume solver for 1D shallow-water equations applied to an actual river, Int. J. Numer. Methods Fluids, 38, 1-19 (2002) · Zbl 1115.76355 · doi:10.1002/fld.201
[15] Goutal, N., Lacombe, J.M., Zaoui, F., El-Kadi-Abderrezzak, K.: MASCARET: a 1-D Open-source Software for Flow Hydrodynamic and Water Quality in Open Channel Networks, in River Flow, vol. 1, pp. 1169-1174. Taylor & Francis, London (2012)
[16] Kröner, D.: Numerical Schemes for Conservation Laws, Wiley-Teubner Series Advances in Numerical Mathematics. Wiley, Chichester (1997) · Zbl 0872.76001
[17] Kurganov, A.; Levy, D., Central-upwind schemes for the Saint-Venant system, M2AN Math. Model. Numer. Anal., 36, 397-425 (2002) · Zbl 1137.65398 · doi:10.1051/m2an:2002019
[18] Kurganov, A.; Noelle, S.; Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23, 707-740 (2001) · Zbl 0998.65091 · doi:10.1137/S1064827500373413
[19] Kurganov, A.; Petrova, G., A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system, Commun. Math. Sci., 5, 133-160 (2007) · Zbl 1226.76008 · doi:10.4310/CMS.2007.v5.n1.a6
[20] Kurganov, A.; Prugger, M.; Wu, T., Second-order fully discrete central-upwind scheme for two-dimensional hyperbolic systems of conservation laws, SIAM J. Sci. Comput., 39, a947-a965 (2017) · Zbl 1364.76117 · doi:10.1137/15M1038670
[21] Kurganov, A., Qu, Z., Rozanova, O., Wu, T.: Adaptive moving mesh central-upwind schemes for hyperbolic system of PDEs. Applications to compressible Euler equations and granular hydrodynamics. Preprint · Zbl 1499.65460
[22] Kurganov, A., Qu, Z., Wu, T.: Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the Saint-Venant systems of shallow water equations. In preparation · Zbl 1501.65050
[23] LeVeque, R.: Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002) · Zbl 1010.65040
[24] Liu, F., Hodges, B.R.: Dynamic river network simulation at large scale. In: Proceedings of the 49th Annual Design Automation Conference, ACM, pp. 723-728 (2012)
[25] Liu, F.; Hodges, BR, Applying microprocessor analysis methods to river network modelling, Environ. Model. Softw., 52, 234-252 (2014) · doi:10.1016/j.envsoft.2013.09.013
[26] Liu, X.; Albright, J.; Epshteyn, Y.; Kurganov, A., Well-balanced positivity preserving central-upwind scheme with a novel wet/dry reconstruction on triangular grids for the Saint-Venant system, J. Comput. Phys., 374, 213-236 (2018) · Zbl 1416.65295 · doi:10.1016/j.jcp.2018.07.038
[27] Miglio, E.; Perotto, S.; Saleri, F., Model coupling techniques for free-surface flow problems: part I, Nonlinear Anal., 63, e1885-e1896 (2005) · Zbl 1224.76098 · doi:10.1016/j.na.2005.03.083
[28] MIKE11, A modelling system for rivers and channels, reference manual, tech. rep., DHI: Hørsholm, Denmark, http://manuals.mikepoweredbydhi.help/2017/Water_Resources/Mike_11_ref.pdf (2017)
[29] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463 (1990) · Zbl 0697.65068 · doi:10.1016/0021-9991(90)90260-8
[30] Novak, P., Guinot, V., Jeffrey, A., Reeve, D.E.: Hydraulic Modelling: An Introduction. Spon Prees, New York (2010)
[31] Quarteroni, A., Formaggia, L.: Mathematical modelling and numerical simulation of the cardiovascular system. In: Handbook of Numerical Analysis, vol. 12, Elsevier, pp. 3-127 (2004) · Zbl 1055.92022
[32] Rohan, Renaud; Masson, Arielle; Arlet, Christian; Rebaï, Adlane; Jost, Claudine; Chaléon, Carine, Development of a Modelling Tool of the Seine River and Its Main Tributaries, 659-673 (2018), Singapore · doi:10.1007/978-981-10-7218-5_47
[33] Shirkhani, H.; Mohammadian, A.; Seidou, O.; Kurganov, A., A well-balanced positivity-preserving central-upwind scheme for shallow water equations on unstructured quadrilateral grids, Comput. Fluids, 126, 25-40 (2016) · Zbl 1390.76516 · doi:10.1016/j.compfluid.2015.11.017
[34] Steinebach, G.; Rademacher, S.; Rentrop, P.; Schulz, M., Mechanisms of coupling in river flow simulation systems, J. Comput. Appl. Math., 168, 459-470 (2004) · Zbl 1107.86003 · doi:10.1016/j.cam.2003.12.008
[35] Stoker, J.J.: Water Waves: The Mathematical Theory with Applications, vol. 36. Wiley, London (2011) · Zbl 0812.76002
[36] Sweby, PK, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995-1011 (1984) · Zbl 0565.65048 · doi:10.1137/0721062
[37] Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 101-136 (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[38] Wu, W., Vieira, D.A.: One-dimensional channel network model CCHE1D version 3.0: technical manual, Tech. Rep. NCCH-TR-2002-02, National Center for Computational Hydroscience and Engineering (2002)
[39] Yeh, G.T., Huang, G.B., Zhang, F., Cheng, H.P., Lin, H.C.: WASH123D: A numerical model of flow, thermal transport, and salinity, sediment, and water quality transport in WAterSHed systems of 1-D stream-river network, 2-D overland regime, and 3-D subsurface media, tech. rep., EPA. Dept. of Civil and Environmental Engineering, Univ. of Central Florida, Orlando, FL (2006)
[40] Zhang, M.; Xu, Y.; Hao, Z.; Qiao, Y., Integrating 1D and 2D hydrodynamic, sediment transport model for dam-break flow using finite volume method, Sci. China Phys. Mech. Astron., 57, 774-783 (2014) · doi:10.1007/s11433-013-5294-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.