×

Absolute exponential stability of switched nonlinear time-delay systems; linear programming. (English) Zbl 1336.93134

Summary: This paper investigates absolute exponential stability of switched nonlinear time-delay systems in both continuous-time and discrete-time contexts. The nonlinearities of the systems satisfy a certain sector condition. First, an improved Lyapunov-Krasovskii functional of switched nonlinear time-delay systems in the continuous-time form is constructed. By using the multiple Lyapunov-Krasovskii functionals and average dwell time switching approaches, two less conservative sufficient conditions for the absolute exponential stability of the systems with single/multiple delays are established, respectively. Then, the obtained results are extended to discrete-time systems. All proposed conditions are described via linear programming. By some comparisons, it is shown that the results in the paper are less conservative than those in the literature. Finally, two examples are given to show the effectiveness of the theoretical findings.

MSC:

93D20 Asymptotic stability in control theory
93C10 Nonlinear systems in control theory
93D30 Lyapunov and storage functions
90C05 Linear programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[2] Sun, Z.; Ge, S. S., Analysis and synthesis of switched linear control systems, Automatica, 41, 2, 181-195 (2005) · Zbl 1074.93025
[3] Xie, G.; Wang, L., Controllability and stabilizability of switched linear-systems, Syst. Control Lett., 48, 2, 135-155 (2003) · Zbl 1134.93403
[4] Geromel, J. C.; Colaneri, P., Stability and stabilization of continuous-time switched linear systems, SIAM J. Control Optim., 45, 5, 1915-1930 (2006) · Zbl 1130.34030
[5] Chadli, M.; Darouach, M., Robust admissibility of uncertain switched singular systems, Int. J. Control, 84, 10, 1587-1600 (2011) · Zbl 1236.93107
[6] Xiong, J.; Lam, J.; Shu, Z.; Mao, X., Stability analysis of continuous-time switched systems with a random switching signal, IEEE Trans. Autom. Control, 59, 1, 180-186 (2014) · Zbl 1360.93756
[7] Liberzon, D., Finite data-rate feedback stabilization of switched and hybrid linear systems, Automatica, 50, 2, 409-420 (2015) · Zbl 1364.93648
[8] Zhang, L.; Zhuang, S.; Shi, P.; Zhu, Y., Uniform tube based stabilization of switched linear systems with mode-dependent persistent dwell-time, IEEE Trans. Autom. Control, 60, 11, 2994-2999 (2015) · Zbl 1360.93625
[9] Lee, T. C.; Jiang, Z., Uniform asymptotic stability of nonlinear switched systems with an application to mobile robots, IEEE Trans. Autom. Control, 53, 5, 1235-1252 (2008) · Zbl 1367.93399
[10] Thanha, N. T.; Phat, V. N., Decentralized stability for switched nonlinear large-scale systems with interval time-varying delays in interconnections, Nonlinear Anal.: Hybrid Syst., 11, 22-36 (2014) · Zbl 1298.34137
[11] Ma, R.; Zhao, S.; Wang, M., Global robust stabilisation of a class of uncertain switched nonlinear systems with dwell time specifications, Int. J. Control, 87, 3, 589-599 (2014) · Zbl 1317.93224
[12] Zhu, L.; Feng, G., Necessary and sufficient conditions for stability of switched nonlinear systems, J. Frankl. Inst., 352, 1, 117-137 (2015) · Zbl 1307.93346
[13] Zhao, X.; Zheng, X.; Niu, B.; Liu, L., Adaptive tracking control for a class of uncertain switched nonlinear systems, Automatica, 52, 185-191 (2015) · Zbl 1309.93081
[14] Zhao, X.; Shi, P.; Zheng, X., Adaptive tracking control for switched stochastic nonlinear systems with unknown actuator dead-zone, Automatica, 60, 193-200 (2015) · Zbl 1331.93194
[15] Aleksandrov, A. Yu; Chen, Y.; Platonov, A.; Zhang, L., Stability analysis for a class of switched nonlinear systems, Automatica, 47, 10, 2286-2291 (2011) · Zbl 1228.93085
[16] Aleksandrov, A. Yu; Chen, Y.; Platonov, A.; Zhang, L., Stability analysis and uniform ultimate boundedness control synthesis for a class of nonlinear switched difference systems, J. Differ. Equ. Appl., 18, 9, 1545-1561 (2012) · Zbl 1263.93190
[17] Sun, Y.; Wang, L., On stability of a class of switched nonlinear systems, Automatica, 49, 305-307 (2013) · Zbl 1257.93085
[18] Zhang, J.; Han, Z.; Zhu, F.; Zhao, X., Absolute exponential stability and stabilization of switched nonlinear systems, Syst. Control Lett., 66, 51-57 (2014) · Zbl 1288.93075
[19] Aleksandrov, A. Yu; Mason, O., Absolute stability and Lyapunov-Krasovskii functionals for switched nonlinear systems with time-delay, J. Frankl. Inst., 351, 4381-4394 (2014) · Zbl 1294.93067
[20] Kaszkurewicz, E.; Bhaya, A., On a class of globally stable neural circuits, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 41, 2, 171-174 (1994) · Zbl 0843.93063
[21] Kaszkurewicz, E.; Bhaya, A., Robust stability and diagonal Lyapunov functions, SIAM J. Matrix Anal. Appl., 14, 508-520 (1993) · Zbl 0774.93062
[22] Hsu, L.; Kaszkurewicz, E.; Bhaya, A., Matrix theoretic conditions for the realizability of sliding manifolds, Syst. Control Lett., 40, 3, 145-152 (2000) · Zbl 0977.93018
[23] de Oliveira, M.; Geromel, J.; Hsu, L., A new absolute stability test for systems with state-dependent perturbations, Int. J. Robust Nonlinear Control, 12, 1209-1226 (2002) · Zbl 1011.93087
[24] Gil׳, M., \(L_2\)-absolute and input-to-state stabilities of equations with nonlinear causal mappings, Int. J. Robust Nonlinear Control, 19, 151-167 (2009) · Zbl 1188.34096
[25] Cao, J.; Wang, J., Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays, Neural Netw., 17, 379-390 (2004) · Zbl 1074.68049
[26] Hu, S.; Wang, J., Absolute exponential stability of a class of continuous-time recurrent neural networks, IEEE Trans. Neural Netw. Learn. Syst., 14, 1, 35-45 (2003)
[27] Gurvits, L.; Shorten, R.; Mason, O., On the stability of switched positive linear systems, IEEE Trans. Autom. Control, 52, 6, 1099-1103 (2007) · Zbl 1366.93436
[28] Knorn, F.; Mason, O.; Shorten, R., On linear co-positive Lyapunov functions for sets of linear positive systems, Automatica, 45, 8, 1943-1947 (2009) · Zbl 1185.93122
[29] Zhao, X.; Zhang, L.; Shi, P., Stability of a class of switched positive linear time-delay systems, Int. J. Robust Nonlinear Control, 23, 5, 578-589 (2013) · Zbl 1284.93208
[30] Ait Rami, M., Solvability of static output-feedback stabilization for LTI positive systems, Syst. Control Lett., 60, 9, 704-708 (2011) · Zbl 1226.93116
[31] Efimova, D.; Perruquetti, W.; Richard, J. P., Interval estimation for uncertain systems with time-varying delays, Int. J. Control, 86, 10, 1777-1787 (2013) · Zbl 1312.93100
[32] Cacace, F.; Fafina, L.; Germani, A.; Manes, C., Internally positive representation of a class of continuous time systems, IEEE Trans. Autom. Control, 57, 12, 3158-3163 (2012) · Zbl 1369.93135
[33] Farina, L.; Rinaldi, S., Positive Linear Systems: Theory and Applications (2000), Wiley: Wiley New York · Zbl 0988.93002
[34] Wu, A.; Zeng, Z.; Zhu, X.; Zhang, J., Exponential synchronization of memristor-based recurrent neural networks with time delays, Neurocomputing, 74, 3043-3050 (2011)
[35] Zhang, G.; Shen, Y.; Yin, Q.; Sun, J., Global exponential periodicity and stability of a class of memristor-based recurrent neural networks with multiple delays, Inf. Sci., 232, 386-396 (2013) · Zbl 1293.34094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.