Dilcher, Karl; Jiu, Lin Orthogonal polynomials and Hankel determinants for certain Bernoulli and Euler polynomials. (English) Zbl 07317186 J. Math. Anal. Appl. 497, No. 1, Article ID 124855, 19 p. (2021). MSC: 33 11 PDF BibTeX XML Cite \textit{K. Dilcher} and \textit{L. Jiu}, J. Math. Anal. Appl. 497, No. 1, Article ID 124855, 19 p. (2021; Zbl 07317186) Full Text: DOI
Han, Bin Some multivariate polynomials for doubled permutations. (English) Zbl 07311262 Electron Res. Arch. 29, No. 2, 1925-1944 (2021). MSC: 05A05 05A19 05A15 11A55 PDF BibTeX XML Cite \textit{B. Han}, Electron Res. Arch. 29, No. 2, 1925--1944 (2021; Zbl 07311262) Full Text: DOI
Harase, Shin A table of short-period Tausworthe generators for Markov chain quasi-Monte Carlo. (English) Zbl 07305053 J. Comput. Appl. Math. 384, Article ID 113136, 12 p. (2021). MSC: 65C10 11K45 PDF BibTeX XML Cite \textit{S. Harase}, J. Comput. Appl. Math. 384, Article ID 113136, 12 p. (2021; Zbl 07305053) Full Text: DOI
Bunder, Martin; Nickolas, Peter; Tonien, Joseph An exact formula for the harmonic continued fraction. (English) Zbl 07302530 Bull. Aust. Math. Soc. 103, No. 1, 11-21 (2021). MSC: 11A55 11J70 11Y65 PDF BibTeX XML Cite \textit{M. Bunder} et al., Bull. Aust. Math. Soc. 103, No. 1, 11--21 (2021; Zbl 07302530) Full Text: DOI
Morton, Patrick On the Hasse invariants of the Tate normal forms \(E_5\) and \(E_7\). (English) Zbl 07257228 J. Number Theory 218, 234-271 (2021). MSC: 11G05 11G07 11F03 14H52 11G15 11G20 11R29 11R37 PDF BibTeX XML Cite \textit{P. Morton}, J. Number Theory 218, 234--271 (2021; Zbl 07257228) Full Text: DOI
Bodnar, O. S.; Dmytryshyn, R. I.; Sharyn, S. V. On the convergence of multidimensional \(S\)-fractions with independent variables. (English) Zbl 07311920 Carpathian Math. Publ. 12, No. 2, 353-359 (2020). MSC: 32A05 32A30 30B70 PDF BibTeX XML Cite \textit{O. S. Bodnar} et al., Carpathian Math. Publ. 12, No. 2, 353--359 (2020; Zbl 07311920) Full Text: DOI
Kan, I. D. A strengthening the one of a theorem of Bourgain-Kontorovich. (Russian. English summary) Zbl 07311856 Dal’nevost. Mat. Zh. 20, No. 2, 164-190 (2020). MSC: 11J70 11K60 PDF BibTeX XML Cite \textit{I. D. Kan}, Dal'nevost. Mat. Zh. 20, No. 2, 164--190 (2020; Zbl 07311856) Full Text: DOI MNR
Das, Shamik; Chakraborty, Debopam; Saikia, Anupam On the period of the continued fraction of \(\sqrt{pq}\). (English) Zbl 07301085 Acta Arith. 196, No. 3, 291-302 (2020). MSC: 11A55 11R11 11R27 11R29 PDF BibTeX XML Cite \textit{S. Das} et al., Acta Arith. 196, No. 3, 291--302 (2020; Zbl 07301085) Full Text: DOI
Pahirya, M. M. A continuant and an estimate of the remainder of the interpolating continued \(C\)-fraction. (English) Zbl 07286276 Mat. Stud. 54, No. 1, 32-45 (2020). MSC: 30B70 40A15 41A05 65D05 PDF BibTeX XML Cite \textit{M. M. Pahirya}, Mat. Stud. 54, No. 1, 32--45 (2020; Zbl 07286276) Full Text: DOI
Antonova, T. M.; Filevych, P. V. Truncation error bounds for branched continued fraction whose partial denominators are equal to unity. (English) Zbl 07286273 Mat. Stud. 54, No. 1, 3-14 (2020). Reviewer: Oleg Karpenkov (Liverpool) MSC: 11J70 32A17 41A25 PDF BibTeX XML Cite \textit{T. M. Antonova} and \textit{P. V. Filevych}, Mat. Stud. 54, No. 1, 3--14 (2020; Zbl 07286273) Full Text: DOI
Hu, Yining; Wei-Han, Guoniu On the automaticity of sequences defined by the Thue-Morse and period-doubling Stieltjes continued fractions. (English) Zbl 07285857 Int. J. Number Theory 16, No. 10, 2187-2212 (2020). MSC: 11B85 11J70 11B50 11Y65 05A15 PDF BibTeX XML Cite \textit{Y. Hu} and \textit{G. Wei-Han}, Int. J. Number Theory 16, No. 10, 2187--2212 (2020; Zbl 07285857) Full Text: DOI
Takahasi, Hiroki Large deviations for denominators of continued fractions. (English) Zbl 07278294 Nonlinearity 33, No. 11, 5861-5874 (2020). MSC: 11A55 11K50 37A40 60F10 37A45 37A50 PDF BibTeX XML Cite \textit{H. Takahasi}, Nonlinearity 33, No. 11, 5861--5874 (2020; Zbl 07278294) Full Text: DOI
Klimek, Slawomir; McBride, Matt; Rathnayake, Sumedha; Sakai, Kaoru A value region problem for continued fractions and discrete Dirac equations. (English) Zbl 07276079 Hokkaido Math. J. 49, No. 2, 333-348 (2020). MSC: 30B70 11Y65 PDF BibTeX XML Cite \textit{S. Klimek} et al., Hokkaido Math. J. 49, No. 2, 333--348 (2020; Zbl 07276079) Full Text: DOI Euclid
Abergel, Rémy; Moisan, Lionel Algorithm 1006: Fast and accurate evaluation of a generalized incomplete gamma function. (English) Zbl 07272241 ACM Trans. Math. Softw. 46, No. 1, Article No. 10, 24 p. (2020). MSC: 65 PDF BibTeX XML Cite \textit{R. Abergel} and \textit{L. Moisan}, ACM Trans. Math. Softw. 46, No. 1, Article No. 10, 24 p. (2020; Zbl 07272241) Full Text: DOI
Airey, D.; Mance, B. Hotspot lemmas for noncompact spaces. (English) Zbl 07270840 Math. Notes 108, No. 3, 434-439 (2020). Reviewer: Christoph Aistleitner (Graz) MSC: 37A30 37A44 11J70 PDF BibTeX XML Cite \textit{D. Airey} and \textit{B. Mance}, Math. Notes 108, No. 3, 434--439 (2020; Zbl 07270840) Full Text: DOI
Liu, Wencai The Möbius transformation of continued fractions with bounded upper and lower partial quotients. (English) Zbl 07257606 Turk. J. Math. 44, No. 3, 813-824 (2020). MSC: 11A55 PDF BibTeX XML Cite \textit{W. Liu}, Turk. J. Math. 44, No. 3, 813--824 (2020; Zbl 07257606) Full Text: DOI
Shruthi; Srivatsa Kumar, B. R. Explicit evaluation of some of the theta-function identities. (English) Zbl 07254906 Miskolc Math. Notes 21, No. 1, 387-400 (2020). MSC: 11F27 PDF BibTeX XML Cite \textit{Shruthi} and \textit{B. R. Srivatsa Kumar}, Miskolc Math. Notes 21, No. 1, 387--400 (2020; Zbl 07254906) Full Text: DOI
Nagayoshi, Toshifumi; Takashima, Keizo On the \(\chi^2\) statistics of leading digits of irrational rotations with a large first or second partial quotient. (English) Zbl 07254857 Period. Math. Hung. 80, No. 2, 158-171 (2020). MSC: 11K38 11K31 11A55 PDF BibTeX XML Cite \textit{T. Nagayoshi} and \textit{K. Takashima}, Period. Math. Hung. 80, No. 2, 158--171 (2020; Zbl 07254857) Full Text: DOI
Duverney, Daniel; Kurosawa, Takeshi; Shiokawa, Iekata Transformation formulas of finite sums into continued fractions. (English) Zbl 07253729 J. Approx. Theory 258, Article ID 105460, 12 p. (2020). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 11J70 11A55 PDF BibTeX XML Cite \textit{D. Duverney} et al., J. Approx. Theory 258, Article ID 105460, 12 p. (2020; Zbl 07253729) Full Text: DOI
Pahirya, Mykhaylo M. Application of a continuant to the estimation of a remainder term of Thiele’s interpolation continued fraction. (English. Ukrainian original) Zbl 07253487 J. Math. Sci., New York 246, No. 5, 687-700 (2020); translation from Ukr. Mat. Visn. 16, No. 4, 588-603 (2019). MSC: 41A05 PDF BibTeX XML Cite \textit{M. M. Pahirya}, J. Math. Sci., New York 246, No. 5, 687--700 (2020; Zbl 07253487); translation from Ukr. Mat. Visn. 16, No. 4, 588--603 (2019) Full Text: DOI
Antonova, T. M. On convergence criteria for branched continued fraction. (English) Zbl 07252016 Carpathian Math. Publ. 12, No. 1, 157-164 (2020). MSC: 40A15 PDF BibTeX XML Cite \textit{T. M. Antonova}, Carpathian Math. Publ. 12, No. 1, 157--164 (2020; Zbl 07252016) Full Text: DOI
Huang, Lingling; Wu, Jun; Xu, Jian Metric properties of the product of consecutive partial quotients in continued fractions. (English) Zbl 1452.11095 Isr. J. Math. 238, No. 2, 901-943 (2020). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11K50 11J70 11J83 PDF BibTeX XML Cite \textit{L. Huang} et al., Isr. J. Math. 238, No. 2, 901--943 (2020; Zbl 1452.11095) Full Text: DOI
Bettin, Sandro; Drappeau, Sary Partial sums of the cotangent function. (English. French summary) Zbl 07246700 J. Théor. Nombres Bordx. 32, No. 1, 217-230 (2020). MSC: 11L03 11A55 11M35 PDF BibTeX XML Cite \textit{S. Bettin} and \textit{S. Drappeau}, J. Théor. Nombres Bordx. 32, No. 1, 217--230 (2020; Zbl 07246700) Full Text: DOI
Chapoton, Frédéric Ramanujan-Bernoulli numbers as moments of Racah polynomials. (English. French summary) Zbl 07246699 J. Théor. Nombres Bordx. 32, No. 1, 205-215 (2020). MSC: 11B68 11Y65 33C45 PDF BibTeX XML Cite \textit{F. Chapoton}, J. Théor. Nombres Bordx. 32, No. 1, 205--215 (2020; Zbl 07246699) Full Text: DOI
Mundici, Daniele Complete and computable orbit invariants in the geometry of the affine group over the integers. (English) Zbl 1442.13016 Ann. Mat. Pura Appl. (4) 199, No. 5, 1843-1871 (2020). Reviewer: Nan Ji-Zhu (Dalian) MSC: 13A50 11D09 11E16 11H55 14G05 14H50 14L24 14M25 14R20 20H25 PDF BibTeX XML Cite \textit{D. Mundici}, Ann. Mat. Pura Appl. (4) 199, No. 5, 1843--1871 (2020; Zbl 1442.13016) Full Text: DOI
Olsen, L.; West, M. Average frequencies of digits in infinite IFS’s and applications to continued fractions and Lüroth expansions. (English) Zbl 1448.28011 Monatsh. Math. 193, No. 2, 441-478 (2020). Reviewer: Peter Massopust (München) MSC: 28A80 PDF BibTeX XML Cite \textit{L. Olsen} and \textit{M. West}, Monatsh. Math. 193, No. 2, 441--478 (2020; Zbl 1448.28011) Full Text: DOI
Duverney, Daniel; Kurosawa, Takeshi; Shiokawa, Iekata Irrationality exponents of generalized Hone series. (English) Zbl 1452.11088 Monatsh. Math. 193, No. 2, 291-303 (2020). Reviewer: Jaroslav Hančl (Ostrava) MSC: 11J82 11J70 PDF BibTeX XML Cite \textit{D. Duverney} et al., Monatsh. Math. 193, No. 2, 291--303 (2020; Zbl 1452.11088) Full Text: DOI
Murru, Nadir; Terracini, Lea On the finiteness and periodicity of the \(p\)-adic Jacobi-Perron algorithm. (English) Zbl 07240971 Math. Comput. 89, No. 326, 2913-2930 (2020). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 11J70 12J25 11J61 PDF BibTeX XML Cite \textit{N. Murru} and \textit{L. Terracini}, Math. Comput. 89, No. 326, 2913--2930 (2020; Zbl 07240971) Full Text: DOI
Song, Teng; Zhou, Qinglong On the longest block function in continued fractions. (English) Zbl 07240607 Bull. Aust. Math. Soc. 102, No. 2, 196-206 (2020). MSC: 11K55 11J83 28A80 PDF BibTeX XML Cite \textit{T. Song} and \textit{Q. Zhou}, Bull. Aust. Math. Soc. 102, No. 2, 196--206 (2020; Zbl 07240607) Full Text: DOI
Hejda, Tomáš; Kala, Vítězslav Additive structure of totally positive quadratic integers. (English) Zbl 1450.11113 Manuscr. Math. 163, No. 1-2, 263-278 (2020). Reviewer: Balasubramanian Sury (Bangalore) MSC: 11R11 11A55 20M05 20M14 PDF BibTeX XML Cite \textit{T. Hejda} and \textit{V. Kala}, Manuscr. Math. 163, No. 1--2, 263--278 (2020; Zbl 1450.11113) Full Text: DOI
Cha, Byungchul; Kim, Dong Han Number theoretical properties of Romik’s dynamical system. (English) Zbl 1450.11068 Bull. Korean Math. Soc. 57, No. 1, 251-274 (2020). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 11J70 11A55 PDF BibTeX XML Cite \textit{B. Cha} and \textit{D. H. Kim}, Bull. Korean Math. Soc. 57, No. 1, 251--274 (2020; Zbl 1450.11068) Full Text: DOI
Han, Sandie; Masuda, Ariane M.; Singh, Satyanand; Thiel, Johann Subgroups of \(\mathrm{SL}_2(\mathbb{Z})\) characterized by certain continued fraction representations. (English) Zbl 07223737 Proc. Am. Math. Soc. 148, No. 9, 3775-3786 (2020). MSC: 20H10 20E05 20M05 11A55 PDF BibTeX XML Cite \textit{S. Han} et al., Proc. Am. Math. Soc. 148, No. 9, 3775--3786 (2020; Zbl 07223737) Full Text: DOI
Komarov, M. A. On the rate of approximation in the unit disc of \(H^1\)-functions by logarithmic derivatives of polynomials with zeros on the boundary. (English. Russian original) Zbl 1446.30056 Izv. Math. 84, No. 3, 437-448 (2020); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 3, 3-14 (2020). Reviewer: Devendra Kumar (Al-Baha) MSC: 30E10 30B70 PDF BibTeX XML Cite \textit{M. A. Komarov}, Izv. Math. 84, No. 3, 437--448 (2020; Zbl 1446.30056); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 3, 3--14 (2020) Full Text: DOI
Peltomäki, Jarkko; Whiteland, Markus A. On \(k\)-abelian equivalence and generalized Lagrange spectra. (English) Zbl 07221811 Acta Arith. 194, No. 2, 135-154 (2020). MSC: 68R15 11J06 PDF BibTeX XML Cite \textit{J. Peltomäki} and \textit{M. A. Whiteland}, Acta Arith. 194, No. 2, 135--154 (2020; Zbl 07221811) Full Text: DOI
Louboutin, Stéphane R. On the continued fraction expansions of \(\sqrt{p}\) and \(\sqrt{2p}\) for primes \(p\equiv 3\pmod 4\). (English) Zbl 1442.11015 Chakraborty, Kalyan (ed.) et al., Class groups of number fields and related topics. Collected papers presented at the first international conference, ICCGNFRT, Harish-Chandra Research Institute, Allahabad, India, September 4–7, 2017. Singapore: Springer. 175-178 (2020). Reviewer: Oleg Karpenkov (Liverpool) MSC: 11A55 11R11 PDF BibTeX XML Cite \textit{S. R. Louboutin}, in: Class groups of number fields and related topics. Collected papers presented at the first international conference, ICCGNFRT, Harish-Chandra Research Institute, Allahabad, India, September 4--7, 2017. Singapore: Springer. 175--178 (2020; Zbl 1442.11015) Full Text: DOI
Fan, Xiequan Cramér type moderate deviations for self-normalized \(\psi \)-mixing sequences. (English) Zbl 1451.60034 J. Math. Anal. Appl. 486, No. 2, Article ID 123902, 16 p. (2020). MSC: 60F10 60E15 60G10 PDF BibTeX XML Cite \textit{X. Fan}, J. Math. Anal. Appl. 486, No. 2, Article ID 123902, 16 p. (2020; Zbl 1451.60034) Full Text: DOI
Qu, Yunyun; Zeng, Jiwen Pell and Pell-Lucas numbers of the form \(-2^a-3^b+5^c\). (English) Zbl 07217134 Czech. Math. J. 70, No. 1, 281-289 (2020). MSC: 11B39 11J86 11D61 PDF BibTeX XML Cite \textit{Y. Qu} and \textit{J. Zeng}, Czech. Math. J. 70, No. 1, 281--289 (2020; Zbl 07217134) Full Text: DOI
Liu, Wencai Almost Mathieu operators with completely resonant phases. (English) Zbl 1446.37029 Ergodic Theory Dyn. Syst. 40, No. 7, 1875-1893 (2020). Reviewer: Thomas B. Ward (Leeds) MSC: 37C30 37A44 37H15 37A20 47B37 47A10 PDF BibTeX XML Cite \textit{W. Liu}, Ergodic Theory Dyn. Syst. 40, No. 7, 1875--1893 (2020; Zbl 1446.37029) Full Text: DOI
Han, Guo-Niu Hankel continued fractions and Hankel determinants of the Euler numbers. (English) Zbl 07207632 Trans. Am. Math. Soc. 373, No. 6, 4255-4283 (2020). MSC: 11B68 05A05 05A10 05A15 05A19 11C20 30B70 PDF BibTeX XML Cite \textit{G.-N. Han}, Trans. Am. Math. Soc. 373, No. 6, 4255--4283 (2020; Zbl 07207632) Full Text: DOI
Peltomäki, Jarkko Abelian periods of factors of Sturmian words. (English) Zbl 07206994 J. Number Theory 214, 251-285 (2020). Reviewer: Jean-Paul Allouche (Paris) MSC: 68R15 11B85 PDF BibTeX XML Cite \textit{J. Peltomäki}, J. Number Theory 214, 251--285 (2020; Zbl 07206994) Full Text: DOI
Mozzochi, C. J. A proof of Sarnak’s golden mean conjecture. (English) Zbl 1453.11011 J. Number Theory 214, 56-62 (2020). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 11A55 11Y65 PDF BibTeX XML Cite \textit{C. J. Mozzochi}, J. Number Theory 214, 56--62 (2020; Zbl 1453.11011) Full Text: DOI
Azhagappan, Arumugam; Deepa, Thirunavukkarasu Variant impatient behavior of a Markovian queue with balking reserved idle time and working vacation. (English) Zbl 1434.60262 RAIRO, Oper. Res. 54, No. 3, 783-793 (2020). MSC: 60K25 90B22 PDF BibTeX XML Cite \textit{A. Azhagappan} and \textit{T. Deepa}, RAIRO, Oper. Res. 54, No. 3, 783--793 (2020; Zbl 1434.60262) Full Text: DOI
Paulin, Frédéric; Shapira, Uri On continued fraction expansions of quadratic irrationals in positive characteristic. (English) Zbl 1439.11163 Groups Geom. Dyn. 14, No. 1, 81-105 (2020). Reviewer: Oleg Karpenkov (Liverpool) MSC: 11J70 20E08 20G25 37A17 22F30 PDF BibTeX XML Cite \textit{F. Paulin} and \textit{U. Shapira}, Groups Geom. Dyn. 14, No. 1, 81--105 (2020; Zbl 1439.11163) Full Text: DOI
Lascu, D.; Sebe, G. I. A dependence with complete connections approach to generalized Rényi continued fractions. (English) Zbl 1440.11126 Acta Math. Hung. 160, No. 2, 292-313 (2020). Reviewer: Marcel G. de Bruin (Heemstede) MSC: 11J70 28D05 37A30 60A10 PDF BibTeX XML Cite \textit{D. Lascu} and \textit{G. I. Sebe}, Acta Math. Hung. 160, No. 2, 292--313 (2020; Zbl 1440.11126) Full Text: DOI
Vandehey, Joseph A proof of the infinitude of primes via continued fractions. (English) Zbl 1434.11019 Integers 20, Paper A19, 3 p. (2020). MSC: 11A41 11A55 PDF BibTeX XML Cite \textit{J. Vandehey}, Integers 20, Paper A19, 3 p. (2020; Zbl 1434.11019) Full Text: Link
Ogata, Hidenori Numerical calculation of Fourier transforms based on hyperfunction theory. (English) Zbl 07198408 J. Comput. Appl. Math. 378, Article ID 112921, 12 p. (2020). MSC: 65E99 PDF BibTeX XML Cite \textit{H. Ogata}, J. Comput. Appl. Math. 378, Article ID 112921, 12 p. (2020; Zbl 07198408) Full Text: DOI
Kohli, Rajeev Properties of reciprocity formulas for the Rogers-Ramanujan continued fractions. (English) Zbl 1453.11010 Ramanujan J. 51, No. 3, 501-517 (2020). MSC: 11A55 11J70 PDF BibTeX XML Cite \textit{R. Kohli}, Ramanujan J. 51, No. 3, 501--517 (2020; Zbl 1453.11010) Full Text: DOI
Sampath, M. I. G. Suranga; Kalidass, K.; Liu, Jicheng Transient analysis of an \(M/M/1\) queueing system subjected to multiple differentiated vacations, impatient customers and a waiting server with application to IEEE 802.16E power saving mechanism. (English) Zbl 1437.60072 Indian J. Pure Appl. Math. 51, No. 1, 297-320 (2020). MSC: 60K25 68M20 90B22 PDF BibTeX XML Cite \textit{M. I. G. S. Sampath} et al., Indian J. Pure Appl. Math. 51, No. 1, 297--320 (2020; Zbl 1437.60072) Full Text: DOI
Řada, Hanka; Starosta, Štěpán Bounds on the period of the continued fraction after a Möbius transformation. (English) Zbl 1444.11018 J. Number Theory 212, 122-172 (2020). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 11A55 11J70 11K50 PDF BibTeX XML Cite \textit{H. Řada} and \textit{Š. Starosta}, J. Number Theory 212, 122--172 (2020; Zbl 1444.11018) Full Text: DOI
Sokal, Alan D. Wall’s continued-fraction characterization of Hausdorff moment sequences: a conceptual proof. (English) Zbl 1445.44006 Proc. Am. Math. Soc. 148, No. 5, 2111-2116 (2020). MSC: 44A60 05A15 30B70 30E05 PDF BibTeX XML Cite \textit{A. D. Sokal}, Proc. Am. Math. Soc. 148, No. 5, 2111--2116 (2020; Zbl 1445.44006) Full Text: DOI
Parkkonen, Jouni; Paulin, Frédéric On the nonarchimedean quadratic Lagrange spectra. (English) Zbl 07179290 Math. Z. 294, No. 3-4, 1065-1084 (2020). Reviewer: Oleg Karpenkov (Liverpool) MSC: 11J06 11J70 11R11 20E08 20G25 PDF BibTeX XML Cite \textit{J. Parkkonen} and \textit{F. Paulin}, Math. Z. 294, No. 3--4, 1065--1084 (2020; Zbl 07179290) Full Text: DOI
Sawa, Kaoru; Nakamura, Yoshimasa Extension of the Lanczos-Phillips algorithm with Laurent biorthogonal polynomials and its application to the Thron continued fractions. (English) Zbl 07158295 JSIAM Lett. 12, 1-4 (2020). MSC: 65 41 PDF BibTeX XML Cite \textit{K. Sawa} and \textit{Y. Nakamura}, JSIAM Lett. 12, 1--4 (2020; Zbl 07158295) Full Text: DOI
Chuan, Wai-Fong; Lin, Yu-Jau Approximating Bernoulli words of irrational numbers by \(\alpha \)-words. (English) Zbl 1430.68253 Discrete Math. 343, No. 3, Article ID 111746, 16 p. (2020). MSC: 68R15 PDF BibTeX XML Cite \textit{W.-F. Chuan} and \textit{Y.-J. Lin}, Discrete Math. 343, No. 3, Article ID 111746, 16 p. (2020; Zbl 1430.68253) Full Text: DOI
Saito, Asaki; Tamura, Jun-Ichi; Yasutomi, Shin-Ichi Multidimensional \(p\)-adic continued fraction algorithms. (English) Zbl 1451.11075 Math. Comput. 89, No. 321, 351-372 (2020). Reviewer: Marcel G. de Bruin (Heemstede) MSC: 11J70 11J61 PDF BibTeX XML Cite \textit{A. Saito} et al., Math. Comput. 89, No. 321, 351--372 (2020; Zbl 1451.11075) Full Text: DOI arXiv
Liu, Lei; Zhang, Junqi; Song, Chongmin; Birk, Carolin; Saputra, Albert A.; Gao, Wei Automatic three-dimensional acoustic-structure interaction analysis using the scaled boundary finite element method. (English) Zbl 1452.65350 J. Comput. Phys. 395, 432-460 (2019). MSC: 65N30 65Z05 74B05 74S05 PDF BibTeX XML Cite \textit{L. Liu} et al., J. Comput. Phys. 395, 432--460 (2019; Zbl 1452.65350) Full Text: DOI
Shukla, Swatantra Kumar A note on Roger’s fine identity. (English) Zbl 07292200 South East Asian J. Math. Math. Sci. 15, No. 3, 93-98 (2019). MSC: 33E05 11F11 11F12 PDF BibTeX XML Cite \textit{S. K. Shukla}, South East Asian J. Math. Math. Sci. 15, No. 3, 93--98 (2019; Zbl 07292200) Full Text: Link
Kuchminska, Kh. Yo. On the Śleszyńsky-Pringsheim theorem for three-dimensional generalization of a continued fraction. (Ukrainian, English) Zbl 07286258 Mat. Metody Fiz.-Mekh. Polya 62, No. 4, 60-71 (2019). Reviewer: L. N. Chernetskaja (Kyïv) MSC: 40A05 40A20 PDF BibTeX XML Cite \textit{Kh. Yo. Kuchminska}, Mat. Metody Fiz.-Mekh. Polya 62, No. 4, 60--71 (2019; Zbl 07286258)
Pant, G. S.; Chand, K. B. Partition generating functions and continued fractions. (English) Zbl 1453.33012 J. Ramanujan Soc. Math. Math. Sci. 7, No. 1, 101-106 (2019). MSC: 33D15 PDF BibTeX XML Cite \textit{G. S. Pant} and \textit{K. B. Chand}, J. Ramanujan Soc. Math. Math. Sci. 7, No. 1, 101--106 (2019; Zbl 1453.33012) Full Text: Link
Prats’ovytyĭ, M. V.; Skrypnyk, S. V.; Chuĭkov, A. S. A chain \(D_2\)-representation of real numbers and some functions associated with it. (Ukrainian. English summary) Zbl 07277737 Zb. Pr. Inst. Mat. NAN Ukr. 16, No. 3, 102-114 (2019). MSC: 11J70 11K50 26A39 PDF BibTeX XML Cite \textit{M. V. Prats'ovytyĭ} et al., Zb. Pr. Inst. Mat. NAN Ukr. 16, No. 3, 102--114 (2019; Zbl 07277737) Full Text: Link
Kharbuki, Algracia; Singh, Madan Mohan Hurwitz complex continued fraction and complex theory of Pell’s equation \(X^2-DY^2=1\) for some specific valuesof \(D\). (English) Zbl 07273869 Indian J. Math. 61, No. 3, 381-394 (2019). MSC: 11A55 11H55 11J70 11K50 30B70 40A15 PDF BibTeX XML Cite \textit{A. Kharbuki} and \textit{M. M. Singh}, Indian J. Math. 61, No. 3, 381--394 (2019; Zbl 07273869)
Adam, Brigitte; Rhin, Georges Periodic Jacobi-Perron expansions associated with a unit. II. (English. French summary) Zbl 07246529 J. Théor. Nombres Bordx. 31, No. 3, 603-611 (2019). MSC: 11Y65 11Y40 11Y16 11R27 11K50 PDF BibTeX XML Cite \textit{B. Adam} and \textit{G. Rhin}, J. Théor. Nombres Bordx. 31, No. 3, 603--611 (2019; Zbl 07246529) Full Text: DOI
Turek, Ondřej Gaps in the spectrum of a cuboidal periodic lattice graph. (English) Zbl 1441.81102 Rep. Math. Phys. 83, No. 1, 107-127 (2019). MSC: 81Q35 11A55 PDF BibTeX XML Cite \textit{O. Turek}, Rep. Math. Phys. 83, No. 1, 107--127 (2019; Zbl 1441.81102) Full Text: DOI
Larsson, Urban; Weimerskirch, Mike Impartial games whose rulesets produce given continued fractions. (English) Zbl 1444.91066 Larsson, Urban (ed.), Games of no chance 5. Papers of the BIRS workshop on combinatorial game theory, Banff, Canada, January 2011. Cambridge: Cambridge University Press. Math. Sci. Res. Inst. Publ. 70, 403-419 (2019). MSC: 91A46 91A05 PDF BibTeX XML Cite \textit{U. Larsson} and \textit{M. Weimerskirch}, Math. Sci. Res. Inst. Publ. 70, 403--419 (2019; Zbl 1444.91066) Full Text: Link
Srivastava, Bhaskar Generalized bilateral eighth order mock theta functions and continued fractions. (English) Zbl 1442.33008 Rev. Colomb. Mat. 53, No. 2, 185-193 (2019). MSC: 33D15 PDF BibTeX XML Cite \textit{B. Srivastava}, Rev. Colomb. Mat. 53, No. 2, 185--193 (2019; Zbl 1442.33008) Full Text: Link
Ashikaga, Tadashi Multidimensional continued fractions for cyclic quotient singularities and Dedekind sums. (English) Zbl 1445.11027 Kyoto J. Math. 59, No. 4, 993-1039 (2019). Reviewer: Huaning Liu (Xi’an) MSC: 11F20 14M25 32S45 58J20 11F23 14B05 57R18 PDF BibTeX XML Cite \textit{T. Ashikaga}, Kyoto J. Math. 59, No. 4, 993--1039 (2019; Zbl 1445.11027) Full Text: DOI Euclid
Chen, Shenshen; Wang, Wei; Zhao, Xiushao An interpolating element-free Galerkin scaled boundary method applied to structural dynamic analysis. (English) Zbl 07187241 Appl. Math. Modelling 75, 494-505 (2019). MSC: 74 65 PDF BibTeX XML Cite \textit{S. Chen} et al., Appl. Math. Modelling 75, 494--505 (2019; Zbl 07187241) Full Text: DOI
Kogiso, Takeyoshi; Wakui, Michihisa A bridge between Conway-Coxeter friezes and rational tangles through the Kauffman bracket polynomials. (English) Zbl 1436.57009 J. Knot Theory Ramifications 28, No. 14, Article ID 1950083, 40 p. (2019). MSC: 57K10 11A55 13F60 PDF BibTeX XML Cite \textit{T. Kogiso} and \textit{M. Wakui}, J. Knot Theory Ramifications 28, No. 14, Article ID 1950083, 40 p. (2019; Zbl 1436.57009) Full Text: DOI
Yi, Jinhee; Paek, Dae Hyun Evaluations of the cubic continued fraction by some theta function identities. (English) Zbl 1432.11047 Korean J. Math. 27, No. 4, 1043-1059 (2019). MSC: 11F27 33C90 11F20 33C05 33C75 PDF BibTeX XML Cite \textit{J. Yi} and \textit{D. H. Paek}, Korean J. Math. 27, No. 4, 1043--1059 (2019; Zbl 1432.11047) Full Text: DOI
Dharmendra, B. N. New Ramanujans remarkable product of theta-function and their explicit evaluations. (English) Zbl 1439.11116 Proc. Jangjeon Math. Soc. 22, No. 4, 517-528 (2019). MSC: 11F27 11F20 11A55 PDF BibTeX XML Cite \textit{B. N. Dharmendra}, Proc. Jangjeon Math. Soc. 22, No. 4, 517--528 (2019; Zbl 1439.11116) Full Text: DOI
Bilanyk, I. B. A truncation error bound for some branched continued fractions of the special form. (English) Zbl 1445.30002 Mat. Stud. 52, No. 2, 115-123 (2019). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 30B70 40A15 11J70 PDF BibTeX XML Cite \textit{I. B. Bilanyk}, Mat. Stud. 52, No. 2, 115--123 (2019; Zbl 1445.30002) Full Text: DOI
Stolarsky, Kenneth B. Twin composites, strange continued fractions, and a transformation that Euler missed (Twice). (English) Zbl 1431.11014 Ann. Comb. 23, No. 3-4, 1087-1104 (2019). MSC: 11A55 11C08 11R32 12D05 12D10 PDF BibTeX XML Cite \textit{K. B. Stolarsky}, Ann. Comb. 23, No. 3--4, 1087--1104 (2019; Zbl 1431.11014) Full Text: DOI
Sudhesh, Ramupillai; Vaithiyanathan, Arumugam Analysis of state-dependent discrete-time queue with system disaster. (English) Zbl 1430.90202 RAIRO, Oper. Res. 53, No. 5, 1915-1927 (2019). MSC: 90B22 60K25 PDF BibTeX XML Cite \textit{R. Sudhesh} and \textit{A. Vaithiyanathan}, RAIRO, Oper. Res. 53, No. 5, 1915--1927 (2019; Zbl 1430.90202) Full Text: DOI
Chakraborty, Debopam; Saikia, Anupam On a conjecture of Mordell. (English) Zbl 1452.11030 Rocky Mt. J. Math. 49, No. 8, 2545-2556 (2019). Reviewer: Mahadi Ddamulira (Saarbrücken) MSC: 11D09 11A55 11J70 11R11 11R27 PDF BibTeX XML Cite \textit{D. Chakraborty} and \textit{A. Saikia}, Rocky Mt. J. Math. 49, No. 8, 2545--2556 (2019; Zbl 1452.11030) Full Text: DOI Euclid
Tongron, Y.; Kanasri, N. R.; Laohakosol, V. On the depth of finite Schneider and Ruban continued fractions in \(\mathbb{F} (x)\). (English) Zbl 1449.11018 Southeast Asian Bull. Math. 43, No. 3, 441-451 (2019). MSC: 11A55 11J61 PDF BibTeX XML Cite \textit{Y. Tongron} et al., Southeast Asian Bull. Math. 43, No. 3, 441--451 (2019; Zbl 1449.11018)
Tian, Dan; Wang, Liantang A continued fraction approximation of the Gamma function related to the Gosper’s formula. (Chinese. English summary) Zbl 1449.11077 J. Northeast Norm. Univ., Nat. Sci. Ed. 51, No. 2, 23-27 (2019). MSC: 11J70 33B15 PDF BibTeX XML Cite \textit{D. Tian} and \textit{L. Wang}, J. Northeast Norm. Univ., Nat. Sci. Ed. 51, No. 2, 23--27 (2019; Zbl 1449.11077) Full Text: DOI
Liu, Jianqiang Existence of product-matching polynomials. (Chinese. English summary) Zbl 07156111 J. Lanzhou Univ. Technol. 45, No. 2, 149-154 (2019). MSC: 46E22 47B32 PDF BibTeX XML Cite \textit{J. Liu}, J. Lanzhou Univ. Technol. 45, No. 2, 149--154 (2019; Zbl 07156111)
Gu, Chuanqing; Huang, Yizheng; Chen, Zhibing A continued fractional recurrence algorithm for generalized inverse tensor Padé approximation. (Chinese. English summary) Zbl 1449.41011 Control Decis. 34, No. 8, 1702-1708 (2019). MSC: 41A21 15A09 PDF BibTeX XML Cite \textit{C. Gu} et al., Control Decis. 34, No. 8, 1702--1708 (2019; Zbl 1449.41011) Full Text: DOI
Zhuravlev, V. G. The karyon algorithm for expansion in multidimensional continued fractions. (English. Russian original) Zbl 1440.40002 J. Math. Sci., New York 242, No. 4, 487-508 (2019); translation from Zap. Nauchn. Semin. POMI 469, 32-63 (2018). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 40A15 11J70 11A55 11B57 11K50 11Y65 PDF BibTeX XML Cite \textit{V. G. Zhuravlev}, J. Math. Sci., New York 242, No. 4, 487--508 (2019; Zbl 1440.40002); translation from Zap. Nauchn. Semin. POMI 469, 32--63 (2018) Full Text: DOI
Kharbuki, Algracia; Singh, Madan Mohan Pell’s equations in Gaussian integers. (English) Zbl 1429.11061 JP J. Algebra Number Theory Appl. 42, No. 1, 15-32 (2019). MSC: 11D09 PDF BibTeX XML Cite \textit{A. Kharbuki} and \textit{M. M. Singh}, JP J. Algebra Number Theory Appl. 42, No. 1, 15--32 (2019; Zbl 1429.11061) Full Text: DOI
Lee, Yoonjin; Park, Yoon Kyung Modular equations of a continued fraction of order six. (English) Zbl 1425.11196 Open Math. 17, 202-219 (2019). MSC: 11Y65 11F03 11R37 11R04 PDF BibTeX XML Cite \textit{Y. Lee} and \textit{Y. K. Park}, Open Math. 17, 202--219 (2019; Zbl 1425.11196) Full Text: DOI
Abubakar, S. I.; Ariffin, M. R. K.; Asbullah, M. A. A new improved bound for short decryption exponent on RSA modulus \(N = pq\) using Wiener’s method. (English) Zbl 07133070 Malays. J. Math. Sci. 13, Spec. Iss.: 3rd International Conference on Mathematical Sciences and Statistics (ICMSS2018), 89-99 (2019). MSC: 94A60 11T71 PDF BibTeX XML Cite \textit{S. I. Abubakar} et al., Malays. J. Math. Sci. 13, 89--99 (2019; Zbl 07133070) Full Text: Link
Saito, Asaki; Tamura, Jun-ichi; Yasutomi, Shin-ichi Continued fraction algorithms and Lagrange’s theorem in \(\mathbb{Q}_p\). (English) Zbl 07132846 Comment. Math. Univ. St. Pauli 67, No. 1, 27-48 (2019). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 11J70 11A55 11K50 PDF BibTeX XML Cite \textit{A. Saito} et al., Comment. Math. Univ. St. Pauli 67, No. 1, 27--48 (2019; Zbl 07132846) Full Text: arXiv Link
Morton, Patrick Solutions of Diophantine equations as periodic points of \(p\)-adic algebraic functions. II: The Rogers-Ramanujan continued fraction. (English) Zbl 1441.11064 New York J. Math. 25, 1178-1213 (2019). MSC: 11D41 11G07 11G15 14H05 PDF BibTeX XML Cite \textit{P. Morton}, New York J. Math. 25, 1178--1213 (2019; Zbl 1441.11064) Full Text: Link arXiv
Roy, Damien; Schleischitz, Johannes Numbers with almost all convergents in a Cantor set. (English) Zbl 1442.11016 Can. Math. Bull. 62, No. 4, 869-875 (2019). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 11A55 11J25 11J82 PDF BibTeX XML Cite \textit{D. Roy} and \textit{J. Schleischitz}, Can. Math. Bull. 62, No. 4, 869--875 (2019; Zbl 1442.11016) Full Text: DOI
Kwon, Doyong A singular function from Sturmian continued fractions. (English) Zbl 07128260 J. Korean Math. Soc. 56, No. 4, 1049-1061 (2019). MSC: 11A55 11J04 26A30 68R15 PDF BibTeX XML Cite \textit{D. Kwon}, J. Korean Math. Soc. 56, No. 4, 1049--1061 (2019; Zbl 07128260) Full Text: DOI
Pratsiovytyi, Mykola; Chuikov, Artem Continuous distributions whose functions preserve tails of an \(A\)-continued fraction representation of numbers. (English) Zbl 1442.11114 Random Oper. Stoch. Equ. 27, No. 3, 199-206 (2019). MSC: 11K50 11H71 PDF BibTeX XML Cite \textit{M. Pratsiovytyi} and \textit{A. Chuikov}, Random Oper. Stoch. Equ. 27, No. 3, 199--206 (2019; Zbl 1442.11114) Full Text: DOI
Kan, I. D. Differentiability of the Minkowski function \(?(x)\). II. (English. Russian original) Zbl 07124983 Izv. Math. 83, No. 5, 957-989 (2019); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 83, No. 5, 53-87 (2019). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 11A55 26A24 26A30 PDF BibTeX XML Cite \textit{I. D. Kan}, Izv. Math. 83, No. 5, 957--989 (2019; Zbl 07124983); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 83, No. 5, 53--87 (2019) Full Text: DOI
Ponton, Lionel The Calkin-Wilf tree of a quadratic surd. (English) Zbl 1450.11073 Am. Math. Mon. 126, No. 9, 771-785 (2019). Reviewer: Jaroslav Hančl (Ostrava) MSC: 11J72 11A55 05C05 PDF BibTeX XML Cite \textit{L. Ponton}, Am. Math. Mon. 126, No. 9, 771--785 (2019; Zbl 1450.11073) Full Text: DOI
Öztürk, Arzu Özkoç; Tekcan, Ahmet Some algebraic relations on an integer sequence with fixed parameter. (English) Zbl 07122535 Acta Univ. Apulensis, Math. Inform. 58, 53-66 (2019). MSC: 11B37 05A19 11B39 PDF BibTeX XML Cite \textit{A. Ö. Öztürk} and \textit{A. Tekcan}, Acta Univ. Apulensis, Math. Inform. 58, 53--66 (2019; Zbl 07122535) Full Text: DOI
Kan, I. D. Differentiability of the Minkowski \(?(x)\)-function. III. (English. Russian original) Zbl 07121915 Sb. Math. 210, No. 8, 1148-1178 (2019); translation from Mat. Sb. 210, No. 8, 87-119 (2019). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 11A55 26A24 26A30 PDF BibTeX XML Cite \textit{I. D. Kan}, Sb. Math. 210, No. 8, 1148--1178 (2019; Zbl 07121915); translation from Mat. Sb. 210, No. 8, 87--119 (2019) Full Text: DOI
Barry, Paul Generalized Catalan numbers associated with a family of Pascal-like triangles. (English) Zbl 07114880 J. Integer Seq. 22, No. 5, Article 19.5.8, 51 p. (2019). Reviewer: Thomas Ernst (Uppsala) MSC: 11B83 15B36 05A10 05A15 PDF BibTeX XML Cite \textit{P. Barry}, J. Integer Seq. 22, No. 5, Article 19.5.8, 51 p. (2019; Zbl 07114880) Full Text: Link
Hančl, Jaroslav; Turek, Ondřej One-sided Diophantine approximations. (English) Zbl 1422.81108 J. Phys. A, Math. Theor. 52, No. 4, Article ID 045205, 24 p. (2019). MSC: 81Q35 11K60 11A55 PDF BibTeX XML Cite \textit{J. Hančl} and \textit{O. Turek}, J. Phys. A, Math. Theor. 52, No. 4, Article ID 045205, 24 p. (2019; Zbl 1422.81108) Full Text: DOI
Gröger, Maik; Kesseböhmer, Marc; Mosbach, Arne; Samuel, Tony; Steffens, Malte A classification of aperiodic order via spectral metrics and Jarník sets. (English) Zbl 1421.37014 Ergodic Theory Dyn. Syst. 39, No. 11, 3031-3065 (2019). MSC: 37C45 37B10 11K55 PDF BibTeX XML Cite \textit{M. Gröger} et al., Ergodic Theory Dyn. Syst. 39, No. 11, 3031--3065 (2019; Zbl 1421.37014) Full Text: DOI
Hwang, Byung-Hak; Kim, Jang Soo; Yoo, Meesue; Yun, Sun-mi Reverse plane partitions of skew staircase shapes and \(q\)-Euler numbers. (English) Zbl 1421.05095 J. Comb. Theory, Ser. A 168, 120-163 (2019). MSC: 05E10 14N15 05A30 11B68 33D15 11A55 PDF BibTeX XML Cite \textit{B.-H. Hwang} et al., J. Comb. Theory, Ser. A 168, 120--163 (2019; Zbl 1421.05095) Full Text: DOI
Huang, Lingling; Wu, Jun Uniformly non-improvable Dirichlet set via continued fractions. (English) Zbl 1431.11100 Proc. Am. Math. Soc. 147, No. 11, 4617-4624 (2019). Reviewer: Symon Serbenyuk (Kyiv) MSC: 11K50 11J70 28A80 PDF BibTeX XML Cite \textit{L. Huang} and \textit{J. Wu}, Proc. Am. Math. Soc. 147, No. 11, 4617--4624 (2019; Zbl 1431.11100) Full Text: DOI
Li, Shengfeng A fourth-order convergent iterative method by means of Thiele’s continued fraction for root-finding problem. (English) Zbl 1438.65105 J. Math. Res. Appl. 39, No. 1, 10-22 (2019). MSC: 65H05 PDF BibTeX XML Cite \textit{S. Li}, J. Math. Res. Appl. 39, No. 1, 10--22 (2019; Zbl 1438.65105) Full Text: DOI
Takahasi, Hiroki Large deviation principle for arithmetic functions in continued fraction expansion. (English) Zbl 07107256 Monatsh. Math. 190, No. 1, 137-152 (2019). MSC: 11A55 11K50 37A45 37A50 37A60 60F10 PDF BibTeX XML Cite \textit{H. Takahasi}, Monatsh. Math. 190, No. 1, 137--152 (2019; Zbl 07107256) Full Text: DOI arXiv
Hoste, Jim; Ocana Mercado, Joshua; Shanahan, Patrick D. Remarks on Suzuki’s knot epimorphism number. (English) Zbl 1431.57004 J. Knot Theory Ramifications 28, No. 9, Article ID 1950060, 13 p. (2019). Reviewer: Dieter Erle (Dortmund) MSC: 57K10 11A55 11A05 06A06 20F99 PDF BibTeX XML Cite \textit{J. Hoste} et al., J. Knot Theory Ramifications 28, No. 9, Article ID 1950060, 13 p. (2019; Zbl 1431.57004) Full Text: DOI arXiv
Dmytryshyn, R. I. On some of convergence domains of multidimensional S-fractions with independent variables. (English) Zbl 1423.32004 Carpathian Math. Publ. 11, No. 1, 54-58 (2019). MSC: 32A17 30B70 40A15 PDF BibTeX XML Cite \textit{R. I. Dmytryshyn}, Carpathian Math. Publ. 11, No. 1, 54--58 (2019; Zbl 1423.32004) Full Text: DOI
Bilanyk, I.; Bodnar, D. I.; Buyak, L. Representation of a quotient of solutions of a four-term linear recurrence relation in the form of a branched continued fraction. (English) Zbl 1420.11015 Carpathian Math. Publ. 11, No. 1, 33-41 (2019). MSC: 11A55 11J70 30B70 40A15 PDF BibTeX XML Cite \textit{I. Bilanyk} et al., Carpathian Math. Publ. 11, No. 1, 33--41 (2019; Zbl 1420.11015) Full Text: DOI