Separability probability formulas and their proofs for generalized two-qubit X-matrices endowed with Hilbert-Schmidt and induced measures. (English) Zbl 1330.15041


15B52 Random matrices (algebraic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
33B15 Gamma, beta and polygamma functions


Full Text: DOI arXiv


[1] 1. M. Ali, A. R. P. Rau and G. Alber, Quantum discord for two-qubit X-states, Phys. Rev. A81(4) (2010) 042105. genRefLink(16, ’S2010326315500185BIB1’, ’10.1103
[2] 2. G. Aubrun, S. J. Szarek and D. Ye, Entanglement thresholds for random induced states, Commun. Pure Appl. Math.67(1) (2014) 129-171. genRefLink(16, ’S2010326315500185BIB2’, ’10.1002 · Zbl 1296.81014
[3] 3. I. Bengtsson and K. \.Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, 2006). genRefLink(16, ’S2010326315500185BIB3’, ’10.1017 · Zbl 1146.81004
[4] 4. I. Dumitriu and A. Edelman, Matrix models for beta ensembles, J. Math. Phys.47 (2006) 5830-5847. genRefLink(16, ’S2010326315500185BIB4’, ’10.1063 · Zbl 1060.82020
[5] 5. C. F. Dunkl and G. Gasper, The sums of a double hypergeometric series and of the first m+1 terms of 3F2(a,b,c;(a+b+1)/2,2c;1) when c=-m is a negative integer, preprint (2014), arXiv:1412.4022.
[6] 6. J. Fei and R. Joynt, Numerical computations of separability probabilities, preprint (2014), arXiv:1409.1993.
[7] 7. M. Horodecki, P. Horodecki and R. Horodecki, Separability of mixed states: Necessary and sufficient conditions, Phys. Lett. A223(1) (1996) 1-8. genRefLink(16, ’S2010326315500185BIB7’, ’10.1016 · Zbl 0984.81007
[8] 8. A. Khvedelidze and I. Rogojina, On the geometric probability of entangled mixed states, Zap. Nauch. Sem. POMI432 (2015) 274-296.
[9] 9. P. Mendonça, M. A. Marchiolli and D. Galetti, Entanglement universality of two-qubit X-states, Ann. Phys.351 (2014) 79-103. genRefLink(16, ’S2010326315500185BIB9’, ’10.1016 · Zbl 1360.81071
[10] 10. S. Milz and W. T. Strunz, Volumes of conditioned bipartite state spaces, preprint (2014), arXiv:1408.3666v2. · Zbl 1315.81018
[11] 11. F. Olver, D. Lozier, R. Boisvert and C. Clark (eds.), NIST Handbook of Mathematical Functions (Cambridge University Press, 2010). · Zbl 1198.00002
[12] 12. A. Peres, Separability criterion for density matrices, Phys. Rev. Lett.77(8) (1996) 1413. genRefLink(16, ’S2010326315500185BIB12’, ’10.1103 · Zbl 0947.81003
[13] 13. S. B. Provost, Moment-based density approximants, Math. J.9(4) (2005) 727-756.
[14] 14. P. B. Slater, A concise formula for generalized two-qubit Hilbert-Schmidt separability probabilities, J. Phys. A: Math. Theor.46(44) (2013) 445302. genRefLink(16, ’S2010326315500185BIB14’, ’10.1088
[15] 15. P. B. Slater and C. F. Dunkl, Moment-based evidence for simple rational-valued Hilbert-Schmidt generic 2{\(\times\)}2 separability probabilities, J. Phys. A: Math. Theor.45(9) (2012) 095305. genRefLink(16, ’S2010326315500185BIB15’, ’10.1088 · Zbl 1241.81033
[16] 16. P. B. Slater and C. F. Dunkl, Formulas for rational-valued separability probabilities of random induced generalized two-qubit states, Advances in Mathematical Physics (2015) Article ID: 62153 (9 pages). · Zbl 1337.81027
[17] 17. P. B. Slater and C. F. Dunkl, Generalized two-qubit whole and half Hilbert-Schmidt separability probabilities, J. Geometry and Physics90 (2015) 42-54. genRefLink(16, ’S2010326315500185BIB17’, ’10.1016
[18] 18. K. \.Zyczkowski, P. Horodecki, A. Sanpera and M. Lewenstein, Volume of the set of separable states, Phys. Rev. A58(2) (1998) 883. genRefLink(16, ’S2010326315500185BIB18’, ’10.1103
[19] 19. K. \.Zyczkowski and H.-J. Sommers, Induced measures in the space of mixed quantum states, J. Phys. A: Math. Gen.34(35) (2001) 7111. genRefLink(16, ’S2010326315500185BIB19’, ’10.1088 · Zbl 1031.81011
[20] 20. K. \.Zyczkowski and H.-J. Sommers, Hilbert-Schmidt volume of the set of mixed quantum states, J. Phys. A: Math. Gen.36(39) (2003) 10115. genRefLink(16, ’S2010326315500185BIB20’, ’10.1088 · Zbl 1052.81012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.