Sang, Yuanqi Algebras of generalized Cauchy singular integral operators. (English) Zbl 07640245 Banach J. Math. Anal. 17, No. 1, Paper No. 16, 32 p. (2023). MSC: 47B35 45E10 47C10 PDF BibTeX XML Cite \textit{Y. Sang}, Banach J. Math. Anal. 17, No. 1, Paper No. 16, 32 p. (2023; Zbl 07640245) Full Text: DOI OpenURL
Yavuz, Emel; Güney, H. Özlem; Owa, Shigeyoshi Generalizations of Libera integral operator for analytic functions. (English) Zbl 07645169 An. Univ. Vest Timiș., Ser. Mat.-Inform. 58, No. 1, 39-55 (2022). MSC: 30C45 PDF BibTeX XML Cite \textit{E. Yavuz} et al., An. Univ. Vest Timiș., Ser. Mat.-Inform. 58, No. 1, 39--55 (2022; Zbl 07645169) Full Text: DOI OpenURL
Cardona, Duván; Ruzhansky, Michael Björk-Sjölin condition for strongly singular convolution operators on graded Lie groups. (English) Zbl 07619438 Math. Z. 302, No. 4, 1957-1981 (2022). MSC: 35S30 42B20 42B37 42B35 45E10 PDF BibTeX XML Cite \textit{D. Cardona} and \textit{M. Ruzhansky}, Math. Z. 302, No. 4, 1957--1981 (2022; Zbl 07619438) Full Text: DOI arXiv OpenURL
Polosin, A. A. On the asymptotic behavior of eigenvalues and eigenfunctions of an integral convolution operator with a logarithmic kernel on a finite interval. (English. Russian original) Zbl 07613637 Differ. Equ. 58, No. 9, 1242-1257 (2022); translation from Differ. Uravn. 58, No. 9, 1251-1265 (2022). MSC: 45C05 45P05 45E10 PDF BibTeX XML Cite \textit{A. A. Polosin}, Differ. Equ. 58, No. 9, 1242--1257 (2022; Zbl 07613637); translation from Differ. Uravn. 58, No. 9, 1251--1265 (2022) Full Text: DOI OpenURL
Vinti, Gianluca; Zampogni, Luca A general method to study the convergence of nonlinear operators in Orlicz spaces. (English) Zbl 07613240 Adv. Nonlinear Stud. 22, No. 1, 594-618 (2022). MSC: 41A35 46E30 47A58 47B38 94A12 94A20 PDF BibTeX XML Cite \textit{G. Vinti} and \textit{L. Zampogni}, Adv. Nonlinear Stud. 22, No. 1, 594--618 (2022; Zbl 07613240) Full Text: DOI OpenURL
Tuan, Trinh Operational properties of the Hartley convolution and its applications. (English) Zbl 07609422 Mediterr. J. Math. 19, No. 6, Paper No. 266, 39 p. (2022). MSC: 44A35 26D10 45E10 45J05 65R10 PDF BibTeX XML Cite \textit{T. Tuan}, Mediterr. J. Math. 19, No. 6, Paper No. 266, 39 p. (2022; Zbl 07609422) Full Text: DOI OpenURL
Tapdigoglu, Ramiz; Altwaijry, Najla On some applications of Duhamel operators. (English) Zbl 07604048 Math. Slovaca 72, No. 5, 1375-1381 (2022). MSC: 47G10 44A35 PDF BibTeX XML Cite \textit{R. Tapdigoglu} and \textit{N. Altwaijry}, Math. Slovaca 72, No. 5, 1375--1381 (2022; Zbl 07604048) Full Text: DOI OpenURL
Chung, Hyun Soo Basic formulas for the double integral transform of functionals on abstract Wiener space. (English) Zbl 07598367 Bull. Korean Math. Soc. 59, No. 5, 1131-1144 (2022). MSC: 44A15 46C07 28C20 PDF BibTeX XML Cite \textit{H. S. Chung}, Bull. Korean Math. Soc. 59, No. 5, 1131--1144 (2022; Zbl 07598367) Full Text: DOI OpenURL
Liu, Xiaoqian; Lei, Yutian Integrability of positive solutions of the integral system involving the Riesz potentials. (English) Zbl 1500.45002 Commun. Contemp. Math. 24, No. 8, Article ID 2150032, 18 p. (2022). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45E10 45G05 45M20 47N20 PDF BibTeX XML Cite \textit{X. Liu} and \textit{Y. Lei}, Commun. Contemp. Math. 24, No. 8, Article ID 2150032, 18 p. (2022; Zbl 1500.45002) Full Text: DOI OpenURL
Li, Pingrun Existence of analytic solutions for some classes of singular integral equations of non-normal type with convolution kernel. (English) Zbl 07593918 Acta Appl. Math. 181, Paper No. 5, 22 p. (2022). Reviewer: Alla Boikova (Penza) MSC: 45E10 45E05 45M05 45P05 30E25 42A38 PDF BibTeX XML Cite \textit{P. Li}, Acta Appl. Math. 181, Paper No. 5, 22 p. (2022; Zbl 07593918) Full Text: DOI OpenURL
Lasode, Ayotunde Olajide; Opoola, Timothy Oloyede Coefficient problems of a class of \(q\)-starlike functions associated with \(q\)-analogue of Al-Oboudi-Al-Qahtani integral operator and nephroid domain. (English) Zbl 07589099 J. Class. Anal. 20, No. 1, 35-47 (2022). MSC: 30C45 30C50 PDF BibTeX XML Cite \textit{A. O. Lasode} and \textit{T. O. Opoola}, J. Class. Anal. 20, No. 1, 35--47 (2022; Zbl 07589099) Full Text: DOI OpenURL
Verma, S. K.; Prasad, Akhilesh Product of pseudo-differential operators associated with zero order Mehler-Fock transform. (English) Zbl 07584742 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 224, 19 p. (2022). MSC: 44A15 35S05 44A35 PDF BibTeX XML Cite \textit{S. K. Verma} and \textit{A. Prasad}, Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 224, 19 p. (2022; Zbl 07584742) Full Text: DOI OpenURL
Chousionis, Vasileios; Li, Sean; Zimmerman, Scott Singular integrals on \(C^{1, \alpha}\) regular curves in Carnot groups. (English) Zbl 07572389 J. Anal. Math. 146, No. 1, 299-326 (2022). Reviewer: Takeshi Kawazoe (Yokohama) MSC: 43A70 42B20 28A78 22E30 PDF BibTeX XML Cite \textit{V. Chousionis} et al., J. Anal. Math. 146, No. 1, 299--326 (2022; Zbl 07572389) Full Text: DOI arXiv OpenURL
Ludkowski, Sergey Victor Integral operators for nonlocally compact group modules. (English) Zbl 07569336 Quaest. Math. 45, No. 7, 1125-1144 (2022). MSC: 47A56 26D15 26E20 28A25 28B05 44A35 43A15 PDF BibTeX XML Cite \textit{S. V. Ludkowski}, Quaest. Math. 45, No. 7, 1125--1144 (2022; Zbl 07569336) Full Text: DOI OpenURL
Kiselev, Alexander; Tan, Changhui The flow of polynomial roots under differentiation. (English) Zbl 1495.35177 Ann. PDE 8, No. 2, Paper No. 16, 69 p. (2022). MSC: 35R09 26C10 35Q49 35Q70 44A15 46L54 60B20 PDF BibTeX XML Cite \textit{A. Kiselev} and \textit{C. Tan}, Ann. PDE 8, No. 2, Paper No. 16, 69 p. (2022; Zbl 1495.35177) Full Text: DOI arXiv OpenURL
Askhabov, S. N. Nonlinear integral equations with potential-type kernels in the nonperiodic case. (English. Russian original) Zbl 1494.45006 J. Math. Sci., New York 263, No. 4, 463-474 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 170, 3-14 (2019). MSC: 45E10 45G10 47J05 PDF BibTeX XML Cite \textit{S. N. Askhabov}, J. Math. Sci., New York 263, No. 4, 463--474 (2022; Zbl 1494.45006); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 170, 3--14 (2019) Full Text: DOI OpenURL
Eberle, Sarah FEM-BEM coupling for the thermoelastic wave equation with transparent boundary conditions in 3D. (English) Zbl 1493.74109 Z. Angew. Math. Phys. 73, No. 4, Paper No. 163, 27 p. (2022). MSC: 74S05 74S15 74J05 74F05 65M15 PDF BibTeX XML Cite \textit{S. Eberle}, Z. Angew. Math. Phys. 73, No. 4, Paper No. 163, 27 p. (2022; Zbl 1493.74109) Full Text: DOI OpenURL
Wei, Yanyan; Chang, Yong-Kui Generalized Bloch type periodicity and applications to semi-linear differential equations in Banach spaces. (English) Zbl 07555997 Proc. Edinb. Math. Soc., II. Ser. 65, No. 2, 326-355 (2022). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34K13 34K30 34K37 47N20 37C60 43A60 PDF BibTeX XML Cite \textit{Y. Wei} and \textit{Y.-K. Chang}, Proc. Edinb. Math. Soc., II. Ser. 65, No. 2, 326--355 (2022; Zbl 07555997) Full Text: DOI OpenURL
Tismane, M.; Bounit, H.; Fadili, A. On the inversion and admissibility for a class of Volterra integro-differential problems. (English) Zbl 07554850 IMA J. Math. Control Inf. 39, No. 2, 643-674 (2022). Reviewer: Ti-Jun Xiao (Fudan) MSC: 45J05 45D05 47N20 PDF BibTeX XML Cite \textit{M. Tismane} et al., IMA J. Math. Control Inf. 39, No. 2, 643--674 (2022; Zbl 07554850) Full Text: DOI OpenURL
Lupaş, A. Alb Subordination results for a fractional integral operator. (English) Zbl 1490.30011 Probl. Anal. Issues Anal. 11(29), No. 1, 20-31 (2022). MSC: 30C45 34A40 PDF BibTeX XML Cite \textit{A. A. Lupaş}, Probl. Anal. Issues Anal. 11(29), No. 1, 20--31 (2022; Zbl 1490.30011) Full Text: DOI MNR OpenURL
Watschinger, Raphael; Of, Günther An integration by parts formula for the bilinear form of the hypersingular boundary integral operator for the transient heat equation in three spatial dimensions. (English) Zbl 1491.35263 J. Integral Equations Appl. 34, No. 1, 103-133 (2022). MSC: 35K20 26B20 35K05 45E10 45P05 65M38 PDF BibTeX XML Cite \textit{R. Watschinger} and \textit{G. Of}, J. Integral Equations Appl. 34, No. 1, 103--133 (2022; Zbl 1491.35263) Full Text: DOI arXiv OpenURL
Askhabov, S. N. Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type. (English. Russian original) Zbl 1491.45007 J. Math. Sci., New York 260, No. 3, 275-285 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 3-13 (2019). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45G10 47J05 47N20 PDF BibTeX XML Cite \textit{S. N. Askhabov}, J. Math. Sci., New York 260, No. 3, 275--285 (2022; Zbl 1491.45007); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 3--13 (2019) Full Text: DOI OpenURL
Prasad, Akhilesh; Sharma, P. B. Pseudo-differential operator associated with quadratic-phase Fourier transform. (English) Zbl 07531927 Bol. Soc. Mat. Mex., III. Ser. 28, No. 2, Paper No. 37, 14 p. (2022). MSC: 46F12 43A32 35S05 47G30 46E35 44A35 47F05 PDF BibTeX XML Cite \textit{A. Prasad} and \textit{P. B. Sharma}, Bol. Soc. Mat. Mex., III. Ser. 28, No. 2, Paper No. 37, 14 p. (2022; Zbl 07531927) Full Text: DOI OpenURL
Vyas, Prem Pratap Convolution conditions for certain subclasses of meromorphic \(p\)-valent functions. (English) Zbl 1499.32008 Facta Univ., Ser. Math. Inf. 37, No. 1, 159-168 (2022). MSC: 32A20 44A35 PDF BibTeX XML Cite \textit{P. P. Vyas}, Facta Univ., Ser. Math. Inf. 37, No. 1, 159--168 (2022; Zbl 1499.32008) Full Text: DOI OpenURL
Salec, Ali Reza Bagheri; Kumar, Vishvesh; Tabatabaie, Seyyed Mohammad Convolution properties of Orlicz spaces on hypergroups. (English) Zbl 1492.46029 Proc. Am. Math. Soc. 150, No. 4, 1685-1696 (2022). MSC: 46E30 43A62 43A15 44A35 PDF BibTeX XML Cite \textit{A. R. B. Salec} et al., Proc. Am. Math. Soc. 150, No. 4, 1685--1696 (2022; Zbl 1492.46029) Full Text: DOI arXiv OpenURL
Lyons, Jeffrey W.; Neugebauer, Jeffrey T. Existence of a positive solution for a singular fractional boundary value problem with fractional boundary conditions using convolution and lower order problems. (English) Zbl 07577149 Turk. J. Math. 45, No. 1, 125-138 (2021). MSC: 34A08 34B16 34B18 34B27 47N20 PDF BibTeX XML Cite \textit{J. W. Lyons} and \textit{J. T. Neugebauer}, Turk. J. Math. 45, No. 1, 125--138 (2021; Zbl 07577149) Full Text: DOI OpenURL
Al-Omari, Shrideh Khalaf; Araci, Serkan; Al-Smadi, Mohammed A new structure of an integral operator associated with trigonometric Dunkl settings. (English) Zbl 1494.45015 Adv. Difference Equ. 2021, Paper No. 336, 12 p. (2021). MSC: 45P05 47G10 39A70 PDF BibTeX XML Cite \textit{S. K. Al-Omari} et al., Adv. Difference Equ. 2021, Paper No. 336, 12 p. (2021; Zbl 1494.45015) Full Text: DOI OpenURL
Khanehgir, Mahnaz; Allahyari, Reza; Kayvanloo, Hojjatollah Amiri On infinite systems of Caputo fractional differential inclusions for convex-compact multivalued maps. (English) Zbl 07523984 J. Math. Ext. 15, No. 5, Paper No. 19, 17 p. (2021). MSC: 47N20 47H08 47H10 47H04 45E10 34A60 PDF BibTeX XML Cite \textit{M. Khanehgir} et al., J. Math. Ext. 15, No. 5, Paper No. 19, 17 p. (2021; Zbl 07523984) Full Text: DOI OpenURL
Li, Chenkuan Uniqueness of the Hadamard-type integral equations. (English) Zbl 1485.45002 Adv. Difference Equ. 2021, Paper No. 40, 15 p. (2021). MSC: 45E10 45J05 47N20 PDF BibTeX XML Cite \textit{C. Li}, Adv. Difference Equ. 2021, Paper No. 40, 15 p. (2021; Zbl 1485.45002) Full Text: DOI OpenURL
Al-Janaby, Hiba F.; Ghanim, F. A subclass of Noor-type harmonic \(p\)-valent functions based on hypergeometric functions. (English) Zbl 1499.30046 Kragujevac J. Math. 45, No. 4, 499-519 (2021). MSC: 30C45 11M35 30C10 PDF BibTeX XML Cite \textit{H. F. Al-Janaby} and \textit{F. Ghanim}, Kragujevac J. Math. 45, No. 4, 499--519 (2021; Zbl 1499.30046) Full Text: DOI Link OpenURL
Fernandes, C.; Karlovich, A.; Valente, M. Invertibility of Fourier convolution operators with piecewise continuous symbols on Banach function spaces. (English) Zbl 07449531 Trans. A. Razmadze Math. Inst. 175, No. 1, 49-61 (2021). MSC: 47G10 42A45 46E30 PDF BibTeX XML Cite \textit{C. Fernandes} et al., Trans. A. Razmadze Math. Inst. 175, No. 1, 49--61 (2021; Zbl 07449531) Full Text: Link OpenURL
Polyakova, D. A. On the continuous linear right inverse for a convolution operator. (English) Zbl 1490.44006 Kusraev, Anatoly G. (ed.) et al., Operator theory and differential equations. Selected papers based on the presentations at the 15th conference on order analysis and related problems of mathematical modeling, Vladikavkaz, Russia, July 15–20, 2019. Cham: Birkhäuser. Trends Math., 163-184 (2021). MSC: 44A35 46E10 46F05 PDF BibTeX XML Cite \textit{D. A. Polyakova}, in: Operator theory and differential equations. Selected papers based on the presentations at the 15th conference on order analysis and related problems of mathematical modeling, Vladikavkaz, Russia, July 15--20, 2019. Cham: Birkhäuser. 163--184 (2021; Zbl 1490.44006) Full Text: DOI OpenURL
Hammami, Aymen The Schatten-von Neumann class associated with the Gabor-Riemann-Liouville operator. (English) Zbl 1499.42029 Period. Math. Hung. 83, No. 2, 192-203 (2021). Reviewer: Elijah Liflyand (Ramat-Gan) MSC: 42A38 44A35 PDF BibTeX XML Cite \textit{A. Hammami}, Period. Math. Hung. 83, No. 2, 192--203 (2021; Zbl 1499.42029) Full Text: DOI OpenURL
Goodrich, Christopher S. A one-dimensional Kirchhoff equation with generalized convolution coefficients. (English) Zbl 07433415 J. Fixed Point Theory Appl. 23, No. 4, Paper No. 73, 23 p. (2021). Reviewer: Gennaro Infante (Arcavata di Rende) MSC: 34B18 34B08 34A08 47N20 PDF BibTeX XML Cite \textit{C. S. Goodrich}, J. Fixed Point Theory Appl. 23, No. 4, Paper No. 73, 23 p. (2021; Zbl 07433415) Full Text: DOI OpenURL
Kayvanloo, Hojjatollah Amiri; Allahyari, Reza Existence of solutions of infinite systems of nonlinear functional integral equations of \(N\)-variables in \(C(I\times I\times\cdots\times I,m(\phi))\). (English) Zbl 07425654 Asian-Eur. J. Math. 14, No. 8, Article ID 2150147, 14 p. (2021). MSC: 47H08 47H10 45E10 30C30 PDF BibTeX XML Cite \textit{H. A. Kayvanloo} and \textit{R. Allahyari}, Asian-Eur. J. Math. 14, No. 8, Article ID 2150147, 14 p. (2021; Zbl 07425654) Full Text: DOI OpenURL
Prasad, Akhilesh; Ansari, Z. A.; Jain, Pankaj Pseudo-differential operator in the framework of linear canonical transform domain. (English) Zbl 1487.46040 Asian-Eur. J. Math. 14, No. 7, Article ID 2150117, 18 p. (2021). MSC: 46F12 43A32 46F05 47G30 35S05 53D22 46E35 PDF BibTeX XML Cite \textit{A. Prasad} et al., Asian-Eur. J. Math. 14, No. 7, Article ID 2150117, 18 p. (2021; Zbl 1487.46040) Full Text: DOI OpenURL
Ebadian, Ali; Jabbari, Ali Matrix valued conjugate convolution operators on matrix valued \(L^p\)-spaces. (English) Zbl 1487.43002 Math. Inequal. Appl. 24, No. 3, 827-844 (2021). Reviewer: Michael J. Puls (New York) MSC: 43A15 43A05 43A25 28B05 46G10 44A35 PDF BibTeX XML Cite \textit{A. Ebadian} and \textit{A. Jabbari}, Math. Inequal. Appl. 24, No. 3, 827--844 (2021; Zbl 1487.43002) Full Text: DOI OpenURL
Zvozdetskyĭ, T. I.; Mytskan, M. M. On the equivalence of some convolutional equalities in spaces of sequences. (Ukrainian. English summary) Zbl 1488.44012 Bukovyn. Mat. Zh. 9, No. 1, 180-188 (2021). MSC: 44A35 47B37 PDF BibTeX XML Cite \textit{T. I. Zvozdetskyĭ} and \textit{M. M. Mytskan}, Bukovyn. Mat. Zh. 9, No. 1, 180--188 (2021; Zbl 1488.44012) Full Text: DOI OpenURL
Kasprzak, Piotr Characterization of compact linear integral operators in the space of functions of bounded variation. (English) Zbl 1482.47088 Ann. Fenn. Math. 46, No. 2, 795-818 (2021). MSC: 47G10 47B07 26A45 PDF BibTeX XML Cite \textit{P. Kasprzak}, Ann. Fenn. Math. 46, No. 2, 795--818 (2021; Zbl 1482.47088) Full Text: DOI OpenURL
Fernandes, C. A.; Karlovich, A. Yu.; Karlovich, Yu. I. Calkin images of Fourier convolution operators with slowly oscillating symbols. (English) Zbl 07393030 Bastos, M. Amélia (ed.) et al., Operator theory, functional analysis and applications. Proceedings of the 30th international workshop on operator theory and its applications, IWOTA 2019, Lisbon, Portugal, July 22–26, 2019. Cham: Birkhäuser. Oper. Theory: Adv. Appl. 282, 193-218 (2021). Reviewer: I. M. Erusalimskiy (Rostow-na-Donu) MSC: 47G10 42A45 46E30 PDF BibTeX XML Cite \textit{C. A. Fernandes} et al., Oper. Theory: Adv. Appl. 282, 193--218 (2021; Zbl 07393030) Full Text: DOI arXiv OpenURL
Rachdi, Lakhdar T.; Amri, Besma Gabor multipliers associated with the Bessel-Kingman hypergroup. (English) Zbl 1471.42013 J. Pseudo-Differ. Oper. Appl. 12, No. 3, Paper No. 45, 26 p. (2021). MSC: 42A38 44A35 35S05 PDF BibTeX XML Cite \textit{L. T. Rachdi} and \textit{B. Amri}, J. Pseudo-Differ. Oper. Appl. 12, No. 3, Paper No. 45, 26 p. (2021; Zbl 1471.42013) Full Text: DOI OpenURL
Arabadzhyan, L. G. On the Volterra factorization of the Wiener-Hopf integral operator. (English. Russian original) Zbl 1475.45004 Math. Notes 110, No. 2, 161-166 (2021); translation from Mat. Zametki 110, No. 2, 163-169 (2021). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45E10 45P05 47A68 PDF BibTeX XML Cite \textit{L. G. Arabadzhyan}, Math. Notes 110, No. 2, 161--166 (2021; Zbl 1475.45004); translation from Mat. Zametki 110, No. 2, 163--169 (2021) Full Text: DOI OpenURL
Mandal, U. K.; Prasad, Akhilesh A pair of Kontorovich-Lebedev type transforms and associated pseudo-differential operators. (English) Zbl 1479.44005 Ann. Math. Sci. Appl. 6, No. 1, 87-118 (2021). MSC: 44A20 46F12 35S05 PDF BibTeX XML Cite \textit{U. K. Mandal} and \textit{A. Prasad}, Ann. Math. Sci. Appl. 6, No. 1, 87--118 (2021; Zbl 1479.44005) Full Text: DOI OpenURL
Goodrich, Christopher S. Differential equations with multiple sign changing convolution coefficients. (English) Zbl 1489.34037 Int. J. Math. 32, No. 8, Article ID 2150057, 28 p. (2021). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34B10 34B18 44A35 47N20 PDF BibTeX XML Cite \textit{C. S. Goodrich}, Int. J. Math. 32, No. 8, Article ID 2150057, 28 p. (2021; Zbl 1489.34037) Full Text: DOI OpenURL
Formica, Maria Rosaria; Ostrovsky, Eugeny; Sirota, Leonid Bochner-Riesz operators in grand Lebesgue spaces. (English) Zbl 1492.47045 J. Pseudo-Differ. Oper. Appl. 12, No. 2, Paper No. 36, 14 p. (2021). MSC: 47G10 46E30 44A35 42B15 PDF BibTeX XML Cite \textit{M. R. Formica} et al., J. Pseudo-Differ. Oper. Appl. 12, No. 2, Paper No. 36, 14 p. (2021; Zbl 1492.47045) Full Text: DOI arXiv OpenURL
Kuryliak, Dozyslav B.; Sharabura, Oleksiy M. Wave diffraction from the finite bicone. (English) Zbl 1473.78007 Z. Angew. Math. Phys. 72, No. 4, Paper No. 148, 22 p. (2021). MSC: 78A45 45E10 45F10 47A68 35J05 35B65 78M35 PDF BibTeX XML Cite \textit{D. B. Kuryliak} and \textit{O. M. Sharabura}, Z. Angew. Math. Phys. 72, No. 4, Paper No. 148, 22 p. (2021; Zbl 1473.78007) Full Text: DOI OpenURL
Goodrich, Christopher S. Nonlocal differential equations with concave coefficients of convolution type. (English) Zbl 1494.34082 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 211, Article ID 112437, 18 p. (2021). MSC: 34B08 34B10 34B18 42A85 47N20 PDF BibTeX XML Cite \textit{C. S. Goodrich}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 211, Article ID 112437, 18 p. (2021; Zbl 1494.34082) Full Text: DOI OpenURL
Zabsonre, Issa; Votsia, Djokata Pseudo almost periodic solutions of infinite class under the light of measure theory and applications. (English) Zbl 1477.34097 Math. Methods Appl. Sci. 44, No. 6, 4580-4597 (2021). Reviewer: Khalil Ezzinbi (Marrakech) MSC: 34K14 34K30 35R10 44A35 47D06 47N20 PDF BibTeX XML Cite \textit{I. Zabsonre} and \textit{D. Votsia}, Math. Methods Appl. Sci. 44, No. 6, 4580--4597 (2021; Zbl 1477.34097) Full Text: DOI OpenURL
Kroumi, Anis Boundedness of integral operators associated with the Kontorovich-Lebedev transform in the Lebesgue spaces type. (English) Zbl 1468.42003 Asian-Eur. J. Math. 14, No. 5, Article ID 2150081, 16 p. (2021). MSC: 42A38 33C10 42B25 44A35 PDF BibTeX XML Cite \textit{A. Kroumi}, Asian-Eur. J. Math. 14, No. 5, Article ID 2150081, 16 p. (2021; Zbl 1468.42003) Full Text: DOI OpenURL
Grabovsky, Yury; Hovsepyan, Narek On the commutation properties of finite convolution and differential operators. I: Commutation. (English) Zbl 1475.45023 Result. Math. 76, No. 3, Paper No. 112, 23 p. (2021). Reviewer: Jiři Lipovský (Hradec Králové) MSC: 45P05 45E10 47G10 44A35 34L20 34L05 PDF BibTeX XML Cite \textit{Y. Grabovsky} and \textit{N. Hovsepyan}, Result. Math. 76, No. 3, Paper No. 112, 23 p. (2021; Zbl 1475.45023) Full Text: DOI arXiv OpenURL
Grabovsky, Yury; Hovsepyan, Narek On the commutation properties of finite convolution and differential operators. II: Sesquicommutation. (English) Zbl 1475.45022 Result. Math. 76, No. 3, Paper No. 111, 26 p. (2021). Reviewer: Jiři Lipovský (Hradec Králové) MSC: 45P05 45E10 47G10 44A35 34L20 34L05 PDF BibTeX XML Cite \textit{Y. Grabovsky} and \textit{N. Hovsepyan}, Result. Math. 76, No. 3, Paper No. 111, 26 p. (2021; Zbl 1475.45022) Full Text: DOI arXiv OpenURL
Kazantsev, Sergey G. Singular value decomposition of the longitudinal ray transform of vector fields in a ball in cone beam coordinates. (English) Zbl 1480.44004 Inverse Probl. 37, No. 6, Article ID 065008, 35 p. (2021). MSC: 44A12 47N40 65R32 PDF BibTeX XML Cite \textit{S. G. Kazantsev}, Inverse Probl. 37, No. 6, Article ID 065008, 35 p. (2021; Zbl 1480.44004) Full Text: DOI OpenURL
Câmara, M. C.; Malheiro, M. T.; Partington, J. R. Kernels of unbounded Toeplitz operators and factorization of symbols. (English) Zbl 07362276 Result. Math. 76, No. 1, Paper No. 10, 31 p. (2021). Reviewer: Małgorzata Michalska (Lublin) MSC: 45E10 47B35 47A68 PDF BibTeX XML Cite \textit{M. C. Câmara} et al., Result. Math. 76, No. 1, Paper No. 10, 31 p. (2021; Zbl 07362276) Full Text: DOI arXiv OpenURL
Silbermann, Bernd On the spectrum of Hilbert matrix operator. (English) Zbl 1487.47050 Integral Equations Oper. Theory 93, No. 3, Paper No. 21, 35 p. (2021). Reviewer: Małgorzata Michalska (Lublin) MSC: 47B35 47B38 47B33 45E10 PDF BibTeX XML Cite \textit{B. Silbermann}, Integral Equations Oper. Theory 93, No. 3, Paper No. 21, 35 p. (2021; Zbl 1487.47050) Full Text: DOI OpenURL
Sousa, Rúben; Guerra, Manuel; Yakubovich, Semyon A unified construction of product formulas and convolutions for Sturm-Liouville operators. (English) Zbl 1478.34029 Anal. Math. Phys. 11, No. 2, Paper No. 87, 50 p. (2021). Reviewer: Erdogan Sen (Tekirdağ) MSC: 34B24 35L80 43A10 43A62 PDF BibTeX XML Cite \textit{R. Sousa} et al., Anal. Math. Phys. 11, No. 2, Paper No. 87, 50 p. (2021; Zbl 1478.34029) Full Text: DOI OpenURL
Askhabov, Sultan Nazhmudinovich Nonlinear convolution type integral equations in complex spaces. (Russian. English translation) Zbl 1474.45034 Ufim. Mat. Zh. 13, No. 1, 17-30 (2021); translation in Ufa Math. J. 13, No. 1, 17-30 (2021). MSC: 45G10 45P05 47G10 47H05 PDF BibTeX XML Cite \textit{S. N. Askhabov}, Ufim. Mat. Zh. 13, No. 1, 17--30 (2021; Zbl 1474.45034); translation in Ufa Math. J. 13, No. 1, 17--30 (2021) Full Text: DOI MNR OpenURL
Karlovich, Alexei; Shargorodsky, Eugene Algebras of convolution type operators with continuous data do not always contain all rank one operators. (English) Zbl 1477.47095 Integral Equations Oper. Theory 93, No. 2, Paper No. 16, 24 p. (2021). MSC: 47L80 47G10 46E30 42A45 PDF BibTeX XML Cite \textit{A. Karlovich} and \textit{E. Shargorodsky}, Integral Equations Oper. Theory 93, No. 2, Paper No. 16, 24 p. (2021; Zbl 1477.47095) Full Text: DOI arXiv OpenURL
Gao, Yu; Zhang, Kai Machine learning based data retrieval for inverse scattering problems with incomplete data. (English) Zbl 1460.35283 J. Inverse Ill-Posed Probl. 29, No. 2, 249-266 (2021). MSC: 35Q35 76Q05 35R30 35J05 31B10 68T07 68T05 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{K. Zhang}, J. Inverse Ill-Posed Probl. 29, No. 2, 249--266 (2021; Zbl 1460.35283) Full Text: DOI arXiv OpenURL
Buterin, Sergey Uniform stability of the inverse spectral problem for a convolution integro-differential operator. (English) Zbl 07330165 Appl. Math. Comput. 390, Article ID 125592, 11 p. (2021). MSC: 45-XX 65-XX PDF BibTeX XML Cite \textit{S. Buterin}, Appl. Math. Comput. 390, Article ID 125592, 11 p. (2021; Zbl 07330165) Full Text: DOI arXiv OpenURL
Buterin, Sergey Uniform full stability of recovering convolutional perturbation of the Sturm-Liouville operator from the spectrum. (English) Zbl 1466.45006 J. Differ. Equations 282, 67-103 (2021). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 45J05 45Q05 45C05 45M10 47G20 PDF BibTeX XML Cite \textit{S. Buterin}, J. Differ. Equations 282, 67--103 (2021; Zbl 1466.45006) Full Text: DOI arXiv OpenURL
Sun, Jing; Nie, Daxin; Deng, Weihua High-order BDF fully discrete scheme for backward fractional Feynman-Kac equation with nonsmooth data. (English) Zbl 1472.65126 Appl. Numer. Math. 161, 82-100 (2021). MSC: 65M60 65M06 65M12 35R11 65R20 65M15 82C31 35Q84 PDF BibTeX XML Cite \textit{J. Sun} et al., Appl. Numer. Math. 161, 82--100 (2021; Zbl 1472.65126) Full Text: DOI arXiv OpenURL
Fernandes, Cláudio A.; Karlovich, Alexei Yu.; Karlovich, Yuri I. Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers. (English) Zbl 1477.47035 Banach J. Math. Anal. 15, No. 2, Paper No. 29, 17 p. (2021). Reviewer: Adhemar Bultheel (Leuven) MSC: 47G10 42A45 46E30 PDF BibTeX XML Cite \textit{C. A. Fernandes} et al., Banach J. Math. Anal. 15, No. 2, Paper No. 29, 17 p. (2021; Zbl 1477.47035) Full Text: DOI OpenURL
Kanguzhin, B. E. Operators whose resolvents have convolution representations and their spectral analysis. (English. Russian original) Zbl 07308103 J. Math. Sci., New York 252, No. 3, 384-398 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 153, 94-107 (2018). MSC: 47-XX 44-XX PDF BibTeX XML Cite \textit{B. E. Kanguzhin}, J. Math. Sci., New York 252, No. 3, 384--398 (2021; Zbl 07308103); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 153, 94--107 (2018) Full Text: DOI OpenURL
Castro, L. P.; Silva, A. S.; Tuan, N. M. New convolutions associated with the Mellin transform and their applications in integral equations. (English) Zbl 1499.44015 J. Class. Anal. 16, No. 2, 65-77 (2020). MSC: 44A35 42A85 44A15 45E10 45P05 PDF BibTeX XML Cite \textit{L. P. Castro} et al., J. Class. Anal. 16, No. 2, 65--77 (2020; Zbl 1499.44015) Full Text: DOI OpenURL
Zaraisky, D. A. A new uniqueness theorem for one-dimensional convolution equation. (Russian. English summary) Zbl 07415541 Tr. Inst. Prikl. Mat. Mekh. 34, 63-67 (2020). MSC: 47-XX 35-XX 44-XX PDF BibTeX XML Cite \textit{D. A. Zaraisky}, Tr. Inst. Prikl. Mat. Mekh. 34, 63--67 (2020; Zbl 07415541) OpenURL
Zabsonre, Issa; Mbainadji, Djendode Pseudo almost automorphic solutions of class \(r\) in \(\alpha\)-norm under the light of measure theory. (English) Zbl 1471.34145 Nonauton. Dyn. Syst. 7, 81-101 (2020). Reviewer: Khalil Ezzinbi (Marrakech) MSC: 34K30 43A60 34K14 35K57 44A35 47D06 47N20 PDF BibTeX XML Cite \textit{I. Zabsonre} and \textit{D. Mbainadji}, Nonauton. Dyn. Syst. 7, 81--101 (2020; Zbl 1471.34145) Full Text: DOI OpenURL
Mamatov, Tulkin Operators of Volterra convolution type in generalized Hölder spaces. (English) Zbl 1485.44004 Poincare J. Anal. Appl. 7, No. 2, 275-288 (2020). Reviewer: Deshna Loonker (Jodhpur) MSC: 44A35 45P05 26A33 PDF BibTeX XML Cite \textit{T. Mamatov}, Poincare J. Anal. Appl. 7, No. 2, 275--288 (2020; Zbl 1485.44004) Full Text: DOI OpenURL
Guzmán-Partida, Martha A note on Weinstein transform on products of central Morrey spaces. (English) Zbl 1474.42096 Poincare J. Anal. Appl. 7, No. 1, 31-38 (2020). MSC: 42B35 44A35 PDF BibTeX XML Cite \textit{M. Guzmán-Partida}, Poincare J. Anal. Appl. 7, No. 1, 31--38 (2020; Zbl 1474.42096) OpenURL
Pskhu, Arsen Nakhushev extremum principle for a class of integro-differential operators. (English) Zbl 1474.26027 Fract. Calc. Appl. Anal. 23, No. 6, 1712-1722 (2020). MSC: 26A33 26D10 26A24 45K05 PDF BibTeX XML Cite \textit{A. Pskhu}, Fract. Calc. Appl. Anal. 23, No. 6, 1712--1722 (2020; Zbl 1474.26027) Full Text: DOI OpenURL
Najafzadeh, Shahram Fractional \(q\)-differintegral operator related to univalent functions with negative coefficients. (English) Zbl 1474.30095 J. Mahani Math. Res. Cent. 9, No. 2, 69-77 (2020). MSC: 30C45 30C50 PDF BibTeX XML Cite \textit{S. Najafzadeh}, J. Mahani Math. Res. Cent. 9, No. 2, 69--77 (2020; Zbl 1474.30095) Full Text: DOI OpenURL
Gekkieva, Sakinat Khasanovna; Karmokov, Mukhamed Matsevich; Kerefov, Marat Aslanbievich On boundary value problem for generalized Aller equation. (Russian. English summary) Zbl 1458.35451 Vestn. Samar. Univ., Estestvennonauchn. Ser. 26, No. 2, 7-14 (2020). MSC: 35R11 35C15 PDF BibTeX XML Cite \textit{S. K. Gekkieva} et al., Vestn. Samar. Univ., Estestvennonauchn. Ser. 26, No. 2, 7--14 (2020; Zbl 1458.35451) Full Text: DOI MNR OpenURL
Falaleev, Mikhaĭl Valentinovich On solvability in the class of distributions of degenerate integro-differential equations in Banach spaces. (Russian. English summary) Zbl 1474.45025 Izv. Irkutsk. Gos. Univ., Ser. Mat. 34, 77-92 (2020). MSC: 45E10 45N05 45B05 PDF BibTeX XML Cite \textit{M. V. Falaleev}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 34, 77--92 (2020; Zbl 1474.45025) Full Text: DOI Link OpenURL
Banjai, L.; López-Fernández, Maria Numerical approximation of the Schrödinger equation with concentrated potential. (English) Zbl 1453.65376 J. Comput. Phys. 405, Article ID 109155, 21 p. (2020). MSC: 65M80 65D32 35J10 PDF BibTeX XML Cite \textit{L. Banjai} and \textit{M. López-Fernández}, J. Comput. Phys. 405, Article ID 109155, 21 p. (2020; Zbl 1453.65376) Full Text: DOI arXiv OpenURL
Chaffee, Lucas; Hart, Jarod; Oliveira, Lucas Analysis of hyper-singular, fractional, and order-zero singular integral operators. (English) Zbl 07293629 Indiana Univ. Math. J. 69, No. 6, 1855-1907 (2020). MSC: 47G10 42B20 42B25 42B30 PDF BibTeX XML Cite \textit{L. Chaffee} et al., Indiana Univ. Math. J. 69, No. 6, 1855--1907 (2020; Zbl 07293629) Full Text: DOI arXiv OpenURL
Tabatabaie, Seyyed Mohammad; Salec, Alireza Bagheri; Sanjari, Maryam Zare Remarks on weighted Orlicz spaces on locally compact groups. (English) Zbl 1466.46022 Math. Inequal. Appl. 23, No. 3, 1015-1025 (2020). MSC: 46E30 43A15 47B37 44A35 PDF BibTeX XML Cite \textit{S. M. Tabatabaie} et al., Math. Inequal. Appl. 23, No. 3, 1015--1025 (2020; Zbl 1466.46022) Full Text: DOI OpenURL
Verma, Sandeep Kumar; Prasad, Akhilesh Characterization of Weyl operator in terms of Mehler-Fock transform. (English) Zbl 1464.44005 Math. Methods Appl. Sci. 43, No. 15, 9119-9128 (2020). MSC: 44A15 35A22 44A35 47G10 PDF BibTeX XML Cite \textit{S. K. Verma} and \textit{A. Prasad}, Math. Methods Appl. Sci. 43, No. 15, 9119--9128 (2020; Zbl 1464.44005) Full Text: DOI OpenURL
Zhu, Xiangrong; Zhou, Ya Boundedness of the Hausdorff operators on the weighted Lebesgue spaces. (Chinese. English summary) Zbl 1463.42050 J. Zhejiang Norm. Univ., Nat. Sci. 43, No. 2, 134-138 (2020). MSC: 42B20 42B35 PDF BibTeX XML Cite \textit{X. Zhu} and \textit{Y. Zhou}, J. Zhejiang Norm. Univ., Nat. Sci. 43, No. 2, 134--138 (2020; Zbl 1463.42050) Full Text: DOI OpenURL
Bondarenko, Natalia; Buterin, Sergey Numerical solution and stability of the inverse spectral problem for a convolution integro-differential operator. (English) Zbl 1452.65416 Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105298, 10 p. (2020). MSC: 65R32 45J05 47G20 PDF BibTeX XML Cite \textit{N. Bondarenko} and \textit{S. Buterin}, Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105298, 10 p. (2020; Zbl 1452.65416) Full Text: DOI OpenURL
Nikolaev, A. K.; Platonova, M. V. Nonprobabilistic analogs of the Cauchy process. (English. Russian original) Zbl 1467.35372 J. Math. Sci., New York 251, No. 1, 119-127 (2020); translation from Zap. Nauchn. Semin. POMI 474, 183-194 (2018). MSC: 35S10 34D10 35C05 35C15 60G57 PDF BibTeX XML Cite \textit{A. K. Nikolaev} and \textit{M. V. Platonova}, J. Math. Sci., New York 251, No. 1, 119--127 (2020; Zbl 1467.35372); translation from Zap. Nauchn. Semin. POMI 474, 183--194 (2018) Full Text: DOI OpenURL
Askhabov, S. N. Positivity conditions for operators with difference kernels in reflexive spaces. (English. Russian original) Zbl 07264061 J. Math. Sci., New York 250, No. 5, 717-727 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 149, 3-13 (2018). MSC: 47G10 47G20 PDF BibTeX XML Cite \textit{S. N. Askhabov}, J. Math. Sci., New York 250, No. 5, 717--727 (2020; Zbl 07264061); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 149, 3--13 (2018) Full Text: DOI OpenURL
Nedaiasl, Khadijeh Approximation of weakly singular integral equations by sinc projection methods. (English) Zbl 1450.65181 ETNA, Electron. Trans. Numer. Anal. 52, 416-430 (2020). MSC: 65R20 45B05 45P05 65J15 PDF BibTeX XML Cite \textit{K. Nedaiasl}, ETNA, Electron. Trans. Numer. Anal. 52, 416--430 (2020; Zbl 1450.65181) Full Text: DOI arXiv Link OpenURL
Dziri, M.; Kroumi, A. On the boundedness of fractional maximal and Riesz potential operators associated with Kontorovich-Lebedev transform. (English) Zbl 1447.42004 Integral Transforms Spec. Funct. 31, No. 8, 601-619 (2020). MSC: 42A38 33C10 42B25 44A35 PDF BibTeX XML Cite \textit{M. Dziri} and \textit{A. Kroumi}, Integral Transforms Spec. Funct. 31, No. 8, 601--619 (2020; Zbl 1447.42004) Full Text: DOI OpenURL
Hsiao, George C.; Sánchez-Vizuet, Tonatiuh Time-domain boundary integral methods in linear thermoelasticity. (English) Zbl 1447.74044 SIAM J. Math. Anal. 52, No. 3, 2463-2490 (2020). MSC: 74S99 74S15 74F05 74B05 74H15 65M38 PDF BibTeX XML Cite \textit{G. C. Hsiao} and \textit{T. Sánchez-Vizuet}, SIAM J. Math. Anal. 52, No. 3, 2463--2490 (2020; Zbl 1447.74044) Full Text: DOI arXiv OpenURL
Castro, Luis P.; Guerra, Rita C.; Tuan, Nguyen Minh New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel type. (English) Zbl 1450.45002 Math. Methods Appl. Sci. 43, No. 7, 4835-4846 (2020). Reviewer: Luigi Rodino (Torino) MSC: 45E10 44A35 42A85 43A32 45P05 PDF BibTeX XML Cite \textit{L. P. Castro} et al., Math. Methods Appl. Sci. 43, No. 7, 4835--4846 (2020; Zbl 1450.45002) Full Text: DOI OpenURL
Hight, Elijah; Oraby, Tamer; Palacio, Jose; Suazo, Erwin On persistence of superoscillations for the Schrödinger equation with time-dependent quadratic Hamiltonians. (English) Zbl 1445.81017 Math. Methods Appl. Sci. 43, No. 4, 1660-1674 (2020). MSC: 81Q05 35Q41 47B38 42A38 44A35 81Q10 81Q12 PDF BibTeX XML Cite \textit{E. Hight} et al., Math. Methods Appl. Sci. 43, No. 4, 1660--1674 (2020; Zbl 1445.81017) Full Text: DOI arXiv OpenURL
Guliyev, Vagif S.; Ibrahimov, E. J.; Ekincioglu, S. E.; Jafarova, S. Ar. O’Neil inequality for convolutions associated with Gegenbauer differential operator and some applications. (English) Zbl 1449.42030 J. Math. Study 53, No. 1, 90-124 (2020). MSC: 42B25 42B20 42B35 PDF BibTeX XML Cite \textit{V. S. Guliyev} et al., J. Math. Study 53, No. 1, 90--124 (2020; Zbl 1449.42030) Full Text: DOI OpenURL
Morales, María Guadalupe; Došlá, Zuzana; Mendoza, Francisco J. Riemann-Liouville derivative over the space of integrable distributions. (English) Zbl 07220320 Electron Res. Arch. 28, No. 2, 567-587 (2020). MSC: 47G20 26A33 26A39 46F12 PDF BibTeX XML Cite \textit{M. G. Morales} et al., Electron Res. Arch. 28, No. 2, 567--587 (2020; Zbl 07220320) Full Text: DOI arXiv OpenURL
Buterin, Sergey On a transformation operator approach in the inverse spectral theory of integral and integro-differential operators. (English) Zbl 1467.45022 Kravchenko, Vladislav V. (ed.) et al., Transmutation operators and applications. Cham: Birkhäuser. Trends Math., 337-367 (2020). MSC: 45P05 45G15 45J05 35Q05 47G20 PDF BibTeX XML Cite \textit{S. Buterin}, in: Transmutation operators and applications. Cham: Birkhäuser. 337--367 (2020; Zbl 1467.45022) Full Text: DOI OpenURL
Peschansky, A. I. Integro-differential equations over a closed circuit with Gaussian function in the kernel. (English. Russian original) Zbl 1463.45038 Russ. Math. 64, No. 1, 78-87 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 1, 84-93 (2020). MSC: 45J05 45G05 PDF BibTeX XML Cite \textit{A. I. Peschansky}, Russ. Math. 64, No. 1, 78--87 (2020; Zbl 1463.45038); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 1, 84--93 (2020) Full Text: DOI OpenURL
Goodrich, Christopher S.; Lyons, Benjamin Positivity and monotonicity results for triple sequential fractional differences via convolution. (English) Zbl 1446.39003 Analysis, München 40, No. 2, 89-103 (2020). Reviewer: S. L. Kalla (Ballwin) MSC: 39A12 39A70 39A13 39B62 44A35 26A48 PDF BibTeX XML Cite \textit{C. S. Goodrich} and \textit{B. Lyons}, Analysis, München 40, No. 2, 89--103 (2020; Zbl 1446.39003) Full Text: DOI OpenURL
He, Bing; Wang, Qi-Ru; Cao, Jun-Fei Weighted \(S^p\)-pseudo \(S\)-asymptotic periodicity and applications to Volterra integral equations. (English) Zbl 1460.43006 Appl. Math. Comput. 380, Article ID 125275, 12 p. (2020). MSC: 43A60 45D05 PDF BibTeX XML Cite \textit{B. He} et al., Appl. Math. Comput. 380, Article ID 125275, 12 p. (2020; Zbl 1460.43006) Full Text: DOI OpenURL
Chang, Seung Jun; Chung, Hyun Soo Generalized Cameron-Storvick type theorem via the bounded linear operators. (English) Zbl 1434.60225 J. Korean Math. Soc. 57, No. 3, 655-668 (2020). MSC: 60J65 28C20 44A15 46C07 PDF BibTeX XML Cite \textit{S. J. Chang} and \textit{H. S. Chung}, J. Korean Math. Soc. 57, No. 3, 655--668 (2020; Zbl 1434.60225) Full Text: DOI OpenURL
Perez-Villalon, Gerardo Discrete convolution operators and Riesz systems generated by actions of abelian groups. (English) Zbl 07194911 Ann. Funct. Anal. 11, No. 2, 285-297 (2020). Reviewer: Tianxuan Miao (Thunder Bay) MSC: 47L25 43A15 44A35 PDF BibTeX XML Cite \textit{G. Perez-Villalon}, Ann. Funct. Anal. 11, No. 2, 285--297 (2020; Zbl 07194911) Full Text: DOI arXiv OpenURL
Li, Pingrun The solvability and explicit solutions of singular integral-differential equations of non-normal type via Riemann-Hilbert problem. (English) Zbl 1444.45006 J. Comput. Appl. Math. 374, Article ID 112759, 12 p. (2020). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45E10 45E05 45J05 47G20 30E25 PDF BibTeX XML Cite \textit{P. Li}, J. Comput. Appl. Math. 374, Article ID 112759, 12 p. (2020; Zbl 1444.45006) Full Text: DOI OpenURL
Al-Omari, Shrideh Khalaf On some variant of a Whittaker integral operator and its representative in a class of square integrable Boehmians. (English) Zbl 1431.42007 Bol. Soc. Parana. Mat. (3) 38, No. 1, 173-183 (2020). MSC: 42A38 42A85 PDF BibTeX XML Cite \textit{S. K. Al-Omari}, Bol. Soc. Parana. Mat. (3) 38, No. 1, 173--183 (2020; Zbl 1431.42007) Full Text: Link OpenURL
Piatnitski, A.; Zhizhina, E. Stochastic homogenization of convolution type operators. (English. French summary) Zbl 1433.35006 J. Math. Pures Appl. (9) 134, 36-71 (2020). Reviewer: Aleksandr D. Borisenko (Kyïv) MSC: 35B27 45E10 60H25 47B25 PDF BibTeX XML Cite \textit{A. Piatnitski} and \textit{E. Zhizhina}, J. Math. Pures Appl. (9) 134, 36--71 (2020; Zbl 1433.35006) Full Text: DOI arXiv OpenURL
Nikolski, Nikolaï Toeplitz matrices and operators. Translated from the French by Danièle Gibbons and Greg Gibbons. (English) Zbl 1466.15001 Cambridge Studies in Advanced Mathematics 182. Cambridge: Cambridge University Press (ISBN 978-1-107-19850-0/hbk; 978-1-108-18257-7/ebook). xxii, 430 p. (2020). Reviewer: Roksana Słowik (Gliwice) MSC: 15-01 47-01 15B05 47B35 15A15 15A09 15A10 45E10 42A70 47A57 44A60 PDF BibTeX XML Cite \textit{N. Nikolski}, Toeplitz matrices and operators. Translated from the French by Danièle Gibbons and Greg Gibbons. Cambridge: Cambridge University Press (2020; Zbl 1466.15001) Full Text: DOI OpenURL
Prasad, Akhilesh; Verma, S. K. The Mehler-Fock-Clifford transform and pseudo-differential operator on function spaces. (English) Zbl 1499.44011 Filomat 33, No. 8, 2457-2469 (2019). MSC: 44A15 47G30 44A20 44A35 PDF BibTeX XML Cite \textit{A. Prasad} and \textit{S. K. Verma}, Filomat 33, No. 8, 2457--2469 (2019; Zbl 1499.44011) Full Text: DOI OpenURL
Chang, Seung Jun; Choi, Jae Gil; Chung, Hyun Soo Generalized integral transforms with the translation operator on function space. (English) Zbl 1499.60275 Filomat 33, No. 3, 869-880 (2019). MSC: 60J65 46E20 44A35 PDF BibTeX XML Cite \textit{S. J. Chang} et al., Filomat 33, No. 3, 869--880 (2019; Zbl 1499.60275) Full Text: DOI OpenURL
Agratini, Octavian Shift \(\lambda\)-invariant operators. (English) Zbl 1463.41033 Constr. Math. Anal. 2, No. 3, 103-108 (2019). MSC: 41A35 47B38 PDF BibTeX XML Cite \textit{O. Agratini}, Constr. Math. Anal. 2, No. 3, 103--108 (2019; Zbl 1463.41033) Full Text: DOI OpenURL