Benkhettou, Nadia; Salim, Abdelkrim; Lazreg, Jamal Eddine; Abbas, Saïd; Benchohra, Mouffak Lakshmikantham monotone iterative principle for hybrid Atangana-Baleanu-Caputo fractional differential equations. (English) Zbl 07692942 An. Univ. Vest Timiș., Ser. Mat.-Inform. 59, No. 1, 79-91 (2023). MSC: 26A33 34A08 34A12 PDF BibTeX XML Cite \textit{N. Benkhettou} et al., An. Univ. Vest Timiș., Ser. Mat.-Inform. 59, No. 1, 79--91 (2023; Zbl 07692942) Full Text: DOI OpenURL
Taş, N. Topological and geometric approach to the fixed-point theory with leakly rectified linear unit application. (English) Zbl 07692730 Acta Math. Univ. Comen., New Ser. 92, No. 1, 91-100 (2023). Reviewer: Zoran D. Mitrović (Banja Luka) MSC: 54H25 47H09 47H10 PDF BibTeX XML Cite \textit{N. Taş}, Acta Math. Univ. Comen., New Ser. 92, No. 1, 91--100 (2023; Zbl 07692730) Full Text: Link OpenURL
Vyavahare, Dayanand K.; Kharat, Vinod V. A positive solution of mixed non-linear fractional delay differential equations with integral boundary conditions. (English) Zbl 07688024 J. Math. Res. Appl. 43, No. 2, 213-226 (2023). MSC: 26A33 34A08 34A12 34K20 37C25 PDF BibTeX XML Cite \textit{D. K. Vyavahare} and \textit{V. V. Kharat}, J. Math. Res. Appl. 43, No. 2, 213--226 (2023; Zbl 07688024) Full Text: DOI OpenURL
Durdiev, Durdimurod Kalandarovich; Jumaev, Jonibek Jamolovich One-dimensional inverse problems of determining the kernel of the integro-differential heat equation in a bounded domain. (English) Zbl 07687248 Nonauton. Dyn. Syst. 10, Article ID 20220163, 13 p. (2023). MSC: 35R30 35K20 35R09 PDF BibTeX XML Cite \textit{D. K. Durdiev} and \textit{J. J. Jumaev}, Nonauton. Dyn. Syst. 10, Article ID 20220163, 13 p. (2023; Zbl 07687248) Full Text: DOI OpenURL
Mekoth, Chitra; George, Santhosh; Jidesh, P.; Cho, Yeol Je Projection method for fractional Lavrentiev regularisation method in Hilbert scales. (English) Zbl 07687038 J. Anal. 31, No. 2, 1303-1333 (2023). MSC: 47A52 65R10 65J10 47H09 49J30 PDF BibTeX XML Cite \textit{C. Mekoth} et al., J. Anal. 31, No. 2, 1303--1333 (2023; Zbl 07687038) Full Text: DOI OpenURL
Durdiev, Durdimurod K.; Boltaev, Asliddin A. The problem of determining kernels in a two-dimensional system of viscoelasticity equations. (Russian. English summary) Zbl 07679671 Izv. Irkutsk. Gos. Univ., Ser. Mat. 43, 31-47 (2023). MSC: 35Q74 45K05 45Q05 PDF BibTeX XML Cite \textit{D. K. Durdiev} and \textit{A. A. Boltaev}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 43, 31--47 (2023; Zbl 07679671) Full Text: DOI Link OpenURL
Chaudhary, Abhishek Stochastic degenerate fractional conservation laws. (English) Zbl 07678962 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 3, Paper No. 42, 48 p. (2023). MSC: 35R60 35B30 35K65 35L65 35R11 60H15 PDF BibTeX XML Cite \textit{A. Chaudhary}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 3, Paper No. 42, 48 p. (2023; Zbl 07678962) Full Text: DOI arXiv OpenURL
Bobylev, A. A. Numerical construction of the transform of the kernel of the integral representation of the Poincaré-Steklov operator for an elastic strip. (English. Russian original) Zbl 07671260 Differ. Equ. 59, No. 1, 119-134 (2023); translation from Differ. Uravn. 59, No. 1, 115-129 (2023). MSC: 74B05 74G65 74G22 74G30 74S05 PDF BibTeX XML Cite \textit{A. A. Bobylev}, Differ. Equ. 59, No. 1, 119--134 (2023; Zbl 07671260); translation from Differ. Uravn. 59, No. 1, 115--129 (2023) Full Text: DOI OpenURL
Liu, Yuxuan; Jiang, Zhengjun; Zhang, Yiwen \(q\)-scale function, Banach contraction principle, and ultimate ruin probability in a Markov-modulated jump-diffusion risk model. (English) Zbl 1508.91480 Scand. Actuar. J. 2023, No. 1, 38-50 (2023). MSC: 91G05 60K37 60J74 PDF BibTeX XML Cite \textit{Y. Liu} et al., Scand. Actuar. J. 2023, No. 1, 38--50 (2023; Zbl 1508.91480) Full Text: DOI OpenURL
Chiţescu, Ion; Ioana, Loredana; Miculescu, Radu; Niţă, Lucian; Sfetcu, Răzvan-Cornel Invariant (fractal) vector measures as fixed points of Markov-type operators. (English) Zbl 1506.28006 Bull. Braz. Math. Soc. (N.S.) 54, No. 1, Paper No. 8, 42 p. (2023). Reviewer: Peter Massopust (München) MSC: 28A80 28A33 28B05 47H10 PDF BibTeX XML Cite \textit{I. Chiţescu} et al., Bull. Braz. Math. Soc. (N.S.) 54, No. 1, Paper No. 8, 42 p. (2023; Zbl 1506.28006) Full Text: DOI OpenURL
Jiu, Quansen; Li, You; Zhang, Wanwan Global well-posedness to the two-dimensional incompressible vorticity equation in the half plane. (English) Zbl 1498.35409 J. Math. Anal. Appl. 518, No. 1, Article ID 126684, 33 p. (2023). MSC: 35Q31 76B03 35A01 35A02 PDF BibTeX XML Cite \textit{Q. Jiu} et al., J. Math. Anal. Appl. 518, No. 1, Article ID 126684, 33 p. (2023; Zbl 1498.35409) Full Text: DOI arXiv OpenURL
Kamburova, Detelina; Marinov, Rumen A note on Ekeland’s variational principle and Caristi’s fixed point theorem. (English) Zbl 07689772 J. Geom. Symmetry Phys. 64, 23-28 (2022). MSC: 47H09 47H10 54E50 90C48 PDF BibTeX XML Cite \textit{D. Kamburova} and \textit{R. Marinov}, J. Geom. Symmetry Phys. 64, 23--28 (2022; Zbl 07689772) Full Text: DOI Link OpenURL
Nwaigwe, Chinedu Solvability and approximation of nonlinear functional mixed Volterra-Fredholm equation in Banach space. (English) Zbl 07682277 J. Integral Equations Appl. 34, No. 4, 489-500 (2022). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{C. Nwaigwe}, J. Integral Equations Appl. 34, No. 4, 489--500 (2022; Zbl 07682277) Full Text: DOI Link OpenURL
Safarov, J. Solution of the integro-differential equation of viscoelasticity in a bounded domain. (English) Zbl 07671819 Uzb. Math. J. 66, No. 2, 156-164 (2022). MSC: 35L10 35L20 35D99 45D05 45E05 45K05 PDF BibTeX XML Cite \textit{J. Safarov}, Uzb. Math. J. 66, No. 2, 156--164 (2022; Zbl 07671819) Full Text: DOI OpenURL
Ma, Yunxing; Yuan, Zixia Existence and blow-up of global solutions for a class of fractional Lane-Emden heat flow system. (English) Zbl 07670556 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 68, 29 p. (2022). MSC: 35B08 35B44 35B33 35R11 PDF BibTeX XML Cite \textit{Y. Ma} and \textit{Z. Yuan}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 68, 29 p. (2022; Zbl 07670556) Full Text: DOI OpenURL
Atmania, Rahima A study of a non-local initial value problem fractionally perturbed. (English) Zbl 07646786 Sarajevo J. Math. 18(31), No. 2, 285-296 (2022). MSC: 45-XX 26A33 PDF BibTeX XML Cite \textit{R. Atmania}, Sarajevo J. Math. 18(31), No. 2, 285--296 (2022; Zbl 07646786) Full Text: DOI OpenURL
Atmania, Rahima Existence and stability for a semilinear fractional differential equation with two delays. (English) Zbl 07645174 An. Univ. Vest Timiș., Ser. Mat.-Inform. 58, No. 1, 111-125 (2022). MSC: 34K37 34K20 34K05 34K27 47N20 PDF BibTeX XML Cite \textit{R. Atmania}, An. Univ. Vest Timiș., Ser. Mat.-Inform. 58, No. 1, 111--125 (2022; Zbl 07645174) Full Text: DOI OpenURL
Jacobs, Matt; Kim, Inwon Christina; Tong, Jiajun The \(L^1\)-contraction principle in optimal transport. (English) Zbl 1506.49028 Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 23, No. 4, 1871-1919 (2022). MSC: 49Q22 35K55 35K65 49N15 PDF BibTeX XML Cite \textit{M. Jacobs} et al., Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 23, No. 4, 1871--1919 (2022; Zbl 1506.49028) Full Text: DOI arXiv OpenURL
Iliyas, Mohammad; Khan, Asif; Arif, Mohd; Mursaleen, Mohammad; Lone, Mudassir Rashid Iterates of \(q\)-Bernstein operators on triangular domain with all curved sides. (English) Zbl 07637897 Demonstr. Math. 55, 891-899 (2022). MSC: 41A05 41A35 41A36 PDF BibTeX XML Cite \textit{M. Iliyas} et al., Demonstr. Math. 55, 891--899 (2022; Zbl 07637897) Full Text: DOI OpenURL
Lee, Hyun Mork On Stepanov weighted pseudo almost automorphic solutions of neural networks. (English) Zbl 1502.34015 Korean J. Math. 30, No. 3, 491-502 (2022). MSC: 34A12 34K14 92B20 PDF BibTeX XML Cite \textit{H. M. Lee}, Korean J. Math. 30, No. 3, 491--502 (2022; Zbl 1502.34015) Full Text: DOI OpenURL
Nguyen, Dinh-Liem; Nguyen, Loc H.; Truong, Trung The Carleman-based contraction principle to reconstruct the potential of nonlinear hyperbolic equations. (English) Zbl 1504.65193 Comput. Math. Appl. 128, 239-248 (2022). MSC: 65M32 35L70 65M06 PDF BibTeX XML Cite \textit{D.-L. Nguyen} et al., Comput. Math. Appl. 128, 239--248 (2022; Zbl 1504.65193) Full Text: DOI arXiv OpenURL
Liu, Yuxuan; Jiang, Zhengjun; Qu, Yixin Gambler’s ruin problem in a Markov-modulated jump-diffusion risk model. (English) Zbl 1501.91157 Scand. Actuar. J. 2022, No. 8, 682-694 (2022). MSC: 91G05 60J70 PDF BibTeX XML Cite \textit{Y. Liu} et al., Scand. Actuar. J. 2022, No. 8, 682--694 (2022; Zbl 1501.91157) Full Text: DOI OpenURL
Rezapour, Shahram; Thaiprayoon, Chatthai; Etemad, Sina; Sudsutad, Weerawat; Deressa, Chernet Tuge; Zada, Akbar An existence study on the fractional coupled nonlinear \(q\)-difference systems via quantum operators along with Ulam-Hyers and Ulam-Hyers-Rassias stability. (English) Zbl 1501.39002 J. Funct. Spaces 2022, Article ID 4483348, 17 p. (2022). MSC: 39A13 39A27 39A30 39B82 26A33 PDF BibTeX XML Cite \textit{S. Rezapour} et al., J. Funct. Spaces 2022, Article ID 4483348, 17 p. (2022; Zbl 1501.39002) Full Text: DOI OpenURL
Ilea, Veronica; Otrocol, Diana; Rus, Ioan A.; Şerban, Marcel Adrian Applications of fibre contraction principle to some classes of functional integral equations. (English) Zbl 07606928 Fixed Point Theory 23, No. 1, 279-292 (2022). MSC: 47H10 45D05 47H09 54H25 PDF BibTeX XML Cite \textit{V. Ilea} et al., Fixed Point Theory 23, No. 1, 279--292 (2022; Zbl 07606928) Full Text: Link OpenURL
Bugajewski, Dariusz; Maćkowiak, Piotr; Wang, Ruidong On compactness and fixed point theorems in partial metric spaces. (English) Zbl 1501.54025 Fixed Point Theory 23, No. 1, 163-178 (2022). Reviewer: Monica-Felicia Bota (Cluj-Napoca) MSC: 54H25 47H10 54E35 54E50 PDF BibTeX XML Cite \textit{D. Bugajewski} et al., Fixed Point Theory 23, No. 1, 163--178 (2022; Zbl 1501.54025) Full Text: arXiv Link OpenURL
Choi, Q-Heung; Jung, Tacksun Multiple solutions for some elliptic boundary value problem with jumping nonlinearities. (English) Zbl 1508.34017 Appl. Anal. 101, No. 17, 6059-6080 (2022). Reviewer: Petio S. Kelevedjiev (Sliven) MSC: 34B09 34B08 34L15 47N20 PDF BibTeX XML Cite \textit{Q-H. Choi} and \textit{T. Jung}, Appl. Anal. 101, No. 17, 6059--6080 (2022; Zbl 1508.34017) Full Text: DOI OpenURL
Miculescu, Radu; Mihail, Alexandru; Urziceanu, Silviu-Aurelian An application of Edelstein’s contraction principle: the attractor of a graph-directed generalized iterated function system. (English) Zbl 07591741 J. Fixed Point Theory Appl. 24, No. 3, Paper No. 63, 18 p. (2022). MSC: 28A80 PDF BibTeX XML Cite \textit{R. Miculescu} et al., J. Fixed Point Theory Appl. 24, No. 3, Paper No. 63, 18 p. (2022; Zbl 07591741) Full Text: DOI OpenURL
Solís, Soveny; Vergara, Vicente A non-linear stable non-Gaussian process in fractional time. (English) Zbl 07585064 Topol. Methods Nonlinear Anal. 59, No. 2B, 987-1028 (2022). MSC: 47G10 47D07 47G30 60G52 PDF BibTeX XML Cite \textit{S. Solís} and \textit{V. Vergara}, Topol. Methods Nonlinear Anal. 59, No. 2B, 987--1028 (2022; Zbl 07585064) Full Text: DOI arXiv OpenURL
Benhadri, Mimia; Caraballo, Tomás New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations. (English) Zbl 07584132 Math. Bohem. 147, No. 3, 385-405 (2022). Reviewer: George Karakostas (Ioannina) MSC: 34K20 34K13 PDF BibTeX XML Cite \textit{M. Benhadri} and \textit{T. Caraballo}, Math. Bohem. 147, No. 3, 385--405 (2022; Zbl 07584132) Full Text: DOI OpenURL
Yang, Youyuan; Huang, Jianfeng; Yuan, Liguo Uniqueness result and iterative method for fourth order \(p\)-Laplacian integral boundary value problems with different nonlinear terms. (English) Zbl 1507.34023 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 192, 25 p. (2022). Reviewer: Alberto Cabada (Santiago de Compostela) MSC: 34B10 34A45 47N20 PDF BibTeX XML Cite \textit{Y. Yang} et al., Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 192, 25 p. (2022; Zbl 1507.34023) Full Text: DOI OpenURL
El Khannoussi, Mohammed Said; Zertiti, Abderrahim Bounds for the spectral radius of positive operators. (English) Zbl 1500.47059 Electron. J. Differ. Equ. 2022, Paper No. 29, 7 p. (2022). MSC: 47B65 47A10 47H07 47H10 PDF BibTeX XML Cite \textit{M. S. El Khannoussi} and \textit{A. Zertiti}, Electron. J. Differ. Equ. 2022, Paper No. 29, 7 p. (2022; Zbl 1500.47059) Full Text: Link OpenURL
Han, Xiaoling; Cai, Huize; Yang, Hujun Existence and uniqueness of solutions for the boundary value problems of nonlinear fractional differential equations on star graph. (Chinese. English summary) Zbl 07572523 Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 1, 139-156 (2022). MSC: 34B45 34A08 34L05 47N20 PDF BibTeX XML Cite \textit{X. Han} et al., Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 1, 139--156 (2022; Zbl 07572523) Full Text: Link OpenURL
Klein, Thierry; Lagnoux, Agnès; Petit, Pierre Large-deviation results for triangular arrays of semiexponential random variables. (English) Zbl 1492.60066 J. Appl. Probab. 59, No. 2, 399-420 (2022). MSC: 60F10 60G50 PDF BibTeX XML Cite \textit{T. Klein} et al., J. Appl. Probab. 59, No. 2, 399--420 (2022; Zbl 1492.60066) Full Text: DOI arXiv OpenURL
Refice, Ahmed; Inc, Mustafa; Hashemi, Mir Sajjad; Souid, Mohammed Said Boundary value problem of Riemann-Liouville fractional differential equations in the variable exponent Lebesgue spaces \(L^{p(.)}\). (English) Zbl 1507.26014 J. Geom. Phys. 178, Article ID 104554, 13 p. (2022). Reviewer: Fatima Zohra Berrabah (Sidi Bel Abbès) MSC: 26A33 34K37 PDF BibTeX XML Cite \textit{A. Refice} et al., J. Geom. Phys. 178, Article ID 104554, 13 p. (2022; Zbl 1507.26014) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Ghadle, Kirtiwant P. Some new uniqueness results of solutions for fractional Volterra-Fredholm integro-differential equations. (English) Zbl 1501.45008 Iran. J. Math. Sci. Inform. 17, No. 1, 135-144 (2022). MSC: 45J05 45D05 45B05 26A33 26D10 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{K. P. Ghadle}, Iran. J. Math. Sci. Inform. 17, No. 1, 135--144 (2022; Zbl 1501.45008) Full Text: Link OpenURL
Younis, Mudasir; Singh, Deepak; Shi, Luoyi Revisiting graphical rectangular \(b\)-metric spaces. (English) Zbl 1487.54077 Asian-Eur. J. Math. 15, No. 4, Article ID 2250072, 9 p. (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{M. Younis} et al., Asian-Eur. J. Math. 15, No. 4, Article ID 2250072, 9 p. (2022; Zbl 1487.54077) Full Text: DOI OpenURL
Ait Mansour, M.; El Bekkali, A.; Lahrache, J. An extended local principle of fixed points for weakly contractive set-valued mappings. (English) Zbl 07538433 Optimization 71, No. 5, 1409-1420 (2022). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{M. Ait Mansour} et al., Optimization 71, No. 5, 1409--1420 (2022; Zbl 07538433) Full Text: DOI OpenURL
Nagarajan, M.; Radhakrishnan, B.; Anukokila, P. Existence results for Sobolev type fuzzy integrodifferential evolution equation. (English) Zbl 1487.34059 Palest. J. Math. 11, Spec. Iss. I, 133-140 (2022). MSC: 34A37 47D06 47H10 74H20 34K40 PDF BibTeX XML Cite \textit{M. Nagarajan} et al., Palest. J. Math. 11, 133--140 (2022; Zbl 1487.34059) Full Text: Link OpenURL
Chudak, N. O.; Potiienko, O. S.; Sharph, I. V. Simultaneous vs. non-simultaneous measurements in quantum and classical mechanics. (English) Zbl 1496.81026 Phys. Lett., A 441, Article ID 128164, 6 p. (2022). MSC: 81P15 22E43 47H09 83C40 PDF BibTeX XML Cite \textit{N. O. Chudak} et al., Phys. Lett., A 441, Article ID 128164, 6 p. (2022; Zbl 1496.81026) Full Text: DOI OpenURL
Sintunavarat, Wutiphol; Turab, Ali Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator. (English) Zbl 07529653 Math. Comput. Simul. 198, 65-84 (2022). MSC: 92-XX 34-XX PDF BibTeX XML Cite \textit{W. Sintunavarat} and \textit{A. Turab}, Math. Comput. Simul. 198, 65--84 (2022; Zbl 07529653) Full Text: DOI Link OpenURL
Mohan, Manil T. Exponential inequalities for exit times for two dimensional stochastic tidal dynamics equations. (English) Zbl 1490.35506 Stochastic Anal. Appl. 40, No. 2, 268-303 (2022). MSC: 35Q86 35Q35 86A05 76U60 60F10 60H15 60G15 35R60 PDF BibTeX XML Cite \textit{M. T. Mohan}, Stochastic Anal. Appl. 40, No. 2, 268--303 (2022; Zbl 1490.35506) Full Text: DOI OpenURL
Jiang, Zhengjun Banach contraction principle, \(q\)-scale function and ultimate ruin probability under a Markov-modulated classical risk model. (English) Zbl 1492.91300 Scand. Actuar. J. 2022, No. 3, 234-243 (2022). Reviewer: Emilia Di Lorenzo (Napoli) MSC: 91G05 60K37 60J70 PDF BibTeX XML Cite \textit{Z. Jiang}, Scand. Actuar. J. 2022, No. 3, 234--243 (2022; Zbl 1492.91300) Full Text: DOI OpenURL
Durdiev, U. D. Inverse problem of determining an unknown coefficient in the beam vibration equation. (English. Russian original) Zbl 1485.74038 Differ. Equ. 58, No. 1, 36-43 (2022); translation from Differ. Uravn. 58, No. 1, 37-44 (2022). MSC: 74H75 74H45 74K10 74H20 74H25 PDF BibTeX XML Cite \textit{U. D. Durdiev}, Differ. Equ. 58, No. 1, 36--43 (2022; Zbl 1485.74038); translation from Differ. Uravn. 58, No. 1, 37--44 (2022) Full Text: DOI OpenURL
Le, Thuy T.; Klibanov, Michael V.; Nguyen, Loc H.; Sullivan, Anders; Nguyen, Lam Carleman contraction mapping for a 1D inverse scattering problem with experimental time-dependent data. (English) Zbl 1485.35423 Inverse Probl. 38, No. 4, Article ID 045002, 31 p. (2022). MSC: 35R30 35R25 35L05 PDF BibTeX XML Cite \textit{T. T. Le} et al., Inverse Probl. 38, No. 4, Article ID 045002, 31 p. (2022; Zbl 1485.35423) Full Text: DOI arXiv OpenURL
Nguyen, Loc H.; Klibanov, Michael V. Carleman estimates and the contraction principle for an inverse source problem for nonlinear hyperbolic equations. (English) Zbl 1483.35343 Inverse Probl. 38, No. 3, Article ID 035009, 19 p. (2022). MSC: 35R30 35L15 35L71 65M32 PDF BibTeX XML Cite \textit{L. H. Nguyen} and \textit{M. V. Klibanov}, Inverse Probl. 38, No. 3, Article ID 035009, 19 p. (2022; Zbl 1483.35343) Full Text: DOI arXiv OpenURL
Benmezai, Abdelhamid; Benkaci-Ali, Nadir Krein-Rutman operators and a variant of Banach contraction principle in ordered Banach spaces. (English) Zbl 07691445 Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 64(112), No. 3, 255-280 (2021). MSC: 47H07 47A10 34B05 PDF BibTeX XML Cite \textit{A. Benmezai} and \textit{N. Benkaci-Ali}, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 64(112), No. 3, 255--280 (2021; Zbl 07691445) OpenURL
Done, G. C.; Bondar, K. L.; Chopade, P. U. Existence and uniqueness of solutions for nonlinear difference equations with summation boundary conditions. (English) Zbl 07683894 Gaṇita 71, No. 1, 97-107 (2021). MSC: 39A05 54E50 45N05 47G20 34K05 47H10 PDF BibTeX XML Cite \textit{G. C. Done} et al., Gaṇita 71, No. 1, 97--107 (2021; Zbl 07683894) Full Text: Link OpenURL
Durdiev, D. K.; Turdiev, Kh. Kh. The problem of finding the kernels in the system of integro-differential Maxwell’s equations. (Russian. English summary) Zbl 07668733 Sib. Zh. Ind. Mat. 24, No. 2, 38-61 (2021); translation in J. Appl. Ind. Math. 15, No. 2, 190-211 (2021). MSC: 45K05 45Q05 45D05 35Q61 78A46 47N20 PDF BibTeX XML Cite \textit{D. K. Durdiev} and \textit{Kh. Kh. Turdiev}, Sib. Zh. Ind. Mat. 24, No. 2, 38--61 (2021; Zbl 07668733); translation in J. Appl. Ind. Math. 15, No. 2, 190--211 (2021) Full Text: DOI MNR OpenURL
Guo, Zijian; Rakshit, Prabrisha; Herman, Daniel S.; Chen, Jinbo Inference for the case probability in high-dimensional logistic regression. (English) Zbl 07626769 J. Mach. Learn. Res. 22, Paper No. 254, 54 p. (2021). MSC: 68T05 PDF BibTeX XML Cite \textit{Z. Guo} et al., J. Mach. Learn. Res. 22, Paper No. 254, 54 p. (2021; Zbl 07626769) Full Text: arXiv Link OpenURL
Choudhury, Binayak S.; Metiya, Nikhilesh Basic fixed point theorems in metric spaces. (English) Zbl 1502.54028 Debnath, Pradip (ed.) et al., Metric fixed point theory. Applications in science, engineering and behavioural sciences. Singapore: Springer. Forum Interdiscip. Math., 1-36 (2021). MSC: 54H25 47H10 54-02 47-02 PDF BibTeX XML Cite \textit{B. S. Choudhury} and \textit{N. Metiya}, in: Metric fixed point theory. Applications in science, engineering and behavioural sciences. Singapore: Springer. 1--36 (2021; Zbl 1502.54028) Full Text: DOI OpenURL
Stan, Andrei Nonlinear systems with a partial Nash type equilibrium. (English) Zbl 1504.47090 Stud. Univ. Babeș-Bolyai, Math. 66, No. 2, 397-408 (2021). MSC: 47J05 47J30 PDF BibTeX XML Cite \textit{A. Stan}, Stud. Univ. Babeș-Bolyai, Math. 66, No. 2, 397--408 (2021; Zbl 1504.47090) Full Text: DOI OpenURL
Devi, Amita; Kumar, Anoop Existence and uniqueness results for integro fractional differential equations with Atangana-Baleanu fractional derivative. (English) Zbl 07566774 J. Math. Ext. 15, No. 5, Paper No. 30, 24 p. (2021). MSC: 34A08 26A33 34A12 PDF BibTeX XML Cite \textit{A. Devi} and \textit{A. Kumar}, J. Math. Ext. 15, No. 5, Paper No. 30, 24 p. (2021; Zbl 07566774) Full Text: DOI OpenURL
Li, Chenkuan On the nonlinear Hadamard-type integro-differential equation. (English) Zbl 07525611 Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 7, 15 p. (2021). MSC: 34A08 34A12 PDF BibTeX XML Cite \textit{C. Li}, Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 7, 15 p. (2021; Zbl 07525611) Full Text: DOI OpenURL
Choi, Q-Heung; Jung, Tacksun Fractional N-Laplacian boundary value problems with jumping nonlinearities in the fractional Orlicz-Sobolev spaces. (English) Zbl 1486.35417 Bound. Value Probl. 2021, Paper No. 100, 27 p. (2021). MSC: 35R11 35A01 35A16 35J25 35J61 PDF BibTeX XML Cite \textit{Q-H. Choi} and \textit{T. Jung}, Bound. Value Probl. 2021, Paper No. 100, 27 p. (2021; Zbl 1486.35417) Full Text: DOI OpenURL
Dob, S.; Lakhal, H.; Maouni, M. Existence and uniqueness of solutions for a nonlinear fractional elliptic system. (English) Zbl 1485.35379 Malays. J. Math. Sci. 15, No. 3, 347-356 (2021). MSC: 35R11 35D30 35J57 35J61 PDF BibTeX XML Cite \textit{S. Dob} et al., Malays. J. Math. Sci. 15, No. 3, 347--356 (2021; Zbl 1485.35379) Full Text: Link OpenURL
Boukehila, Ahcene Existence of solutions of boundary value problems for nonlinear fractional differential equations with integral conditions. (English) Zbl 1502.34003 Proyecciones 40, No. 5, 1117-1135 (2021). MSC: 34A08 34B10 34B15 34B27 47N20 PDF BibTeX XML Cite \textit{A. Boukehila}, Proyecciones 40, No. 5, 1117--1135 (2021; Zbl 1502.34003) Full Text: DOI OpenURL
Turab, Ali; Sintunavarat, Wutiphol On the solvability of a nonlinear Langevin equation involving two fractional orders in different intervals. (English) Zbl 1500.34011 Nonlinear Funct. Anal. Appl. 26, No. 5, 1021-1034 (2021). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{A. Turab} and \textit{W. Sintunavarat}, Nonlinear Funct. Anal. Appl. 26, No. 5, 1021--1034 (2021; Zbl 1500.34011) Full Text: Link OpenURL
Abukhaled, Marwan; Khuri, S. A. A fast convergent semi-analytic method for an electrohydrodynamic flow in a circular cylindrical conduit. (English) Zbl 1491.76053 Int. J. Appl. Comput. Math. 7, No. 2, Paper No. 32, 15 p. (2021). MSC: 76M99 76W05 65N80 65N12 PDF BibTeX XML Cite \textit{M. Abukhaled} and \textit{S. A. Khuri}, Int. J. Appl. Comput. Math. 7, No. 2, Paper No. 32, 15 p. (2021; Zbl 1491.76053) Full Text: DOI OpenURL
Bachar, Imed; Mâagli, Habib; Eltayeb, Hassan Existence and uniqueness of solutions for a class of fractional nonlinear boundary value problems under mild assumptions. (English) Zbl 1485.34026 Adv. Difference Equ. 2021, Paper No. 22, 11 p. (2021). MSC: 34A08 34B18 26A33 45J05 PDF BibTeX XML Cite \textit{I. Bachar} et al., Adv. Difference Equ. 2021, Paper No. 22, 11 p. (2021; Zbl 1485.34026) Full Text: DOI OpenURL
Kittisopaporn, Adisorn; Chansangiam, Pattrawut; Lewkeeratiyutkul, Wicharn Convergence analysis of gradient-based iterative algorithms for a class of rectangular Sylvester matrix equations based on Banach contraction principle. (English) Zbl 1485.65047 Adv. Difference Equ. 2021, Paper No. 17, 17 p. (2021). MSC: 65F45 15A24 15A60 PDF BibTeX XML Cite \textit{A. Kittisopaporn} et al., Adv. Difference Equ. 2021, Paper No. 17, 17 p. (2021; Zbl 1485.65047) Full Text: DOI OpenURL
Khuri, S. A.; Sayfy, A. Numerical solution of a generalized Falkner-Skan flow of a FENE-P fluid. (English) Zbl 1504.76027 Int. J. Comput. Math. 98, No. 6, 1098-1111 (2021). MSC: 76D10 76A10 76M99 35Q35 PDF BibTeX XML Cite \textit{S. A. Khuri} and \textit{A. Sayfy}, Int. J. Comput. Math. 98, No. 6, 1098--1111 (2021; Zbl 1504.76027) Full Text: DOI OpenURL
Sintunavarat, Wutiphol; Turab, Ali On the novel existence results of solutions for fractional Langevin equation associating with nonlinear fractional orders. (English) Zbl 1496.34023 Thai J. Math. 19, No. 3, 827-841 (2021). MSC: 34A08 34B10 47N20 34A34 PDF BibTeX XML Cite \textit{W. Sintunavarat} and \textit{A. Turab}, Thai J. Math. 19, No. 3, 827--841 (2021; Zbl 1496.34023) Full Text: Link OpenURL
Durdiev, D. K.; Turdiev, H. H. Global solvability of the determination convolutional kernel in a hyperbolic system of integro-differential equations. (English) Zbl 1499.35391 Uzb. Math. J. 65, No. 2, 43-60 (2021). MSC: 35L50 45D05 PDF BibTeX XML Cite \textit{D. K. Durdiev} and \textit{H. H. Turdiev}, Uzb. Math. J. 65, No. 2, 43--60 (2021; Zbl 1499.35391) Full Text: DOI OpenURL
Hensel, Sebastian Finite time extinction for the 1D stochastic porous medium equation with transport noise. (English) Zbl 1480.60180 Stoch. Partial Differ. Equ., Anal. Comput. 9, No. 4, 892-939 (2021). MSC: 60H15 35R60 35D30 35D40 PDF BibTeX XML Cite \textit{S. Hensel}, Stoch. Partial Differ. Equ., Anal. Comput. 9, No. 4, 892--939 (2021; Zbl 1480.60180) Full Text: DOI arXiv OpenURL
Chen, Zijun; Wu, Shengkun Local well-posedness for the Zakharov system in dimension \(d = 2, 3\). (English) Zbl 1479.35767 Commun. Pure Appl. Anal. 20, No. 12, 4307-4319 (2021). MSC: 35Q55 35L70 35B65 35A01 35A02 82D10 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{S. Wu}, Commun. Pure Appl. Anal. 20, No. 12, 4307--4319 (2021; Zbl 1479.35767) Full Text: DOI arXiv OpenURL
Mebawondu, A. A.; Abass, H. A.; Aibinu, M. O.; Narain, O. K. Existence of solution of differential equation via fixed point in complex valued \(b\)-metric spaces. (English) Zbl 1490.54086 Nonlinear Funct. Anal. Appl. 26, No. 2, 303-322 (2021). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A. A. Mebawondu} et al., Nonlinear Funct. Anal. Appl. 26, No. 2, 303--322 (2021; Zbl 1490.54086) Full Text: Link OpenURL
Filip, Alexandru-Darius Conversions between generalized metric spaces and standard metric spaces with applications in fixed point theory. (English) Zbl 1488.54131 Carpathian J. Math. 37, No. 2, 345-354 (2021). MSC: 54H25 54Exx 47H10 47H09 68Q25 68Q55 PDF BibTeX XML Cite \textit{A.-D. Filip}, Carpathian J. Math. 37, No. 2, 345--354 (2021; Zbl 1488.54131) Full Text: DOI OpenURL
Şerban, Marcel-Adrian Application of a fixed point theorem on infinite Cartesian product to an infinite system of differential equations. (English) Zbl 1478.34014 Carpathian J. Math. 37, No. 2, 259-263 (2021). MSC: 34A35 45G15 47N20 54H25 PDF BibTeX XML Cite \textit{M.-A. Şerban}, Carpathian J. Math. 37, No. 2, 259--263 (2021; Zbl 1478.34014) Full Text: DOI Link OpenURL
Auwalu, Abba; Denker, Ali Cone rectangular metric spaces over Banach algebras and fixed point results of T-contraction mappings. (English) Zbl 1479.54066 Ashyralyev, Allaberen (ed.) et al., Functional analysis in interdisciplinary applications II. Collected papers based on the presentations at the mini-symposium, held as part of the fourth international conference on analysis and applied mathematics, ICAAM, September 6–9, 2018. Cham: Springer. Springer Proc. Math. Stat. 351, 107-116 (2021). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{A. Auwalu} and \textit{A. Denker}, Springer Proc. Math. Stat. 351, 107--116 (2021; Zbl 1479.54066) Full Text: DOI OpenURL
Salim, Abdelkrim; Benchohra, Mouffak; Lazreg, Jamal Eddine; N’Guérékata, Gaston Boundary value problem for nonlinear implicit generalized Hilfer-type fractional differential equations with impulses. (English) Zbl 1482.34191 Abstr. Appl. Anal. 2021, Article ID 5592010, 17 p. (2021). MSC: 34K37 34K20 26A33 PDF BibTeX XML Cite \textit{A. Salim} et al., Abstr. Appl. Anal. 2021, Article ID 5592010, 17 p. (2021; Zbl 1482.34191) Full Text: DOI OpenURL
Ibnelazyz, Lahcen; Guida, Karim; Hilal, Khalid; Melliani, Said New existence results for nonlinear fractional integrodifferential equations. (English) Zbl 1478.45005 Adv. Math. Phys. 2021, Article ID 5525591, 6 p. (2021). MSC: 45J05 26A33 PDF BibTeX XML Cite \textit{L. Ibnelazyz} et al., Adv. Math. Phys. 2021, Article ID 5525591, 6 p. (2021; Zbl 1478.45005) Full Text: DOI OpenURL
Durdiev, U. D. Problem of determining the reaction coefficient in a fractional diffusion equation. (English. Russian original) Zbl 1477.35311 Differ. Equ. 57, No. 9, 1195-1204 (2021); translation from Differ. Uravn. 57, No. 9, 1220-1229 (2021). MSC: 35R30 35K20 35R11 PDF BibTeX XML Cite \textit{U. D. Durdiev}, Differ. Equ. 57, No. 9, 1195--1204 (2021; Zbl 1477.35311); translation from Differ. Uravn. 57, No. 9, 1220--1229 (2021) Full Text: DOI OpenURL
Bauschke, Heinz H.; Ouyang, Hui; Wang, Xianfu On circumcenter mappings induced by nonexpansive operators. (English) Zbl 1491.47042 Pure Appl. Funct. Anal. 6, No. 2, 257-288 (2021). MSC: 47H09 47H04 41A50 90C25 PDF BibTeX XML Cite \textit{H. H. Bauschke} et al., Pure Appl. Funct. Anal. 6, No. 2, 257--288 (2021; Zbl 1491.47042) Full Text: arXiv Link OpenURL
Benedetti, Irene; Cardinali, Tiziana; Precup, Radu Fixed point-critical point hybrid theorems and application to systems with partial variational structure. (English) Zbl 07419644 J. Fixed Point Theory Appl. 23, No. 4, Paper No. 63, 19 p. (2021). MSC: 47J25 47H10 47J30 34C25 PDF BibTeX XML Cite \textit{I. Benedetti} et al., J. Fixed Point Theory Appl. 23, No. 4, Paper No. 63, 19 p. (2021; Zbl 07419644) Full Text: DOI OpenURL
Kohlenbach, Ulrich Proof-theoretic uniform boundedness and bounded collection principles and countable Heine-Borel compactness. (English) Zbl 1487.03065 Arch. Math. Logic 60, No. 7-8, 995-1003 (2021). Reviewer: Andrei Sipoş (Bucureşti) MSC: 03F10 47H09 PDF BibTeX XML Cite \textit{U. Kohlenbach}, Arch. Math. Logic 60, No. 7--8, 995--1003 (2021; Zbl 1487.03065) Full Text: DOI OpenURL
Abels, Helmut; Rauchecker, Maximilian; Wilke, Mathias Well-posedness and qualitative behaviour of the Mullins-Sekerka problem with ninety-degree angle boundary contact. (English) Zbl 1475.35427 Math. Ann. 381, No. 1-2, 363-403 (2021). MSC: 35R37 35B40 35J25 PDF BibTeX XML Cite \textit{H. Abels} et al., Math. Ann. 381, No. 1--2, 363--403 (2021; Zbl 1475.35427) Full Text: DOI arXiv OpenURL
Zhou, Jue-liang; Zhang, Shu-qin; He, Yu-bo Existence and stability of solution for nonlinear differential equations with \(\psi \)-Hilfer fractional derivative. (English) Zbl 1476.45010 Appl. Math. Lett. 121, Article ID 107457, 7 p. (2021). MSC: 45M10 26A33 34A08 PDF BibTeX XML Cite \textit{J.-l. Zhou} et al., Appl. Math. Lett. 121, Article ID 107457, 7 p. (2021; Zbl 1476.45010) Full Text: DOI OpenURL
Barcz, Eugeniusz A new proof and consequences of the fixed point theorem of Matkowski. (English) Zbl 07405809 Ann. Math. Sil. 35, No. 2, 149-157 (2021). MSC: 47H10 54H25 11B39 PDF BibTeX XML Cite \textit{E. Barcz}, Ann. Math. Sil. 35, No. 2, 149--157 (2021; Zbl 07405809) Full Text: DOI OpenURL
Sun, Xiaoyang; Xu, Run Existence and uniqueness of solutions for a class of boundary value problems of fractional differential equation. (Chinese. English summary) Zbl 1488.34153 J. Qufu Norm. Univ., Nat. Sci. 47, No. 2, 49-54 (2021). MSC: 34B15 34A08 47N20 PDF BibTeX XML Cite \textit{X. Sun} and \textit{R. Xu}, J. Qufu Norm. Univ., Nat. Sci. 47, No. 2, 49--54 (2021; Zbl 1488.34153) OpenURL
Formica, Maria Rosaria; Ostrovsky, Eugeny; Sirota, Leonid Grand quasi Lebesgue spaces. (English) Zbl 1481.46022 J. Math. Anal. Appl. 504, No. 1, Article ID 125369, 21 p. (2021). Reviewer: Oleksiy Karlovych (Lisboa) MSC: 46E30 PDF BibTeX XML Cite \textit{M. R. Formica} et al., J. Math. Anal. Appl. 504, No. 1, Article ID 125369, 21 p. (2021; Zbl 1481.46022) Full Text: DOI arXiv OpenURL
Kumar, Pardeep; Kinra, Kush; Mohan, Manil T. A local in time existence and uniqueness result of an inverse problem for the Kelvin-Voigt fluids. (English) Zbl 1480.35329 Inverse Probl. 37, No. 8, Article ID 085005, 34 p. (2021). Reviewer: Thomas Eiter (Berlin) MSC: 35Q35 76A10 35R30 76D07 35A01 35A02 35R09 PDF BibTeX XML Cite \textit{P. Kumar} et al., Inverse Probl. 37, No. 8, Article ID 085005, 34 p. (2021; Zbl 1480.35329) Full Text: DOI arXiv OpenURL
Vysotsky, Vladislav Contraction principle for trajectories of random walks and Cramér’s theorem for kernel-weighted sums. (English) Zbl 1472.60053 ALEA, Lat. Am. J. Probab. Math. Stat. 18, No. 2, 1103-1125 (2021). MSC: 60F10 60G50 49J45 52A22 54A10 60B11 PDF BibTeX XML Cite \textit{V. Vysotsky}, ALEA, Lat. Am. J. Probab. Math. Stat. 18, No. 2, 1103--1125 (2021; Zbl 1472.60053) Full Text: arXiv Link OpenURL
Norouzi, Fatemeh; N’guérékata, Gaston M. Existence results to a \(\psi\)-Hilfer neutral fractional evolution equation with infinite delay. (English) Zbl 1476.34163 Nonauton. Dyn. Syst. 8, 101-124 (2021). MSC: 34K37 34K30 47N20 34K40 PDF BibTeX XML Cite \textit{F. Norouzi} and \textit{G. M. N'guérékata}, Nonauton. Dyn. Syst. 8, 101--124 (2021; Zbl 1476.34163) Full Text: DOI OpenURL
Ullah, Saif; Butt, A. I. K.; Buhader, Anum Aish Numerical investigation with stability analysis of time-fractional Korteweg-de Vries equations. (English) Zbl 1486.65221 Math. Methods Appl. Sci. 44, No. 4, 3111-3126 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M99 44A10 65M12 26A33 35C08 35R11 35Q53 PDF BibTeX XML Cite \textit{S. Ullah} et al., Math. Methods Appl. Sci. 44, No. 4, 3111--3126 (2021; Zbl 1486.65221) Full Text: DOI OpenURL
Andres, Jan; Fišer, Jiří; Górniewicz, Lech Fixed points and sets of multivalued contractions: an advanced survey with some new results. (English) Zbl 07370659 Fixed Point Theory 22, No. 1, 15-30 (2021). Reviewer: Monica-Felicia Bota (Cluj-Napoca) MSC: 47H04 28A80 47H09 47H10 54C60 55M15 PDF BibTeX XML Cite \textit{J. Andres} et al., Fixed Point Theory 22, No. 1, 15--30 (2021; Zbl 07370659) Full Text: Link OpenURL
Su, Yongfu; Luo, Yinglin; Petruşel, Adrian; Yao, Jen-Chih A study of a special kind of \(N\)-fixed point equation system and applications. (English) Zbl 1488.54185 Miskolc Math. Notes 22, No. 1, 443-455 (2021). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{Y. Su} et al., Miskolc Math. Notes 22, No. 1, 443--455 (2021; Zbl 1488.54185) Full Text: DOI OpenURL
Dakaou, Ibrahim; Hima, Abdoulaye Soumana Large deviations for backward stochastic differential equations driven by \(G\)-Brownian motion. (English) Zbl 1482.60043 J. Theor. Probab. 34, No. 2, 499-521 (2021). MSC: 60F10 60H10 60H30 60G65 PDF BibTeX XML Cite \textit{I. Dakaou} and \textit{A. S. Hima}, J. Theor. Probab. 34, No. 2, 499--521 (2021; Zbl 1482.60043) Full Text: DOI arXiv OpenURL
Antontsev, Stanislav; Ferreira, Jorge; Pişkin, Erhan Existence and blow up of solutions for a strongly damped Petrovsky equation with variable-exponent nonlinearities. (English) Zbl 1461.35148 Electron. J. Differ. Equ. 2021, Paper No. 06, 18 p. (2021). MSC: 35L35 35L76 35D30 35B44 74K20 PDF BibTeX XML Cite \textit{S. Antontsev} et al., Electron. J. Differ. Equ. 2021, Paper No. 06, 18 p. (2021; Zbl 1461.35148) Full Text: Link OpenURL
Bessenyei, Mihály; Páles, Zsolt Applications of the Bielecki renorming technique. (English) Zbl 07328305 J. Fixed Point Theory Appl. 23, No. 2, Paper No. 15, 23 p. (2021). Reviewer: Jürgen Appell (Würzburg) MSC: 47H10 34A12 35L30 45D05 45G10 PDF BibTeX XML Cite \textit{M. Bessenyei} and \textit{Z. Páles}, J. Fixed Point Theory Appl. 23, No. 2, Paper No. 15, 23 p. (2021; Zbl 07328305) Full Text: DOI arXiv OpenURL
Jahangir, Farhang; Haghmaram, Pouya; Nourouzi, Kourosh A note on \(\mathcal{F}\)-metric spaces. (English) Zbl 1460.54020 J. Fixed Point Theory Appl. 23, No. 1, Paper No. 2, 14 p. (2021). MSC: 54E50 54H25 47H10 PDF BibTeX XML Cite \textit{F. Jahangir} et al., J. Fixed Point Theory Appl. 23, No. 1, Paper No. 2, 14 p. (2021; Zbl 1460.54020) Full Text: DOI OpenURL
Jang, T. S. Pseudo-parameter iteration method (PIM): a semi-analytic solution procedure for nonlinear problems. (English) Zbl 07323676 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105733, 20 p. (2021). MSC: 65L99 65L05 PDF BibTeX XML Cite \textit{T. S. Jang}, Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105733, 20 p. (2021; Zbl 07323676) Full Text: DOI OpenURL
Zhou, Jue-liang; Zhang, Shu-qin; He, Yu-bo Existence and stability of solution for a nonlinear fractional differential equation. (English) Zbl 1462.34108 J. Math. Anal. Appl. 498, No. 1, Article ID 124921, 14 p. (2021). MSC: 34K37 34K30 34K27 47N20 PDF BibTeX XML Cite \textit{J.-l. Zhou} et al., J. Math. Anal. Appl. 498, No. 1, Article ID 124921, 14 p. (2021; Zbl 1462.34108) Full Text: DOI OpenURL
Lu, Ziqiang; Zhu, Yuanguo; Xu, Qinqin Asymptotic stability of fractional neutral stochastic systems with variable delays. (English) Zbl 1455.93158 Eur. J. Control 57, 119-124 (2021). MSC: 93D20 93E15 93E03 93C15 26A33 93C43 PDF BibTeX XML Cite \textit{Z. Lu} et al., Eur. J. Control 57, 119--124 (2021; Zbl 1455.93158) Full Text: DOI OpenURL
Xu, Fuyi; Chi, Meiling The unique global solvability and optimal time decay rates for a multi-dimensional compressible generic two-fluid model with capillarity effect. (English) Zbl 1452.76251 Nonlinearity 34, No. 1, 164-204 (2021). MSC: 76T10 76N10 35Q30 PDF BibTeX XML Cite \textit{F. Xu} and \textit{M. Chi}, Nonlinearity 34, No. 1, 164--204 (2021; Zbl 1452.76251) Full Text: DOI arXiv OpenURL
Santra, Shyam Sundar Necessary and sufficient condition for oscillatory and asymptotic behaviour of second-order functional differential equations. (English) Zbl 07661739 Kragujevac J. Math. 44, No. 3, 459-473 (2020). MSC: 34C10 34C15 35K40 PDF BibTeX XML Cite \textit{S. S. Santra}, Kragujevac J. Math. 44, No. 3, 459--473 (2020; Zbl 07661739) Full Text: DOI Link OpenURL
Sonalkar, V. P.; Mohapatra, A. N.; Valaulikar, Y. S. Hyers-Ulam stability of first and second order partial differential equations. (English) Zbl 07582384 Jñānābha 50, No. 2, 38-43 (2020). MSC: 35-XX 26D10 35B35 34K20 39B52 PDF BibTeX XML Cite \textit{V. P. Sonalkar} et al., Jñānābha 50, No. 2, 38--43 (2020; Zbl 07582384) Full Text: Link OpenURL
Du, Wei-Shih; Rassias, Th. M. Simultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications. (English) Zbl 1496.54038 Int. J. Nonlinear Anal. Appl. 11, No. 1, 55-66 (2020). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{W.-S. Du} and \textit{Th. M. Rassias}, Int. J. Nonlinear Anal. Appl. 11, No. 1, 55--66 (2020; Zbl 1496.54038) Full Text: DOI OpenURL
Zhu, Bo; Han, Baoyan; Liu, Lishan; Yu, Wenguang On the fractional partial integro-differential equations of mixed type with non-instantaneous impulses. (English) Zbl 1487.35430 Bound. Value Probl. 2020, Paper No. 154, 11 p. (2020). MSC: 35R11 35R09 35R12 35A01 35A02 35A24 35M10 PDF BibTeX XML Cite \textit{B. Zhu} et al., Bound. Value Probl. 2020, Paper No. 154, 11 p. (2020; Zbl 1487.35430) Full Text: DOI OpenURL
Parvaneh, Vahid; Khorshidi, Maryam; De La Sen, Manuel; Işık, Hüseyin; Mursaleen, Mohammad Measure of noncompactness and a generalized Darbo’s fixed point theorem and its applications to a system of integral equations. (English) Zbl 1489.47074 Adv. Difference Equ. 2020, Paper No. 243, 13 p. (2020). MSC: 47H08 47H10 47N20 45G15 PDF BibTeX XML Cite \textit{V. Parvaneh} et al., Adv. Difference Equ. 2020, Paper No. 243, 13 p. (2020; Zbl 1489.47074) Full Text: DOI OpenURL
Butt, Rabia Ilyas; Abdeljawad, Thabet; ur Rehman, Mujeeb Stability analysis by fixed point theorems for a class of non-linear Caputo nabla fractional difference equation. (English) Zbl 1482.39004 Adv. Difference Equ. 2020, Paper No. 209, 11 p. (2020). MSC: 39A13 39A30 47N20 PDF BibTeX XML Cite \textit{R. I. Butt} et al., Adv. Difference Equ. 2020, Paper No. 209, 11 p. (2020; Zbl 1482.39004) Full Text: DOI OpenURL