Fasano, Giovanni; Pesenti, Raffaele Polarity and conjugacy for quadratic hypersurfaces: a unified framework with recent advances. (English) Zbl 07309627 J. Comput. Appl. Math. 390, Article ID 113248, 16 p. (2021). MSC: 90C30 90C52 65K05 03H05 65F05 14P10 14N05 PDF BibTeX XML Cite \textit{G. Fasano} and \textit{R. Pesenti}, J. Comput. Appl. Math. 390, Article ID 113248, 16 p. (2021; Zbl 07309627) Full Text: DOI
Deift, Percy; Trogdon, Thomas The conjugate gradient algorithm on well-conditioned Wishart matrices is almost deterministic. (English) Zbl 07301467 Q. Appl. Math. 79, No. 1, 125-161 (2021). MSC: 65F10 60B20 15B52 PDF BibTeX XML Cite \textit{P. Deift} and \textit{T. Trogdon}, Q. Appl. Math. 79, No. 1, 125--161 (2021; Zbl 07301467) Full Text: DOI
Arman, L.; Xu, Y.; Rostami, M.; Rahpeymaii, F. Some three-term conjugate gradient methods for solving unconstrained optimization problems. (English) Zbl 07313910 Pac. J. Optim. 16, No. 3, 461-472 (2020). MSC: 65K05 90C06 90C26 90C30 PDF BibTeX XML Cite \textit{L. Arman} et al., Pac. J. Optim. 16, No. 3, 461--472 (2020; Zbl 07313910) Full Text: Link
Hallman, Eric Sharp 2-norm error bounds for LSQR and the conjugate gradient method. (English) Zbl 07301583 SIAM J. Matrix Anal. Appl. 41, No. 3, 1183-1207 (2020). MSC: 65F10 65F20 65F50 93E24 PDF BibTeX XML Cite \textit{E. Hallman}, SIAM J. Matrix Anal. Appl. 41, No. 3, 1183--1207 (2020; Zbl 07301583) Full Text: DOI
Jiang, Kai; Si, Wei; Chen, Chang; Bao, Chenglong Efficient numerical methods for computing the stationary states of phase field crystal models. (English) Zbl 07301559 SIAM J. Sci. Comput. 42, No. 6, B1350-B1377 (2020). MSC: 35J60 35Q74 65N35 PDF BibTeX XML Cite \textit{K. Jiang} et al., SIAM J. Sci. Comput. 42, No. 6, B1350--B1377 (2020; Zbl 07301559) Full Text: DOI
Calandra, Henri; Gratton, Serge; Riccietti, Elisa; Vasseur, Xavier On iterative solution of the extended normal equations. (English) Zbl 07301500 SIAM J. Matrix Anal. Appl. 41, No. 4, 1571-1589 (2020). MSC: 65F10 65F35 65G50 15A06 PDF BibTeX XML Cite \textit{H. Calandra} et al., SIAM J. Matrix Anal. Appl. 41, No. 4, 1571--1589 (2020; Zbl 07301500) Full Text: DOI
Stanimirović, Predrag S.; Ivanov, Branislav; Ma, Haifeng; Mosić, Dijana A survey of gradient methods for solving nonlinear optimization. (English) Zbl 07300758 Electron Res. Arch. 28, No. 4, 1573-1624 (2020). MSC: 65K05 90C30 90C06 90C26 PDF BibTeX XML Cite \textit{P. S. Stanimirović} et al., Electron Res. Arch. 28, No. 4, 1573--1624 (2020; Zbl 07300758) Full Text: DOI
Li, Chunmei; Wang, Cuifang; Duan, Xuefeng The nonlinear conjugate gradient method for solving a class of the matrix trace minimization problem. (Chinese. English summary) Zbl 07295461 J. Math., Wuhan Univ. 40, No. 3, 323-331 (2020). MSC: 65F30 65K05 PDF BibTeX XML Cite \textit{C. Li} et al., J. Math., Wuhan Univ. 40, No. 3, 323--331 (2020; Zbl 07295461) Full Text: DOI
Diao, Xinliu; Liu, Hongwei; Zhao, Ting An improved three-dimensional subspace minimization conjugate gradient method. (Chinese. English summary) Zbl 07295372 J. Jilin Univ., Sci. 58, No. 3, 470-478 (2020). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{X. Diao} et al., J. Jilin Univ., Sci. 58, No. 3, 470--478 (2020; Zbl 07295372) Full Text: DOI
Sulaiman, Ibrahim Mohammed; Mamat, Mustafa A new conjugate gradient method with descent properties and its application to regression analysis. (English) Zbl 07287125 JNAIAM, J. Numer. Anal. Ind. Appl. Math. 14, No. 1-2, 25-39 (2020). MSC: 90C53 65K05 PDF BibTeX XML Cite \textit{I. M. Sulaiman} and \textit{M. Mamat}, JNAIAM, J. Numer. Anal. Ind. Appl. Math. 14, No. 1--2, 25--39 (2020; Zbl 07287125) Full Text: Link
Bergamaschi, Luca; Marín, José; Martínez, Ángeles Compact quasi-Newton preconditioners for symmetric positive definite linear systems. (English) Zbl 07286032 Numer. Linear Algebra Appl. 27, No. 6, e2322, 17 p. (2020). MSC: 65F08 PDF BibTeX XML Cite \textit{L. Bergamaschi} et al., Numer. Linear Algebra Appl. 27, No. 6, e2322, 17 p. (2020; Zbl 07286032) Full Text: DOI
Yu, Yang; Luo, Xiaochuan; Wang, Yuan; Zhang, Huaxi (Yulin) Estimation of boundary condition of two-dimensional nonlinear PDE with application to continuous casting. (English) Zbl 07283149 Comput. Math. Appl. 80, No. 12, 3082-3097 (2020). MSC: 80 65 PDF BibTeX XML Cite \textit{Y. Yu} et al., Comput. Math. Appl. 80, No. 12, 3082--3097 (2020; Zbl 07283149) Full Text: DOI
Sun, Limin; Zhang, Cong An improved CD method for solving linear inverse problem. (Chinese. English summary) Zbl 07267390 Math. Pract. Theory 50, No. 5, 182-187 (2020). MSC: 65K05 PDF BibTeX XML Cite \textit{L. Sun} and \textit{C. Zhang}, Math. Pract. Theory 50, No. 5, 182--187 (2020; Zbl 07267390)
Jiang, Xianzhen; Li, Huilan; Liu, Meixing; Ban, Caizhun; Ma, Yuemei; Ou, Yongwei An improved HS conjugate gradient method with sufficient descent property. (Chinese. English summary) Zbl 07267387 Math. Pract. Theory 50, No. 5, 155-164 (2020). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{X. Jiang} et al., Math. Pract. Theory 50, No. 5, 155--164 (2020; Zbl 07267387)
Wu, Minhua; Li, Chenliang A preconditioned modulus-based matrix splitting iteration method for solving the linear complementarity problem with Toeplitz matrix. (Chinese. English summary) Zbl 07267294 Math. Numer. Sin. 42, No. 2, 223-236 (2020). MSC: 65F10 PDF BibTeX XML Cite \textit{M. Wu} and \textit{C. Li}, Math. Numer. Sin. 42, No. 2, 223--236 (2020; Zbl 07267294)
Li, Xiangli; Zhao, Wenjuan An adaptive Dai-Liao conjugate gradient method. (Chinese. English summary) Zbl 07267270 Math. Appl. 33, No. 2, 436-442 (2020). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{X. Li} and \textit{W. Zhao}, Math. Appl. 33, No. 2, 436--442 (2020; Zbl 07267270)
Zhang, Peng; Du, Xuewu A hybrid PRP-WYL conjugate gradient method with the strong Wolfe line search. (English) Zbl 07266695 J. Chongqing Norm. Univ., Nat. Sci. 37, No. 1, 41-51 (2020). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{P. Zhang} and \textit{X. Du}, J. Chongqing Norm. Univ., Nat. Sci. 37, No. 1, 41--51 (2020; Zbl 07266695) Full Text: DOI
Zhang, Hongmei; Liu, Fawang; Chen, Shanzhen; Shen, Ming A fast and high accuracy numerical simulation for a fractional Black-Scholes model on two assets. (English) Zbl 07266412 Ann. Appl. Math. 36, No. 1, 91-110 (2020). MSC: 65M06 65M12 91G60 PDF BibTeX XML Cite \textit{H. Zhang} et al., Ann. Appl. Math. 36, No. 1, 91--110 (2020; Zbl 07266412)
Diao, Xinliu; Liu, Hongwei; Liu, Zexian A new subspace minimization conjugate gradient method based on modified secant equation for unconstrained optimization. (English) Zbl 07261318 Comput. Appl. Math. 39, No. 4, Paper No. 251, 21 p. (2020). MSC: 90C30 90C06 65K05 PDF BibTeX XML Cite \textit{X. Diao} et al., Comput. Appl. Math. 39, No. 4, Paper No. 251, 21 p. (2020; Zbl 07261318) Full Text: DOI
Zhao, Pei-Pei; Huang, Yu-Mei Conjugate gradient method preconditioned with modified block SSOR iteration for multiplicative half-quadratic image restoration. (English) Zbl 1448.65019 Calcolo 57, No. 3, Paper No. 31, 20 p. (2020). MSC: 65D18 65F08 68U10 94A08 PDF BibTeX XML Cite \textit{P.-P. Zhao} and \textit{Y.-M. Huang}, Calcolo 57, No. 3, Paper No. 31, 20 p. (2020; Zbl 1448.65019) Full Text: DOI
Dong, Xiaoliang A modified nonlinear Polak-Ribière-Polyak conjugate gradient method with sufficient descent property. (English) Zbl 1451.90152 Calcolo 57, No. 3, Paper No. 30, 14 p. (2020). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{X. Dong}, Calcolo 57, No. 3, Paper No. 30, 14 p. (2020; Zbl 1451.90152) Full Text: DOI
Wang, Haolei; Zhang, Lei Energy minimization and preconditioning in the simulation of athermal granular materials in two dimensions. (English) Zbl 1447.74011 Electron Res. Arch. 28, No. 1, 405-421 (2020). MSC: 74E20 74G65 74S99 PDF BibTeX XML Cite \textit{H. Wang} and \textit{L. Zhang}, Electron Res. Arch. 28, No. 1, 405--421 (2020; Zbl 1447.74011) Full Text: DOI
De Leone, Renato; Fasano, Giovanni; Roma, Massimo; Sergeyev, Yaroslav D. Iterative Grossone-based computation of negative curvature directions in large-scale optimization. (English) Zbl 1450.90009 J. Optim. Theory Appl. 186, No. 2, 554-589 (2020). MSC: 90C06 90C30 65K05 PDF BibTeX XML Cite \textit{R. De Leone} et al., J. Optim. Theory Appl. 186, No. 2, 554--589 (2020; Zbl 1450.90009) Full Text: DOI
Yang, Shuiping; Liu, Fawang; Feng, Libo; Turner, Ian W. Efficient numerical methods for the nonlinear two-sided space-fractional diffusion equation with variable coefficients. (English) Zbl 1446.65082 Appl. Numer. Math. 157, 55-68 (2020). MSC: 65M06 65M12 65H10 35R11 26A33 76S05 60K35 76M20 35R05 PDF BibTeX XML Cite \textit{S. Yang} et al., Appl. Numer. Math. 157, 55--68 (2020; Zbl 1446.65082) Full Text: DOI
Schneider, Matti A dynamical view of nonlinear conjugate gradient methods with applications to FFT-based computational micromechanics. (English) Zbl 07229270 Comput. Mech. 66, No. 1, 239-257 (2020). MSC: 74 PDF BibTeX XML Cite \textit{M. Schneider}, Comput. Mech. 66, No. 1, 239--257 (2020; Zbl 07229270) Full Text: DOI
Bacuta, Constantin; Jacavage, Jacob Saddle point least squares for the reaction-diffusion problem. (English) Zbl 1443.76193 Results Appl. Math. 8, Article ID 100105, 14 p. (2020). MSC: 76M99 76R50 76V05 65N22 65N55 PDF BibTeX XML Cite \textit{C. Bacuta} and \textit{J. Jacavage}, Results Appl. Math. 8, Article ID 100105, 14 p. (2020; Zbl 1443.76193) Full Text: DOI
Cao, Rongjun; Chen, Minghua; Ng, Michael K.; Wu, Yu-Jiang Fast and high-order accuracy numerical methods for time-dependent nonlocal problems in \(\mathbb{R}^2\). (English) Zbl 1445.74054 J. Sci. Comput. 84, No. 1, Paper No. 8, 31 p. (2020). MSC: 74S99 74S20 65M12 PDF BibTeX XML Cite \textit{R. Cao} et al., J. Sci. Comput. 84, No. 1, Paper No. 8, 31 p. (2020; Zbl 1445.74054) Full Text: DOI
Sugihara, Kota; Hayami, Ken; Zheng, Ning Right preconditioned MINRES for singular systems. (English) Zbl 07217191 Numer. Linear Algebra Appl. 27, No. 3, e2277, 25 p. (2020). Reviewer: Juan Ramon Torregrosa Sanchez (Valencia) MSC: 65F10 65F08 PDF BibTeX XML Cite \textit{K. Sugihara} et al., Numer. Linear Algebra Appl. 27, No. 3, e2277, 25 p. (2020; Zbl 07217191) Full Text: DOI
Carson, Erin Claire An adaptive \(s\)-step conjugate gradient algorithm with dynamic basis updating. (English) Zbl 07217102 Appl. Math., Praha 65, No. 2, 123-151 (2020). MSC: 65F10 65F50 65Y05 65Y20 PDF BibTeX XML Cite \textit{E. C. Carson}, Appl. Math., Praha 65, No. 2, 123--151 (2020; Zbl 07217102) Full Text: DOI
Gonçalves, M. L. N.; Prudente, L. F. On the extension of the Hager-Zhang conjugate gradient method for vector optimization. (English) Zbl 1446.90142 Comput. Optim. Appl. 76, No. 3, 889-916 (2020). MSC: 90C29 90C52 PDF BibTeX XML Cite \textit{M. L. N. Gonçalves} and \textit{L. F. Prudente}, Comput. Optim. Appl. 76, No. 3, 889--916 (2020; Zbl 1446.90142) Full Text: DOI
Sellami, Badreddine; Chiheb Eddine Sellami, Mohamed Global convergence of a modified Fletcher-Reeves conjugate gradient method with Wolfe line search. (English) Zbl 07210537 Asian-Eur. J. Math. 13, No. 4, Article ID 2050081, 10 p. (2020). MSC: 65K05 90C25 90C26 90C27 90C30 PDF BibTeX XML Cite \textit{B. Sellami} and \textit{M. Chiheb Eddine Sellami}, Asian-Eur. J. Math. 13, No. 4, Article ID 2050081, 10 p. (2020; Zbl 07210537) Full Text: DOI
Boumediene, Amina; Benzine, Rachid; Belloufi, Mohammed Global convergence properties of the BBB conjugate gradient method. (English) Zbl 1445.90103 Asian-Eur. J. Math. 13, No. 3, Article ID 2050059, 6 p. (2020). MSC: 90C30 65H10 PDF BibTeX XML Cite \textit{A. Boumediene} et al., Asian-Eur. J. Math. 13, No. 3, Article ID 2050059, 6 p. (2020; Zbl 1445.90103) Full Text: DOI
Zheng, Xiuyun; Dong, Xiaoliang; Shi, Jiarong; Yang, Wei Further comment on another hybrid conjugate gradient algorithm for unconstrained optimization by Andrei. (English) Zbl 07202182 Numer. Algorithms 84, No. 2, 603-608 (2020). MSC: 65 PDF BibTeX XML Cite \textit{X. Zheng} et al., Numer. Algorithms 84, No. 2, 603--608 (2020; Zbl 07202182) Full Text: DOI
Aminifard, Zohre; Babaie-Kafaki, Saman A restart scheme for the Dai-Liao conjugate gradient method by ignoring a direction of maximum magnification by the search direction matrix. (English) Zbl 1443.90330 RAIRO, Oper. Res. 54, No. 4, 981-991 (2020). Reviewer: Nada Djuranović-Miličić (Beograd) MSC: 90C53 65K05 65F35 PDF BibTeX XML Cite \textit{Z. Aminifard} and \textit{S. Babaie-Kafaki}, RAIRO, Oper. Res. 54, No. 4, 981--991 (2020; Zbl 1443.90330) Full Text: DOI
Heredia, Manolo Rodriguez; Oliveira, Aurelio Ribeiro Leite A new proposal to improve the early iterations in the interior point method. (English) Zbl 1442.90201 Ann. Oper. Res. 287, No. 1, 185-208 (2020). MSC: 90C51 PDF BibTeX XML Cite \textit{M. R. Heredia} and \textit{A. R. L. Oliveira}, Ann. Oper. Res. 287, No. 1, 185--208 (2020; Zbl 1442.90201) Full Text: DOI
Bildik, Necdet; Deniz, Sinan New approximate solutions to electrostatic differential equations obtained by using numerical and analytical methods. (English) Zbl 1436.65220 Georgian Math. J. 27, No. 1, 23-30 (2020). MSC: 65Z05 65L03 65L05 74G10 PDF BibTeX XML Cite \textit{N. Bildik} and \textit{S. Deniz}, Georgian Math. J. 27, No. 1, 23--30 (2020; Zbl 1436.65220) Full Text: DOI
Dehghani, Razieh; Bidabadi, Narges; Fahs, Hassan; Hosseini, Mohammad Mehdi A conjugate gradient method based on a modified secant relation for unconstrained optimization. (English) Zbl 1441.90156 Numer. Funct. Anal. Optim. 41, No. 5, 621-634 (2020). MSC: 90C30 90C53 49M37 65K05 PDF BibTeX XML Cite \textit{R. Dehghani} et al., Numer. Funct. Anal. Optim. 41, No. 5, 621--634 (2020; Zbl 1441.90156) Full Text: DOI
Woldu, Tsegay Giday; Zhang, Haibin; Zhang, Xin; Fissuh, Yemane Hailu A modified nonlinear conjugate gradient algorithm for large-scale nonsmooth convex optimization. (English) Zbl 1441.90159 J. Optim. Theory Appl. 185, No. 1, 223-238 (2020). Reviewer: Nada Djuranović-Miličić (Belgrade) MSC: 90C30 90C25 65K05 90C52 PDF BibTeX XML Cite \textit{T. G. Woldu} et al., J. Optim. Theory Appl. 185, No. 1, 223--238 (2020; Zbl 1441.90159) Full Text: DOI
Cao, K.; Lesnic, D.; Liu, Jijun Simultaneous reconstruction of space-dependent heat transfer coefficients and initial temperature. (English) Zbl 1447.80003 J. Comput. Appl. Math. 375, Article ID 112800, 18 p. (2020). Reviewer: Aleksey Syromyasov (Saransk) MSC: 80A23 35R30 80M30 80M20 65M06 65K10 65M32 65J20 PDF BibTeX XML Cite \textit{K. Cao} et al., J. Comput. Appl. Math. 375, Article ID 112800, 18 p. (2020; Zbl 1447.80003) Full Text: DOI
Zheng, Li; Yang, Lei; Liang, Yong A conjugate gradient projection method for solving equations with convex constraints. (English) Zbl 1441.90161 J. Comput. Appl. Math. 375, Article ID 112781, 11 p. (2020). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{L. Zheng} et al., J. Comput. Appl. Math. 375, Article ID 112781, 11 p. (2020; Zbl 1441.90161) Full Text: DOI
Liu, J. K.; Zheng, L. A smoothing iterative method for the finite minimax problem. (English) Zbl 1432.90146 J. Comput. Appl. Math. 374, Article ID 112741, 11 p. (2020). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{J. K. Liu} and \textit{L. Zheng}, J. Comput. Appl. Math. 374, Article ID 112741, 11 p. (2020; Zbl 1432.90146) Full Text: DOI
Koorapetse, M.; Kaelo, P. Self adaptive spectral conjugate gradient method for solving nonlinear monotone equations. (English) Zbl 1432.90082 J. Egypt. Math. Soc. 28, Paper No. 4, 21 p. (2020). MSC: 90C06 90C30 90C56 65K05 65K10 65H05 PDF BibTeX XML Cite \textit{M. Koorapetse} and \textit{P. Kaelo}, J. Egypt. Math. Soc. 28, Paper No. 4, 21 p. (2020; Zbl 1432.90082) Full Text: DOI
Liu, Zexian; Liu, Hongwei; Dai, Yu-Hong An improved Dai-Kou conjugate gradient algorithm for unconstrained optimization. (English) Zbl 1433.90126 Comput. Optim. Appl. 75, No. 1, 145-167 (2020). MSC: 90C26 65K10 90C53 90C06 65Y20 PDF BibTeX XML Cite \textit{Z. Liu} et al., Comput. Optim. Appl. 75, No. 1, 145--167 (2020; Zbl 1433.90126) Full Text: DOI
Yao, Shengwei; Feng, Qinliang; Li, Lue; Xu, Jieqiong A class of globally convergent three-term Dai-Liao conjugate gradient methods. (English) Zbl 1436.90139 Appl. Numer. Math. 151, 354-366 (2020). MSC: 90C30 90C52 PDF BibTeX XML Cite \textit{S. Yao} et al., Appl. Numer. Math. 151, 354--366 (2020; Zbl 1436.90139) Full Text: DOI
Liu, J. K.; Zhao, Y. X.; Wu, X. L. Some three-term conjugate gradient methods with the new direction structure. (English) Zbl 1437.90163 Appl. Numer. Math. 150, 433-443 (2020). MSC: 90C52 90C30 90C06 65K05 PDF BibTeX XML Cite \textit{J. K. Liu} et al., Appl. Numer. Math. 150, 433--443 (2020; Zbl 1437.90163) Full Text: DOI
Bojari, S.; Eslahchi, M. R. Two families of scaled three-term conjugate gradient methods with sufficient descent property for nonconvex optimization. (English) Zbl 1436.90109 Numer. Algorithms 83, No. 3, 901-933 (2020). MSC: 90C26 90C06 90C30 PDF BibTeX XML Cite \textit{S. Bojari} and \textit{M. R. Eslahchi}, Numer. Algorithms 83, No. 3, 901--933 (2020; Zbl 1436.90109) Full Text: DOI
Royer, Clément W.; O’Neill, Michael; Wright, Stephen J. A Newton-CG algorithm with complexity guarantees for smooth unconstrained optimization. (English) Zbl 1448.90081 Math. Program. 180, No. 1-2 (A), 451-488 (2020). Reviewer: Ctirad Matonoha (Praha) MSC: 90C26 65K10 90C60 90C53 65F10 65F15 PDF BibTeX XML Cite \textit{C. W. Royer} et al., Math. Program. 180, No. 1--2 (A), 451--488 (2020; Zbl 1448.90081) Full Text: DOI
Liu, Jiankun; Du, Shouqiang; Chen, Yuanyuan A sufficient descent nonlinear conjugate gradient method for solving \(\mathcal{M} \)-tensor equations. (English) Zbl 1433.65115 J. Comput. Appl. Math. 371, Article ID 112709, 11 p. (2020). MSC: 65K10 15A69 65K05 90C30 PDF BibTeX XML Cite \textit{J. Liu} et al., J. Comput. Appl. Math. 371, Article ID 112709, 11 p. (2020; Zbl 1433.65115) Full Text: DOI
Lotfi, Mina; Hosseini, S. Mohammad An efficient Dai-Liao type conjugate gradient method by reformulating the CG parameter in the search direction equation. (English) Zbl 07169526 J. Comput. Appl. Math. 371, Article ID 112708, 15 p. (2020). MSC: 65 90 PDF BibTeX XML Cite \textit{M. Lotfi} and \textit{S. M. Hosseini}, J. Comput. Appl. Math. 371, Article ID 112708, 15 p. (2020; Zbl 07169526) Full Text: DOI
Li, Tao; Wang, Qing-Wen; Duan, Xue-Feng Numerical algorithms for solving discrete Lyapunov tensor equation. (English) Zbl 1433.65078 J. Comput. Appl. Math. 370, Article ID 112676, 11 p. (2020). MSC: 65F45 15A69 65F10 PDF BibTeX XML Cite \textit{T. Li} et al., J. Comput. Appl. Math. 370, Article ID 112676, 11 p. (2020; Zbl 1433.65078) Full Text: DOI
Najm, Huda Y.; Hamed, Eman T.; Ahmed, Huda I. Global convergence of conjugate gradient method in unconstrained optimization problems. (English) Zbl 1431.65089 Bol. Soc. Parana. Mat. (3) 38, No. 7, 227-231 (2020). MSC: 65K10 PDF BibTeX XML Cite \textit{H. Y. Najm} et al., Bol. Soc. Parana. Mat. (3) 38, No. 7, 227--231 (2020; Zbl 1431.65089) Full Text: Link
Zhu, Zhibin; Zhang, Dongdong; Wang, Shuo Two modified DY conjugate gradient methods for unconstrained optimization problems. (English) Zbl 1433.90190 Appl. Math. Comput. 373, Article ID 125004, 10 p. (2020). MSC: 90C52 65K10 90C30 65K05 PDF BibTeX XML Cite \textit{Z. Zhu} et al., Appl. Math. Comput. 373, Article ID 125004, 10 p. (2020; Zbl 1433.90190) Full Text: DOI
Nataj, Sarah; Lui, S. H. Superlinear convergence of nonlinear conjugate gradient method and scaled memoryless BFGS method based on assumptions about the initial point. (English) Zbl 1433.90192 Appl. Math. Comput. 369, Article ID 124829, 15 p. (2020). MSC: 90C53 65K05 90C30 PDF BibTeX XML Cite \textit{S. Nataj} and \textit{S. H. Lui}, Appl. Math. Comput. 369, Article ID 124829, 15 p. (2020; Zbl 1433.90192) Full Text: DOI
Yousif, Osman Omer Osman The convergence properties of RMIL+ conjugate gradient method under the strong Wolfe line search. (English) Zbl 1433.90164 Appl. Math. Comput. 367, Article ID 124777, 8 p. (2020). MSC: 90C30 65K10 65K05 90C52 PDF BibTeX XML Cite \textit{O. O. O. Yousif}, Appl. Math. Comput. 367, Article ID 124777, 8 p. (2020; Zbl 1433.90164) Full Text: DOI
Kučera, Radek; Motyčková, K.; Markopoulos, A.; Haslinger, J. On the inexact symmetrized globally convergent semi-smooth Newton method for 3D contact problems with Tresca friction: the R-linear convergence rate. (English) Zbl 07136209 Optim. Methods Softw. 35, No. 1, 65-86 (2020). MSC: 65K10 65N22 49M29 74M15 74M10 PDF BibTeX XML Cite \textit{R. Kučera} et al., Optim. Methods Softw. 35, No. 1, 65--86 (2020; Zbl 07136209) Full Text: DOI
Li, Min A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. (English) Zbl 1438.90326 J. Ind. Manag. Optim. 16, No. 1, 245-260 (2020). MSC: 90C30 65K05 90C53 PDF BibTeX XML Cite \textit{M. Li}, J. Ind. Manag. Optim. 16, No. 1, 245--260 (2020; Zbl 1438.90326) Full Text: DOI
Fatemi, Masoud A limited memory class of conjugate gradient methods. (English) Zbl 07313238 Pac. J. Optim. 15, No. 3, 457-475 (2019). MSC: 90C52 65K05 49M37 26B25 PDF BibTeX XML Cite \textit{M. Fatemi}, Pac. J. Optim. 15, No. 3, 457--475 (2019; Zbl 07313238) Full Text: Link
Dong, Xiaoliang; Han, Deren A note on the optimal parameter of Babaie-Kafaki’s three-term conjugate gradient method. (English) Zbl 07313233 Pac. J. Optim. 15, No. 3, 359-377 (2019). MSC: 65K05 90C53 PDF BibTeX XML Cite \textit{X. Dong} and \textit{D. Han}, Pac. J. Optim. 15, No. 3, 359--377 (2019; Zbl 07313233) Full Text: Link
Deng, Songhai; Lv, Jing; Wan, Zhong A new Dai-Liao type of conjugate gradient algorithm for unconstrained optimization problems. (English) Zbl 07313226 Pac. J. Optim. 15, No. 2, 237-248 (2019). MSC: 90C25 90C30 PDF BibTeX XML Cite \textit{S. Deng} et al., Pac. J. Optim. 15, No. 2, 237--248 (2019; Zbl 07313226) Full Text: Link
Zhang, Chao; Zhang, Qian; Xiu, Naihua Solving the logit-based stochastic user equilibrium using modified projected conjugate gradient method via convex model. (English) Zbl 07313217 Pac. J. Optim. 15, No. 1, 91-110 (2019). MSC: 65K05 90B15 90C25 PDF BibTeX XML Cite \textit{C. Zhang} et al., Pac. J. Optim. 15, No. 1, 91--110 (2019; Zbl 07313217) Full Text: Link
Lai, L. Y.; Ibrahim, N. F.; Mohamed, N. A. Comparison between BZAU, SRMI and MRM conjugate gradient methods in minimization problems. (English) Zbl 07278913 Malays. J. Math. Sci. 13, Spec. Iss.: Conference on Mathematics, Informatics and Statistics (CMIS2018), 65-75 (2019). MSC: 90C52 90C30 PDF BibTeX XML Cite \textit{L. Y. Lai} et al., Malays. J. Math. Sci. 13, 65--75 (2019; Zbl 07278913) Full Text: Link
Abubakar, Auwal Bala; Kumam, Poom; Awwal, Aliyu Muhammed Global convergence via descent modified three-term conjugate gradient projection algorithm with applications to signal recovery. (English) Zbl 07272300 Results Appl. Math. 4, Article ID 100069, 19 p. (2019). MSC: 65J15 65K05 PDF BibTeX XML Cite \textit{A. B. Abubakar} et al., Results Appl. Math. 4, Article ID 100069, 19 p. (2019; Zbl 07272300) Full Text: DOI
Itoh, Shoji; Sugihara, Masaaki Structure of the preconditioned system in various preconditioned conjugate gradient squared algorithms. (English) Zbl 1452.65061 Results Appl. Math. 3, Article ID 100008, 19 p. (2019). MSC: 65F10 65F08 PDF BibTeX XML Cite \textit{S. Itoh} and \textit{M. Sugihara}, Results Appl. Math. 3, Article ID 100008, 19 p. (2019; Zbl 1452.65061) Full Text: DOI
Golikov, A. I.; Evtushenko, Yu. G.; Kaporin, I. E. Newton-type method for solving systems of linear equations and inequalities. (English. Russian original) Zbl 1451.65029 Comput. Math. Math. Phys. 59, No. 12, 2017-2032 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 12, 2086-2101 (2019). MSC: 65F10 65K05 PDF BibTeX XML Cite \textit{A. I. Golikov} et al., Comput. Math. Math. Phys. 59, No. 12, 2017--2032 (2019; Zbl 1451.65029); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 12, 2086--2101 (2019) Full Text: DOI
Zhang, Mengmeng; Liu, Jijun Identification of a time-dependent source term in a distributed-order time-fractional equation from a nonlocal integral observation. (English) Zbl 1443.35200 Comput. Math. Appl. 78, No. 10, 3375-3389 (2019). MSC: 35R30 35K20 35R11 PDF BibTeX XML Cite \textit{M. Zhang} and \textit{J. Liu}, Comput. Math. Appl. 78, No. 10, 3375--3389 (2019; Zbl 1443.35200) Full Text: DOI
Xian, J.; Wei, Ting Determination of the initial data in a time-fractional diffusion-wave problem by a final time data. (English) Zbl 1443.35179 Comput. Math. Appl. 78, No. 8, 2525-2540 (2019). MSC: 35R11 PDF BibTeX XML Cite \textit{J. Xian} and \textit{T. Wei}, Comput. Math. Appl. 78, No. 8, 2525--2540 (2019; Zbl 1443.35179) Full Text: DOI
Liu, J. K.; Feng, Y. M.; Zou, L. M. A spectral conjugate gradient method for solving large-scale unconstrained optimization. (English) Zbl 1442.90149 Comput. Math. Appl. 77, No. 3, 731-739 (2019). MSC: 90C26 90C52 65K10 PDF BibTeX XML Cite \textit{J. K. Liu} et al., Comput. Math. Appl. 77, No. 3, 731--739 (2019; Zbl 1442.90149) Full Text: DOI
Dyachenko, Sergey A.; Hur, Vera Mikyoung Stokes waves in a constant vorticity flow. (English) Zbl 1444.76031 Henry, David (ed.) et al., Nonlinear water waves. An interdisciplinary interface. Based on the workshop held at the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 – December 7, 2017. Cham: Birkhäuser. Tutor. Sch. Workshops Math. Sci., 71-86 (2019). MSC: 76B15 76M40 76B47 76M99 PDF BibTeX XML Cite \textit{S. A. Dyachenko} and \textit{V. M. Hur}, in: Nonlinear water waves. An interdisciplinary interface. Based on the workshop held at the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 -- December 7, 2017. Cham: Birkhäuser. 71--86 (2019; Zbl 1444.76031) Full Text: DOI
Xu, Chunling; Sun, Yingyi; Li, Jian; Sun, Zhongbo A projected Dai-Yuan conjugate gradient method for optimization problems with linear equality constraints and its global convergence. (Chinese. English summary) Zbl 1449.90331 J. Northeast Norm. Univ., Nat. Sci. Ed. 51, No. 2, 39-44 (2019). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{C. Xu} et al., J. Northeast Norm. Univ., Nat. Sci. Ed. 51, No. 2, 39--44 (2019; Zbl 1449.90331) Full Text: DOI
Li, Yong; Li, Zhiqun A conjugate gradient method for solving large-scale nonsmooth minimizations. (Chinese. English summary) Zbl 1449.65121 J. Cent. China Norm. Univ., Nat. Sci. 53, No. 3, 329-334 (2019). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{Y. Li} and \textit{Z. Li}, J. Cent. China Norm. Univ., Nat. Sci. 53, No. 3, 329--334 (2019; Zbl 1449.65121) Full Text: DOI
Wang, Songhua; Li, Yong; Wu, Jiaqi A modified three terms LS conjugate gradient method with a new line search. (Chinese. English summary) Zbl 1449.90328 J. Anhui Univ., Nat. Sci. 43, No. 4, 40-44 (2019). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{S. Wang} et al., J. Anhui Univ., Nat. Sci. 43, No. 4, 40--44 (2019; Zbl 1449.90328) Full Text: DOI
Awwal, Aliyu Muhammed; Kumam, Poom; Bala Abubakar, Auwal Spectral modified Polak-Ribiére-Polyak projection conjugate gradient method for solving monotone systems of nonlinear equations. (English) Zbl 1433.65109 Appl. Math. Comput. 362, Article ID 124514, 17 p. (2019). MSC: 65K05 90C06 90C56 65H10 90C30 90C53 65K10 PDF BibTeX XML Cite \textit{A. M. Awwal} et al., Appl. Math. Comput. 362, Article ID 124514, 17 p. (2019; Zbl 1433.65109) Full Text: DOI
Gao, Peiting; He, Chuanjiang; Liu, Yang An adaptive family of projection methods for constrained monotone nonlinear equations with applications. (English) Zbl 1429.65107 Appl. Math. Comput. 359, 1-16 (2019). MSC: 65H10 90C52 94A12 PDF BibTeX XML Cite \textit{P. Gao} et al., Appl. Math. Comput. 359, 1--16 (2019; Zbl 1429.65107) Full Text: DOI
Faramarzi, Parvaneh; Amini, Keyvan A scaled three-term conjugate gradient method for large-scale unconstrained optimization problem. (English) Zbl 1433.90160 Calcolo 56, No. 4, Paper No. 35, 15 p. (2019). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{P. Faramarzi} and \textit{K. Amini}, Calcolo 56, No. 4, Paper No. 35, 15 p. (2019; Zbl 1433.90160) Full Text: DOI
Li, Y. S.; Sun, L. L.; Zhang, Z. Q.; Wei, T. Identification of the time-dependent source term in a multi-term time-fractional diffusion equation. (English) Zbl 1442.65232 Numer. Algorithms 82, No. 4, 1279-1301 (2019). MSC: 65M32 65M06 65J20 65K10 26A33 35R11 35D30 35B35 35B65 35A02 PDF BibTeX XML Cite \textit{Y. S. Li} et al., Numer. Algorithms 82, No. 4, 1279--1301 (2019; Zbl 1442.65232) Full Text: DOI
Xing, Zhiyong; Wen, Liping Numerical analysis and fast implementation of a fourth-order difference scheme for two-dimensional space-fractional diffusion equations. (English) Zbl 1429.65203 Appl. Math. Comput. 346, 155-166 (2019). MSC: 65M06 35R11 PDF BibTeX XML Cite \textit{Z. Xing} and \textit{L. Wen}, Appl. Math. Comput. 346, 155--166 (2019; Zbl 1429.65203) Full Text: DOI
Aminifard, Zohre; Babaie-Kafaki, Saman An optimal parameter choice for the Dai-Liao family of conjugate gradient methods by avoiding a direction of the maximum magnification by the search direction matrix. (English) Zbl 1425.90134 4OR 17, No. 3, 317-330 (2019). MSC: 90C53 65K05 65F35 PDF BibTeX XML Cite \textit{Z. Aminifard} and \textit{S. Babaie-Kafaki}, 4OR 17, No. 3, 317--330 (2019; Zbl 1425.90134) Full Text: DOI
Wei, Ting; Xian, Jun Variational method for a backward problem for a time-fractional diffusion equation. (English) Zbl 07126993 ESAIM, Math. Model. Numer. Anal. 53, No. 4, 1223-1244 (2019). MSC: 65M32 35R11 35A15 35A01 35A02 49N45 49N60 65F10 PDF BibTeX XML Cite \textit{T. Wei} and \textit{J. Xian}, ESAIM, Math. Model. Numer. Anal. 53, No. 4, 1223--1244 (2019; Zbl 07126993) Full Text: DOI
Müller, Christopher; Ullmann, Sebastian; Lang, Jens A Bramble-Pasciak conjugate gradient method for discrete Stokes equations with random viscosity. (English) Zbl 1425.65018 SIAM/ASA J. Uncertain. Quantif. 7, 787-805 (2019). MSC: 65C30 35R60 60H15 60H35 65N22 65N30 65F08 65F10 65F15 PDF BibTeX XML Cite \textit{C. Müller} et al., SIAM/ASA J. Uncertain. Quantif. 7, 787--805 (2019; Zbl 1425.65018) Full Text: DOI arXiv
Khoshgam, Zahra; Ashrafi, Ali A new hybrid conjugate gradient method for large-scale unconstrained optimization problem with non-convex objective function. (English) Zbl 1438.90270 Comput. Appl. Math. 38, No. 4, Paper No. 186, 14 p. (2019). MSC: 90C26 90C30 90C53 PDF BibTeX XML Cite \textit{Z. Khoshgam} and \textit{A. Ashrafi}, Comput. Appl. Math. 38, No. 4, Paper No. 186, 14 p. (2019; Zbl 1438.90270) Full Text: DOI
Sun, Yingyi; Li, Jian; Sun, Zhongbo; Wang, Zenghui Two modified WYL conjugate gradient methods for unconstrained optimization problem. (Chinese. English summary) Zbl 1438.65128 Math. Appl. 32, No. 2, 415-422 (2019). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{Y. Sun} et al., Math. Appl. 32, No. 2, 415--422 (2019; Zbl 1438.65128)
Wang, Songhua; Wu, Jiaqi A modified three terms HS conjugate gradient method with a new line search. (Chinese. English summary) Zbl 1438.90340 J. Nat. Sci. Hunan Norm. Univ. 42, No. 1, 82-87 (2019). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{S. Wang} and \textit{J. Wu}, J. Nat. Sci. Hunan Norm. Univ. 42, No. 1, 82--87 (2019; Zbl 1438.90340) Full Text: DOI
Li, Xinyi; Liu, Sanyang; Xie, Wei A novel conjugate gradient method for sensing matrix optimization for compressed sensing systems. (Chinese. English summary) Zbl 1438.94031 J. Zhejiang Univ., Sci. Ed. 46, No. 1, 15-21 (2019). MSC: 94A12 PDF BibTeX XML Cite \textit{X. Li} et al., J. Zhejiang Univ., Sci. Ed. 46, No. 1, 15--21 (2019; Zbl 1438.94031) Full Text: DOI
Landi, G.; Loli Piccolomini, Elena; Nagy, J. Nonlinear conjugate gradient method for spectral tomosynthesis. (English) Zbl 1422.92090 Inverse Probl. 35, No. 9, Article ID 094003, 16 p. (2019). MSC: 92C55 PDF BibTeX XML Cite \textit{G. Landi} et al., Inverse Probl. 35, No. 9, Article ID 094003, 16 p. (2019; Zbl 1422.92090) Full Text: DOI
Cheng, Xiao-liang; Yuan, Le-le; Liang, Ke-wei A modified Tikhonov regularization method for a Cauchy problem of a time fractional diffusion equation. (English) Zbl 1449.35432 Appl. Math., Ser. B (Engl. Ed.) 34, No. 3, 284-308 (2019). MSC: 35R11 45Q05 49N45 PDF BibTeX XML Cite \textit{X.-l. Cheng} et al., Appl. Math., Ser. B (Engl. Ed.) 34, No. 3, 284--308 (2019; Zbl 1449.35432) Full Text: DOI
Fatemi, Masoud A new conjugate gradient method with an efficient memory structure. (English) Zbl 1438.90237 Comput. Appl. Math. 38, No. 2, Paper No. 59, 17 p. (2019). MSC: 90C06 90C26 65Y20 65K05 PDF BibTeX XML Cite \textit{M. Fatemi}, Comput. Appl. Math. 38, No. 2, Paper No. 59, 17 p. (2019; Zbl 1438.90237) Full Text: DOI
Li, Yufei; Liu, Zexian; Liu, Hongwei A subspace minimization conjugate gradient method based on conic model for unconstrained optimization. (English) Zbl 1438.90329 Comput. Appl. Math. 38, No. 1, Paper No. 16, 28 p. (2019). MSC: 90C30 90C06 65K05 PDF BibTeX XML Cite \textit{Y. Li} et al., Comput. Appl. Math. 38, No. 1, Paper No. 16, 28 p. (2019; Zbl 1438.90329) Full Text: DOI
Gergelits, Tomáš; Mardal, Kent-André; Nielsen, Bjørn Fredrik; Strakoš, Zdeněk Laplacian preconditioning of elliptic PDEs: localization of the eigenvalues of the discretized operator. (English) Zbl 07100344 SIAM J. Numer. Anal. 57, No. 3, 1369-1394 (2019). MSC: 65F08 65F15 65N12 35J99 PDF BibTeX XML Cite \textit{T. Gergelits} et al., SIAM J. Numer. Anal. 57, No. 3, 1369--1394 (2019; Zbl 07100344) Full Text: DOI arXiv
Su, Ling-De; Vasil’ev, V. I. Iterative identification of the spacewise-dependent right-hand side in a parabolic equation. (Russian) Zbl 1438.65222 Mat. Zamet. SVFU 26, No. 1, 81-92 (2019). MSC: 65M32 35K20 35R30 65M06 65K10 65F10 35N20 PDF BibTeX XML Cite \textit{L.-D. Su} and \textit{V. I. Vasil'ev}, Mat. Zamet. SVFU 26, No. 1, 81--92 (2019; Zbl 1438.65222) Full Text: DOI
Jbilou, Khalide; Raydan, Marcos Nonlinear least-squares approach for large-scale algebraic Riccati equations. (English) Zbl 1420.65035 SIAM J. Sci. Comput. 41, No. 4, A2193-A2211 (2019). MSC: 65F10 65F30 65K10 49N10 PDF BibTeX XML Cite \textit{K. Jbilou} and \textit{M. Raydan}, SIAM J. Sci. Comput. 41, No. 4, A2193--A2211 (2019; Zbl 1420.65035) Full Text: DOI
Manguoğlu, Murat; Mehrmann, Volker A robust iterative scheme for symmetric indefinite systems. (English) Zbl 1420.65037 SIAM J. Sci. Comput. 41, No. 3, A1733-A1752 (2019). MSC: 65F10 65F15 65F50 PDF BibTeX XML Cite \textit{M. Manguoğlu} and \textit{V. Mehrmann}, SIAM J. Sci. Comput. 41, No. 3, A1733--A1752 (2019; Zbl 1420.65037) Full Text: DOI
Dahito, Marie-Ange; Orban, Dominique The conjugate residual method in linesearch and trust-region methods. (English) Zbl 1422.49031 SIAM J. Optim. 29, No. 3, 1988-2025 (2019). MSC: 49M15 49M37 65F10 65F20 65K05 90C30 PDF BibTeX XML Cite \textit{M.-A. Dahito} and \textit{D. Orban}, SIAM J. Optim. 29, No. 3, 1988--2025 (2019; Zbl 1422.49031) Full Text: DOI
Du, Ke-Lin; Swamy, M. N. S. Neural networks and statistical learning. 2nd updated edition. (English) Zbl 1437.62001 London: Springer (ISBN 978-1-4471-7451-6/hbk; 978-1-4471-7452-3/ebook). xxx, 988 p. (2019). Reviewer: Ludwig Paditz (Dresden) MSC: 62-01 62M45 62H25 62F15 68T05 94D05 62R07 PDF BibTeX XML Cite \textit{K.-L. Du} and \textit{M. N. S. Swamy}, Neural networks and statistical learning. 2nd updated edition. London: Springer (2019; Zbl 1437.62001) Full Text: DOI
Sun, Min; Wang, Yiju The conjugate gradient methods for solving the generalized periodic Sylvester matrix equations. (English) Zbl 1427.90224 J. Appl. Math. Comput. 60, No. 1-2, 413-434 (2019). MSC: 90C25 94A08 PDF BibTeX XML Cite \textit{M. Sun} and \textit{Y. Wang}, J. Appl. Math. Comput. 60, No. 1--2, 413--434 (2019; Zbl 1427.90224) Full Text: DOI
Ju, S. H.; Hsu, H. H. An out-of-core eigen-solver with OpenMP parallel scheme for large spare damped system. (English) Zbl 07086735 Int. J. Comput. Methods 16, No. 7, Article ID 1950038, 13 p. (2019). MSC: 65 68 PDF BibTeX XML Cite \textit{S. H. Ju} and \textit{H. H. Hsu}, Int. J. Comput. Methods 16, No. 7, Article ID 1950038, 13 p. (2019; Zbl 07086735) Full Text: DOI
Hajarian, Masoud Reflexive periodic solutions of general periodic matrix equations. (English) Zbl 1418.15014 Math. Methods Appl. Sci. 42, No. 10, 3527-3548 (2019). Reviewer: Vladimir P. Kostov (Nice) MSC: 15A24 39B42 65F10 65F30 PDF BibTeX XML Cite \textit{M. Hajarian}, Math. Methods Appl. Sci. 42, No. 10, 3527--3548 (2019; Zbl 1418.15014) Full Text: DOI
Aminifard, Z.; Babaie-Kafaki, S. Matrix analyses on the Dai-Liao conjugate gradient method. (English) Zbl 1415.90146 ANZIAM J. 61, No. 2, 195-203 (2019). MSC: 90C53 49M37 65K05 PDF BibTeX XML Cite \textit{Z. Aminifard} and \textit{S. Babaie-Kafaki}, ANZIAM J. 61, No. 2, 195--203 (2019; Zbl 1415.90146) Full Text: DOI
Aminifard, Zohre; Babaie-Kafaki, Saman A modified descent Polak-Ribiére-Polyak conjugate gradient method with global convergence property for nonconvex functions. (English) Zbl 1415.90147 Calcolo 56, No. 2, Paper No. 16, 11 p. (2019). MSC: 90C53 65K05 PDF BibTeX XML Cite \textit{Z. Aminifard} and \textit{S. Babaie-Kafaki}, Calcolo 56, No. 2, Paper No. 16, 11 p. (2019; Zbl 1415.90147) Full Text: DOI
Khoshgam, Zahra; Ashrafi, Ali A new modified scaled conjugate gradient method for large-scale unconstrained optimization with non-convex objective function. (English) Zbl 1422.90023 Optim. Methods Softw. 34, No. 4, 783-796 (2019). MSC: 90C06 90C26 PDF BibTeX XML Cite \textit{Z. Khoshgam} and \textit{A. Ashrafi}, Optim. Methods Softw. 34, No. 4, 783--796 (2019; Zbl 1422.90023) Full Text: DOI
Amini, Keyvan; Faramarzi, Parvaneh; Pirfalah, Nasrin A modified Hestenes-Stiefel conjugate gradient method with an optimal property. (English) Zbl 07065517 Optim. Methods Softw. 34, No. 4, 770-782 (2019). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{K. Amini} et al., Optim. Methods Softw. 34, No. 4, 770--782 (2019; Zbl 07065517) Full Text: DOI