×

An improved adaptive constraint aggregation for integrated layout and topology optimization. (English) Zbl 1423.74746

Summary: The purpose of this paper is to present a Kreisselmeier-Steinhauser (KS) function based adaptive constraint aggregation approach. It is implemented within the integrated layout and topology optimization of multi-component structure systems to avoid using large numbers of non-overlapping constraints defined by means of the previously proposed finite circle method (FCM). An improved adaptive approach is then put forward to obtain proper aggregation parameters for the KS function based constraint aggregation, contributing to less numerical difficulties while meeting the same aggregation precision compared with the existing adaptive approach. Furthermore, the complex step derivative approximation is utilized to yield better sensitivities for the aggregated constraint functions with high nonlinearity. Moreover, during the integrated layout and topology optimization, multi-point constraints (MPC) are applied to establish the interconnections between movable components and supporting structures, which can use fixed finite element meshes and analytical sensitivities. Finally, some numerical examples are tested to demonstrate the validity and effectiveness of the proposed formulation.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
49Q12 Sensitivity analysis for optimization problems on manifolds

Software:

BOSS-Quattro
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 197-224 (1988) · Zbl 0671.73065
[2] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Method and Application (2003), Springer Verlag · Zbl 1059.74001
[3] Stolpe, M.; Svanberg, K., An alternative interpolation scheme for minimum compliance topology optimization, Struct. Multidiscip. Optim., 22, 116-124 (2001)
[4] Xie, Y. M.; Steven, G. P., A simple evolutionary procedure for structural optimization, Comput. Struct., 49, 885-896 (1993)
[5] Wang, M. Y.; Wang, X. M.; Guo, D. M., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 227-246 (2003) · Zbl 1083.74573
[6] Allaire, G.; Jouve, F.; Maillot, H., Topology optimization for minimum stress design with the homogenization method, Struct. Multidiscip. Optim., 28, 87-98 (2004) · Zbl 1243.74148
[7] Guo, X.; Cheng, G. D., Recent development in structural design and optimization, Acta Mech. Sin., 26, 6, 807-823 (2010) · Zbl 1270.74164
[8] Lee, W. S.; Youn, S. K., Topology optimization of rubber isolators considering static and dynamic behaviours, Struct. Multidiscip. Optim., 27, 4, 284-294 (2004)
[9] Maute, K.; Allen, M., Conceptual design of aeroelastic structures by topology optimization, Struct. Multidiscip. Optim., 27, 27-42 (2004)
[10] Niu, B.; Yan, J.; Cheng, G. D., Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency, Struct. Multidiscip. Optim., 39, 115-132 (2009)
[11] Remouchamps, A.; Bruyneel, M.; Fleury, C.; Grihon, S., Application of a bi-level scheme including topology optimization to the design of an aircraft pylon, Struct. Multidiscip. Optim., 44, 6, 739-750 (2011)
[12] Chickermane, H.; Gea, H. C., Design of multi-component structural systems for optimal layout topology and joint locations, Eng. Comput., 13, 235-243 (1997)
[13] Li, Q.; Steven, G. P.; Xie, Y. M., Evolutionary structural optimization for connection topology design of multi-component systems, Eng. Comput., 18, 460-479 (2001) · Zbl 1153.74364
[14] Ma, Z. D.; Kikuchi, N.; Pierre, C.; Raju, B., Multidomain topology optimization for structural and material designs, J. Appl. Mech., 73, 565-573 (2006) · Zbl 1111.74537
[15] Qian, Z. Y.; Ananthasuresh, G. K., Optimal embedding of rigid objects in the topology design of structures, Mech. Based Des. Struct. Mach., 32, 165-193 (2004)
[16] J.H. Zhu, W.H. Zhang, Coupled design of components layout and supporting structures using shape and topology optimization, in: Proceedings of the Fourth China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, Kunming, China, November 6-9, 2006.; J.H. Zhu, W.H. Zhang, Coupled design of components layout and supporting structures using shape and topology optimization, in: Proceedings of the Fourth China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, Kunming, China, November 6-9, 2006.
[17] Meagher, D., Geometric modeling using octree encoding, Comput. Graph. Image Process., 19, 129-147 (1982)
[18] Samet, H., Spatial Data Structures: Quadtree, Octree and Other Hierarchical Methods (1989), Addison Wesley
[19] A. Moore, The circle tree—a hierarchical structure for efficient storage, access and multi-scale representation of spatial data, in: SIRC 2002 Dunedin, New Zealand 2002.; A. Moore, The circle tree—a hierarchical structure for efficient storage, access and multi-scale representation of spatial data, in: SIRC 2002 Dunedin, New Zealand 2002.
[20] S. Cameron, Approximation hierarchies and s-bounds, in: Proceedings Symposium on Solid modeling Foundations and CAD/CAM Applications, 1991, pp. 129-137.; S. Cameron, Approximation hierarchies and s-bounds, in: Proceedings Symposium on Solid modeling Foundations and CAD/CAM Applications, 1991, pp. 129-137.
[21] W.H. Zhang, J.H. Zhu, A new finite-circle family method for optimal multi-component packing design, in: WCCM VII, Los Angeles 2006.; W.H. Zhang, J.H. Zhu, A new finite-circle family method for optimal multi-component packing design, in: WCCM VII, Los Angeles 2006.
[22] Zhu, J. H.; Zhang, W. H.; Xia, L.; Zhang, Q.; Bassir, D. H., Optimal packing configuration design with finite-circle method, J. Intell. Rob. Syst., 67, 185-199 (2012) · Zbl 1251.90345
[23] Shan, P., Optimal embedding objects in the topology design of structure (2008), Dalian University of Technology, (Master thesis)
[24] Kang, Z.; Wang, Y. Q., Integrated topology optimization with embedded movable holes based on combined description by material density and level sets, Comput. Methods Appl. Mech. Engrg., 255, 1-13 (2013) · Zbl 1297.74092
[25] Yang, R. J.; Chen, C. J., Stress-based topology optimization, Struct. Optim., 12, 2-3, 98-105 (1996)
[26] P. Duysinx, O. Sigmund, New developments in handling stress constraints in optimal material distribution, in: Proc of the 7th AIAA/USAF/NASAISSMO Symp on Multidisciplinary Analysis and Optimization, Vol. 1, 1998, pp. 1501-1509.; P. Duysinx, O. Sigmund, New developments in handling stress constraints in optimal material distribution, in: Proc of the 7th AIAA/USAF/NASAISSMO Symp on Multidisciplinary Analysis and Optimization, Vol. 1, 1998, pp. 1501-1509.
[27] Le, C.; Norato, J.; Bruns, T.; Ha, C.; Tortorelli, D., Stress-based topology optimization for continua, Struct. Multidiscip. Optim., 41, 4, 605-620 (2010)
[28] Qiu, G. Y.; Li, X. S., A note on the derivation of global stress constraints, Struct. Multidiscip. Optim., 40, 1-6, 625-628 (2010) · Zbl 1274.74379
[29] M.K. Nicholas Poon, R.R.A. Joaquim Martins, On structural optimization using constraint aggregation, in: 6th World Congress on Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, 2005.; M.K. Nicholas Poon, R.R.A. Joaquim Martins, On structural optimization using constraint aggregation, in: 6th World Congress on Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, 2005.
[30] Nicholas Poon, M. K.; Joaquim Martins, R. R.A., An adaptive approach to constraint aggregation using adjoint sensitivity analysis, Struct. Multidiscip. Optim., 34, 1, 61-73 (2007)
[31] Nicholas Poon, M. K.; Joaquim Martins, R. R.A., The complex-step derivative approximation, ACM Trans. Math. Software (TOMS), 29, 3, 245-262 (2003) · Zbl 1072.65027
[32] Lai, K. L.; Crassidis, J. L., Extensions of the first and second complex-step derivative approximations, J. Comput. Appl. Math., 219, 1, 276-293 (2008) · Zbl 1145.65016
[33] Xia, L.; Zhu, J. H.; Zhang, W. H., An implicit model for the integrated optimization of component layout and structure topology, Comput. Methods Appl. Mech. Engrg., 257, 87-102 (2013) · Zbl 1286.74080
[34] Zhang, J.; Zhang, W. H.; Zhu, J. H., Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis, Comput. Methods Appl. Mech. Engrg., 245-246, 75-89 (2012) · Zbl 1354.74310
[35] Zhu, J. H.; Zhang, W. H.; Beckers, P.; Chen, Y. Z.; Guo, Z. Z., Simultaneous design of components layout and supporting structures using coupled shape and topology optimization, Struct. Multidiscip. Optim., 36, 1, 29-41 (2008) · Zbl 1273.74382
[36] Zhu, J. H.; Zhang, W. H.; Beckers, P., Integrated layout design of multi-component system, Internat. J. Numer. Methods Engrg., 78, 631-651 (2009) · Zbl 1183.74215
[37] Zhu, J. H.; Zhang, W. H., Integrated layout design of supports and structures, Comput. Methods Appl. Mech. Engrg., 199, 9-12, 557-569 (2010) · Zbl 1227.74057
[38] Xia, L.; Zhu, J. H.; Zhang, W. H., A superelement formulation for the efficient layout design of complex multi-component system, Struct. Multidiscip. Optim., 45, 643-655 (2012) · Zbl 1274.74297
[39] Zhu, J. H.; Gao, H. H.; Zhang, W. H.; Zhou, Y., A multi-point constraints based integrated layout and topology optimization design of multi-component systems, Struct. Multidiscip. Optim. (2014)
[40] Ainsworth, M., Essential boundary conditions and multi-point constraints in finite element analysis, Comput. Methods Appl. Mech. Engrg., 190, 6323-6339 (2001) · Zbl 0992.65128
[41] Yoon, K. H.; Heo, S. P.; Song, K. N.; Jung, Y. H., Dynamic impact analysis of the grid structure using multi-point constraint (MPC) equation under the lateral impact load, Comput. & Structures, 82, 23-26, 2221-2228 (2004)
[42] Squire, W.; Trapp, G., Using complex variables to estimate derivatives of real functions, SIAM Rev., 40, 1, 110-112 (1998) · Zbl 0913.65014
[43] K. Svanberg, On a globally convergent version of MMA, in: 7th World Congress on Structural and Multidisciplinary Optimization, COEX Seoul, Korea, 2007.; K. Svanberg, On a globally convergent version of MMA, in: 7th World Congress on Structural and Multidisciplinary Optimization, COEX Seoul, Korea, 2007.
[44] Radovcic, Y.; Remouchamps, A., BOSS QUATTRO: an open system for parametric design, Struct. Multidiscip. Optim., 23, 2, 140-152 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.