Choudhury, Binayak S.; Metiya, Nikhilesh; Kundu, Sunirmal Coupled fixed point sets with data-dependence and stability. (English) Zbl 07529142 Surv. Math. Appl. 17, 205-223 (2022). MSC: 54H10 54H25 47H10 PDF BibTeX XML Cite \textit{B. S. Choudhury} et al., Surv. Math. Appl. 17, 205--223 (2022; Zbl 07529142) Full Text: Link OpenURL
Handa, Amrish Generalized \(( \psi, \theta, \varphi)\)-contraction with application to ordinary differential equations. (English) Zbl 07524412 Facta Univ., Ser. Math. Inf. 37, No. 1, 169-192 (2022). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{A. Handa}, Facta Univ., Ser. Math. Inf. 37, No. 1, 169--192 (2022; Zbl 07524412) Full Text: DOI OpenURL
Ylinen, Lauri; von Lerber, Tuomo; Küppers, Franko; Lassas, Matti Analysis of a dynamical system modeling lasers and applications for optical neural networks. (English) Zbl 07518338 SIAM J. Appl. Dyn. Syst. 21, No. 2, 840-878 (2022). MSC: 37N20 34C15 78A60 PDF BibTeX XML Cite \textit{L. Ylinen} et al., SIAM J. Appl. Dyn. Syst. 21, No. 2, 840--878 (2022; Zbl 07518338) Full Text: DOI OpenURL
Hosseinzadeh, Hasan; Işık, Hüseyin; Bonab, Samira Hadi; George, Reny Coupled measure of noncompactness and functional integral equations. (English) Zbl 07517538 Open Math. 20, 38-49 (2022). MSC: 47H09 47H10 34A12 PDF BibTeX XML Cite \textit{H. Hosseinzadeh} et al., Open Math. 20, 38--49 (2022; Zbl 07517538) Full Text: DOI OpenURL
Manigandan, M.; Muthaiah, Subramanian; Nandhagopal, T.; Vadivel, R.; Unyong, B.; Gunasekaran, N. Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. (English) Zbl 07512924 AIMS Math. 7, No. 1, 723-755 (2022). MSC: 34A08 34A60 34B10 PDF BibTeX XML Cite \textit{M. Manigandan} et al., AIMS Math. 7, No. 1, 723--755 (2022; Zbl 07512924) Full Text: DOI OpenURL
Hausenblas, Erika; Panda, Akash Ashirbad The stochastic Gierer-Meinhardt system. (English) Zbl 07511782 Appl. Math. Optim. 85, No. 2, Paper No. 11, 49 p. (2022). MSC: 60H15 35A08 35D30 35G25 35K55 92C15 60G57 35Q92 35K45 92C40 35K57 47H10 92B05 PDF BibTeX XML Cite \textit{E. Hausenblas} and \textit{A. A. Panda}, Appl. Math. Optim. 85, No. 2, Paper No. 11, 49 p. (2022; Zbl 07511782) Full Text: DOI OpenURL
Fabiano, Nicola Remarks on: “Generalized contractions to coupled fixed point theorems in partially ordered metric spaces”. (English) Zbl 07503896 J. Sib. Fed. Univ., Math. Phys. 15, No. 1, 13-16 (2022). MSC: 54Hxx 47Hxx 54Cxx PDF BibTeX XML Cite \textit{N. Fabiano}, J. Sib. Fed. Univ., Math. Phys. 15, No. 1, 13--16 (2022; Zbl 07503896) Full Text: DOI MNR OpenURL
Boudjerida, A.; Seba, D.; N’Guérékata, G. M. Controllability of coupled systems for impulsive \(\phi\)-Hilfer fractional integro-differential inclusions. (English) Zbl 07495645 Appl. Anal. 101, No. 2, 383-400 (2022). MSC: 26A33 93B05 34A37 34A60 47H10 PDF BibTeX XML Cite \textit{A. Boudjerida} et al., Appl. Anal. 101, No. 2, 383--400 (2022; Zbl 07495645) Full Text: DOI OpenURL
Smirnov, Yu. G. Method of \(Y\)-mappings for study of multiparameter nonlinear eigenvalue problems. (English. Russian original) Zbl 07491041 Comput. Math. Math. Phys. 62, No. 1, 150-156 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 1, 159-165 (2022). MSC: 34-XX 78-XX PDF BibTeX XML Cite \textit{Yu. G. Smirnov}, Comput. Math. Math. Phys. 62, No. 1, 150--156 (2022; Zbl 07491041); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 1, 159--165 (2022) Full Text: DOI OpenURL
Zada, Akbar; Yar, Mohammad Existence and stability analysis of sequential coupled system of Hadamard-type fractional differential equations. (English) Zbl 07479313 Kragujevac J. Math. 46, No. 1, 85-104 (2022). MSC: 26A33 34A08 35B40 PDF BibTeX XML Cite \textit{A. Zada} and \textit{M. Yar}, Kragujevac J. Math. 46, No. 1, 85--104 (2022; Zbl 07479313) Full Text: DOI Link OpenURL
Jain, Shishir; Sharma, Yogita Coupled fixed point theorems of weakly \(C\)-contraction with mixed monotone property in ordered modular metric spaces. (English) Zbl 07528078 South East Asian J. Math. Math. Sci. 17, No. 3, 189-208 (2021). MSC: 47H09 47H10 46A80 PDF BibTeX XML Cite \textit{S. Jain} and \textit{Y. Sharma}, South East Asian J. Math. Math. Sci. 17, No. 3, 189--208 (2021; Zbl 07528078) Full Text: Link OpenURL
Babu, G. V. R.; Sailaja, P. Durga; Srichandana, G. Strong coupled fixed points of \(\alpha \)-admissible Reich type coupled mappings in \(S\)-metric spaces. (English) Zbl 07528076 South East Asian J. Math. Math. Sci. 17, No. 3, 147-172 (2021). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{G. V. R. Babu} et al., South East Asian J. Math. Math. Sci. 17, No. 3, 147--172 (2021; Zbl 07528076) Full Text: Link OpenURL
Nabil, Tamer Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative. (English) Zbl 07516018 AIMS Math. 6, No. 5, 5088-5105 (2021). MSC: 34A08 34B10 PDF BibTeX XML Cite \textit{T. Nabil}, AIMS Math. 6, No. 5, 5088--5105 (2021; Zbl 07516018) Full Text: DOI OpenURL
Almalahi, Mohammed A.; Panchal, Satish K. Some properties of implicit impulsive coupled system via \(\varphi \)-Hilfer fractional operator. (English) Zbl 07509911 Bound. Value Probl. 2021, Paper No. 67, 22 p. (2021). MSC: 34Axx PDF BibTeX XML Cite \textit{M. A. Almalahi} and \textit{S. K. Panchal}, Bound. Value Probl. 2021, Paper No. 67, 22 p. (2021; Zbl 07509911) Full Text: DOI OpenURL
Gomez, Ignacio S.; Santos, Esdras S.; Abla, Olavo Morse potential in relativistic contexts from generalized momentum operator: Schottky anomalies, Pekeris approximation and mapping. (English) Zbl 07501675 Mod. Phys. Lett. A 36, No. 20, Article ID 2150140, 20 p. (2021). MSC: 81Q05 81R20 14G12 34C15 53D20 58E05 81V55 81R25 80A10 34L40 PDF BibTeX XML Cite \textit{I. S. Gomez} et al., Mod. Phys. Lett. A 36, No. 20, Article ID 2150140, 20 p. (2021; Zbl 07501675) Full Text: DOI OpenURL
Ghasab, Ehsan Lotfali; Majani, Hamid; Rad, Ghasem Soleimani On probabilistic \(\epsilon,\lambda)\)-local contraction mappings and a system of integral equations. (English) Zbl 07490914 Facta Univ., Ser. Math. Inf. 36, No. 5, 969-982 (2021). MSC: 47H25 54E70 PDF BibTeX XML Cite \textit{E. L. Ghasab} et al., Facta Univ., Ser. Math. Inf. 36, No. 5, 969--982 (2021; Zbl 07490914) Full Text: DOI OpenURL
Rezaee, Mohammad Mahdi; Sedghi, Shaban Coupled fixed point theorems under nonlinear contractive conditions in \(S\)-metric spaces. (English) Zbl 07489175 Thai J. Math. 19, No. 4, 1519-1526 (2021). MSC: 54H25 54E40 54E35 PDF BibTeX XML Cite \textit{M. M. Rezaee} and \textit{S. Sedghi}, Thai J. Math. 19, No. 4, 1519--1526 (2021; Zbl 07489175) Full Text: Link OpenURL
Babu, Gutti Venkata Ravindranadh; Tola, Kidane Koyas Coupled coincidence points of almost generalized \((\psi, \phi)\)-weakly contractive maps under an \((F, g)\)-invariant set. (English) Zbl 1482.54051 Thai J. Math. 19, No. 4, 1285-1303 (2021). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{G. V. R. Babu} and \textit{K. K. Tola}, Thai J. Math. 19, No. 4, 1285--1303 (2021; Zbl 1482.54051) Full Text: Link OpenURL
Mani, Gunaseelan; Gnanaprakasam, Arul Joseph; Lee, Jung Rye; Park, Choonkil Solution of integral equations via coupled fixed point theorems in \(\mathfrak{F}\)-complete metric spaces. (English) Zbl 1482.54068 Open Math. 19, 1223-1230 (2021). MSC: 54H25 47H10 54E35 45G15 PDF BibTeX XML Cite \textit{G. Mani} et al., Open Math. 19, 1223--1230 (2021; Zbl 1482.54068) Full Text: DOI OpenURL
Alsaedi, Ahmed; Albideewi, Amjad F.; Ntouyas, Sotiris K.; Ahmad, Bashir Existence results for a coupled system of Caputo type fractional integro-differential equations with multi-point and sub-strip boundary conditions. (English) Zbl 07485414 Adv. Difference Equ. 2021, Paper No. 19, 19 p. (2021). MSC: 45J05 34A08 26A33 47N20 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., Adv. Difference Equ. 2021, Paper No. 19, 19 p. (2021; Zbl 07485414) Full Text: DOI OpenURL
Abbas, Saïd; Benchohra, Mouffak; Henderson, Johnny Existence and oscillation for coupled fractional \(q\)-difference systems. (English) Zbl 07458961 J. Fract. Calc. Appl. 12, No. 1, 143-155 (2021). MSC: 26A33 34C10 34C15 PDF BibTeX XML Cite \textit{S. Abbas} et al., J. Fract. Calc. Appl. 12, No. 1, 143--155 (2021; Zbl 07458961) Full Text: Link OpenURL
Das, Anupam; Hazarika, Bipan; Nashine, Hemant Kumar; Kim, Jong Kyu \(\psi\)-coupled fixed point theorem via simulation functions in complete partially ordered metric space and its applications. (English) Zbl 07450979 Nonlinear Funct. Anal. Appl. 26, No. 2, 273-288 (2021). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{A. Das} et al., Nonlinear Funct. Anal. Appl. 26, No. 2, 273--288 (2021; Zbl 07450979) Full Text: Link OpenURL
Deshpande, Bhavana; Mishra, Vishnu Narayan; Handa, Amrish; Mishra, Lakshmi Narayan Coincidence point results for generalized \((\psi, \theta, \phi)\)-contraction on partially ordered metric spaces. (English) Zbl 1476.54060 Thai J. Math. 19, No. 1, 93-112 (2021). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{B. Deshpande} et al., Thai J. Math. 19, No. 1, 93--112 (2021; Zbl 1476.54060) Full Text: Link OpenURL
Sharma, Yogita; Jain, Shishir Coupled fixed point theorems in modular metric spaces endowed with a graph. (English) Zbl 07445275 Kyungpook Math. J. 61, No. 2, 441-453 (2021). MSC: 47H10 54H25 46A80 PDF BibTeX XML Cite \textit{Y. Sharma} and \textit{S. Jain}, Kyungpook Math. J. 61, No. 2, 441--453 (2021; Zbl 07445275) Full Text: DOI OpenURL
Sun, Zheng; Liu, Kai; Wang, Jinglei; Zhou, Xiaomin Hydro-mechanical coupled \(B\)-spline material point method for large deformation simulation of saturated soils. (English) Zbl 07439987 Eng. Anal. Bound. Elem. 133, 330-340 (2021). MSC: 74-XX 76-XX PDF BibTeX XML Cite \textit{Z. Sun} et al., Eng. Anal. Bound. Elem. 133, 330--340 (2021; Zbl 07439987) Full Text: DOI OpenURL
Gabeleh, Moosa; Patel, Deepesh Kumar; Patle, Pradip Ramesh; De La Sen, Manuel Existence of a solution of Hilfer fractional hybrid problems via new Krasnoselskii-type fixed point theorems. (English) Zbl 1475.34003 Open Math. 19, 450-469 (2021). MSC: 34A08 34A38 47H10 34A12 PDF BibTeX XML Cite \textit{M. Gabeleh} et al., Open Math. 19, 450--469 (2021; Zbl 1475.34003) Full Text: DOI OpenURL
Mebarki, K.; Boudaoui, A.; Shatanawi, W. Existence of coupled fixed point via measure of noncompactness. (English) Zbl 07430327 Afr. Mat. 32, No. 7-8, 1605-1613 (2021). MSC: 47H08 47H10 PDF BibTeX XML Cite \textit{K. Mebarki} et al., Afr. Mat. 32, No. 7--8, 1605--1613 (2021; Zbl 07430327) Full Text: DOI OpenURL
de Sousa, Robert; Minhós, Feliz Heteroclinic and homoclinic solutions for nonlinear second-order coupled systems with \(\phi\)-Laplacians. (English) Zbl 1476.34154 Comput. Appl. Math. 40, No. 5, Paper No. 169, 13 p. (2021). MSC: 34K25 34B27 34L30 47H10 PDF BibTeX XML Cite \textit{R. de Sousa} and \textit{F. Minhós}, Comput. Appl. Math. 40, No. 5, Paper No. 169, 13 p. (2021; Zbl 1476.34154) Full Text: DOI arXiv OpenURL
Bezziou, Mohamed; Dahmani, Zoubir; Slimane, Ibrahim A class of differential equations of combined Hadamard and Riemann-Liouville operators. (English) Zbl 07414918 Sarajevo J. Math. 17(30), No. 1, 45-59 (2021). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{M. Bezziou} et al., Sarajevo J. Math. 17(30), No. 1, 45--59 (2021; Zbl 07414918) Full Text: DOI OpenURL
Subramanian, Muthaiah; Zada, Akbar Existence and uniqueness of solutions for coupled systems of Liouville-Caputo type fractional integrodifferential equations with Erdélyi-Kober integral conditions. (English) Zbl 07412524 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 5, 543-557 (2021). MSC: 26A33 34A08 34A12 34B15 37C25 PDF BibTeX XML Cite \textit{M. Subramanian} and \textit{A. Zada}, Int. J. Nonlinear Sci. Numer. Simul. 22, No. 5, 543--557 (2021; Zbl 07412524) Full Text: DOI OpenURL
Abbas, Saïd; Benchohra, Mouffak; N’Guerekata, Gaston M.; Zhou, Yong Coupled Pettis Hadamard fractional differential systems with retardation and anticipation. (English) Zbl 1470.34212 Surv. Math. Appl. 16, 95-109 (2021). MSC: 34K37 47H10 54D30 PDF BibTeX XML Cite \textit{S. Abbas} et al., Surv. Math. Appl. 16, 95--109 (2021; Zbl 1470.34212) Full Text: Link OpenURL
Gan, Yimiao; Hou, Chengmin Existence of positive solutions for a class of nonlinear coupled systems of Hilfer fractional differential equations. (Chinese. English summary) Zbl 07404082 J. Nat. Sci. Heilongjiang Univ. 38, No. 1, 17-25 (2021). MSC: 35B09 35R11 PDF BibTeX XML Cite \textit{Y. Gan} and \textit{C. Hou}, J. Nat. Sci. Heilongjiang Univ. 38, No. 1, 17--25 (2021; Zbl 07404082) Full Text: DOI OpenURL
Liu, Jinjie; Migórski, Stanisław; Yang, Xinmin; Zeng, Shengda Existence and convergence results for a nonlinear thermoelastic contact problem. (English) Zbl 07399390 J. Nonlinear Var. Anal. 5, No. 5, 647-664 (2021). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{J. Liu} et al., J. Nonlinear Var. Anal. 5, No. 5, 647--664 (2021; Zbl 07399390) Full Text: DOI OpenURL
Choudhury, Binayak S.; Bhaskar, T. Gnana; Metiya, N.; Kundu, S. Existence and stability of coupled fixed point sets for multi-valued mappings. (English) Zbl 1476.54059 Fixed Point Theory 22, No. 2, 571-586 (2021). MSC: 54H25 54C60 54E40 PDF BibTeX XML Cite \textit{B. S. Choudhury} et al., Fixed Point Theory 22, No. 2, 571--586 (2021; Zbl 1476.54059) Full Text: Link OpenURL
Kalyani, K.; Rao, N. Seshagiri Coincidence point results of nonlinear contractive mappings in partially ordered metric spaces. (English) Zbl 1477.54093 Cubo 23, No. 2, 207-224 (2021). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{K. Kalyani} and \textit{N. S. Rao}, Cubo 23, No. 2, 207--224 (2021; Zbl 1477.54093) Full Text: Link OpenURL
Gao, Fugen; Liu, Xiaoxiao The strongly convergent relaxed alternating CQ algorithms for the split equality problem in Hilbert spaces. (English) Zbl 07383315 Numer. Funct. Anal. Optim. 42, No. 8, 902-918 (2021). MSC: 47Hxx 49Mxx PDF BibTeX XML Cite \textit{F. Gao} and \textit{X. Liu}, Numer. Funct. Anal. Optim. 42, No. 8, 902--918 (2021; Zbl 07383315) Full Text: DOI OpenURL
Boumaaza, Mokhtar; Benchohra, Mouffak; Nieto, Juan J. Caputo type modification of the Erdélyi-Kober coupled implicit fractional differential systems with retardation and anticipation. (English) Zbl 07381440 Differ. Equ. Appl. 13, No. 2, 101-114 (2021). MSC: 34K37 34K32 47N20 PDF BibTeX XML Cite \textit{M. Boumaaza} et al., Differ. Equ. Appl. 13, No. 2, 101--114 (2021; Zbl 07381440) Full Text: DOI OpenURL
Hennig, Dirk Localised time-periodic solutions of discrete nonlinear Klein-Gordon systems with convex on-site potentials. (English) Zbl 1476.34049 J. Fixed Point Theory Appl. 23, No. 2, Paper No. 31, 8 p. (2021). MSC: 34A33 34C25 34C15 47H10 PDF BibTeX XML Cite \textit{D. Hennig}, J. Fixed Point Theory Appl. 23, No. 2, Paper No. 31, 8 p. (2021; Zbl 1476.34049) Full Text: DOI arXiv OpenURL
Santhi, Antony; Muralisankar, Subramanian; Agarwal, Ravi P. A new coupled fixed point theorem via simulation function with application. (English) Zbl 1474.54243 Mat. Vesn. 73, No. 3, 209-222 (2021). MSC: 54H25 54E40 54F05 60H10 34A08 PDF BibTeX XML Cite \textit{A. Santhi} et al., Mat. Vesn. 73, No. 3, 209--222 (2021; Zbl 1474.54243) Full Text: EMIS Link Link OpenURL
Almalahi, Mohammed A.; Abdo, Mohammed S.; Panchal, Satish K. Existence and Ulam-Hyers stability results of a coupled system of \(\psi\)-Hilfer sequential fractional differential equations. (English) Zbl 1471.34013 Results Appl. Math. 10, Article ID 100142, 15 p. (2021). MSC: 34A08 34B15 34D10 47N20 PDF BibTeX XML Cite \textit{M. A. Almalahi} et al., Results Appl. Math. 10, Article ID 100142, 15 p. (2021; Zbl 1471.34013) Full Text: DOI OpenURL
Nain, Ankit; Vats, Ramesh; Kumar, Avadhesh Coupled fractional differential equations involving Caputo-Hadamard derivative with nonlocal boundary conditions. (English) Zbl 1471.34048 Math. Methods Appl. Sci. 44, No. 5, 4192-4204 (2021). MSC: 34B10 34A08 47N20 PDF BibTeX XML Cite \textit{A. Nain} et al., Math. Methods Appl. Sci. 44, No. 5, 4192--4204 (2021; Zbl 1471.34048) Full Text: DOI OpenURL
Candela, Anna Maria; Salvatore, Addolorata; Sportelli, Caterina Existence and multiplicity results for a class of coupled quasilinear elliptic systems of gradient type. (English) Zbl 1472.35146 Adv. Nonlinear Stud. 21, No. 2, 461-488 (2021). MSC: 35J57 35J92 35A01 35J50 58E05 PDF BibTeX XML Cite \textit{A. M. Candela} et al., Adv. Nonlinear Stud. 21, No. 2, 461--488 (2021; Zbl 1472.35146) Full Text: DOI OpenURL
Zlatanov, Boyan Coupled best proximity points for cyclic contractive maps and their applications. (English) Zbl 07370686 Fixed Point Theory 22, No. 1, 431-452 (2021). Reviewer: Andrzej Wiśnicki (Kraków) MSC: 47H10 41A25 54H25 46B20 PDF BibTeX XML Cite \textit{B. Zlatanov}, Fixed Point Theory 22, No. 1, 431--452 (2021; Zbl 07370686) Full Text: Link OpenURL
Nashine, Hemant Kumar; Ibrahim, Rabha W.; Agarwal, Ravi P. Moments solution of fractional evolution equation found by new Krasnoselskii type fixed point theorems. (English) Zbl 1469.35229 Fixed Point Theory 22, No. 1, 263-278 (2021). MSC: 35R11 35K90 47H10 44A45 PDF BibTeX XML Cite \textit{H. K. Nashine} et al., Fixed Point Theory 22, No. 1, 263--278 (2021; Zbl 1469.35229) Full Text: Link OpenURL
Andres, Jan; Fišer, Jiří; Górniewicz, Lech Fixed points and sets of multivalued contractions: an advanced survey with some new results. (English) Zbl 07370659 Fixed Point Theory 22, No. 1, 15-30 (2021). MSC: 47Hxx 28A80 47H09 47H10 54C60 55M15 PDF BibTeX XML Cite \textit{J. Andres} et al., Fixed Point Theory 22, No. 1, 15--30 (2021; Zbl 07370659) Full Text: Link OpenURL
Rehman, Saif Ur; Khan, Sami Ullah; Ghaffar, Abdul; Yao, Shao-Wen; Inc, Mustafa Some novel generalized strong coupled fixed point findings in cone metric spaces with application to integral equations. (English) Zbl 07365473 J. Funct. Spaces 2021, Article ID 5541981, 9 p. (2021). Reviewer: Zoran Kadelburg (Beograd) MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{S. U. Rehman} et al., J. Funct. Spaces 2021, Article ID 5541981, 9 p. (2021; Zbl 07365473) Full Text: DOI OpenURL
Majani, H.; Zaer Soleimani, R.; Izadi, J. Coupled fixed point results for \(T\)-contractions on \(\mathcal{F}\)-metric spaces and an application. (English) Zbl 1474.54197 J. Linear Topol. Algebra 10, No. 1, 1-10 (2021). MSC: 54H25 54E50 54A20 47H10 PDF BibTeX XML Cite \textit{H. Majani} et al., J. Linear Topol. Algebra 10, No. 1, 1--10 (2021; Zbl 1474.54197) Full Text: Link OpenURL
Kabaivanov, Stanimir; Zlatanov, Boyan A variational principle, coupled fixed points and market equilibrium. (English) Zbl 07357592 Nonlinear Anal., Model. Control 26, No. 1, 169-185 (2021). Reviewer: Mircea Balaj (Oradea) MSC: 47N10 54H25 91B50 PDF BibTeX XML Cite \textit{S. Kabaivanov} and \textit{B. Zlatanov}, Nonlinear Anal., Model. Control 26, No. 1, 169--185 (2021; Zbl 07357592) Full Text: DOI OpenURL
Choudhury, Binayak S.; Metiya, Nikhilesh; Kundu, Sunirmal Existence, uniqueness and well-posedness results for relation theoretic coupled fixed points problem using \(\mathbf{C}\)-class function with some consequences and an application. (English) Zbl 1473.54048 J. Anal. 29, No. 1, 227-245 (2021). Reviewer: Memudu Olaposi Olatinwo (Ile-Ife) MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{B. S. Choudhury} et al., J. Anal. 29, No. 1, 227--245 (2021; Zbl 1473.54048) Full Text: DOI OpenURL
Choudhury, Binayak S.; Metiya, Nikhilesh; Kundu, Sunirmal Existence, well-posedness of coupled fixed points and application to nonlinear integral equations. (English) Zbl 1465.54030 Cubo 23, No. 1, 171-190 (2021). Reviewer: Zoran D. Mitrović (Banja Luka) MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{B. S. Choudhury} et al., Cubo 23, No. 1, 171--190 (2021; Zbl 1465.54030) Full Text: DOI OpenURL
Seshagiri, Rao N.; Kalyani, K. On some coupled fixed point theorems with rational expressions in partially ordered metric spaces. (English) Zbl 1474.54249 Sahand Commun. Math. Anal. 18, No. 1, 123-136 (2021). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{R. N. Seshagiri} and \textit{K. Kalyani}, Sahand Commun. Math. Anal. 18, No. 1, 123--136 (2021; Zbl 1474.54249) Full Text: DOI OpenURL
Khazou, Mohamed; Taoudi, Mohamed Aziz Existence and uniqueness of fixed points for monotone operators in partially ordered Banach spaces and applications. (English) Zbl 07328302 J. Fixed Point Theory Appl. 23, No. 2, Paper No. 12, 26 p. (2021). MSC: 47H10 47H07 34B15 34C12 45N05 PDF BibTeX XML Cite \textit{M. Khazou} and \textit{M. A. Taoudi}, J. Fixed Point Theory Appl. 23, No. 2, Paper No. 12, 26 p. (2021; Zbl 07328302) Full Text: DOI OpenURL
Wang, Hui; Zhang, Lingling Uniqueness methods for the higher-order coupled fractional differential systems with multi-point boundary conditions. (English) Zbl 1461.34043 Bull. Sci. Math. 166, Article ID 102935, 31 p. (2021). Reviewer: Syed Abbas (Mandi) MSC: 34B08 34B10 47N20 PDF BibTeX XML Cite \textit{H. Wang} and \textit{L. Zhang}, Bull. Sci. Math. 166, Article ID 102935, 31 p. (2021; Zbl 1461.34043) Full Text: DOI OpenURL
Siva Prasad, N.; Ratna Babu, D.; Amarendra Babu, V. Common coupled fixed points of generalized contraction maps in \(b\)-metric spaces. (English) Zbl 1474.54260 Electron. J. Math. Anal. Appl. 9, No. 1, 131-150 (2021). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{N. Siva Prasad} et al., Electron. J. Math. Anal. Appl. 9, No. 1, 131--150 (2021; Zbl 1474.54260) Full Text: Link OpenURL
Gopi, Raju; Pragadeeswarar, Veerasamy; Park, Choonkil; Shin, Dong Yun Coupled common best proximity point theorems for nonlinear contractions in partially ordered metric spaces. (English) Zbl 07515110 AIMS Math. 5, No. 6, 6913-6928 (2020). MSC: 47H10 47H09 54H25 PDF BibTeX XML Cite \textit{R. Gopi} et al., AIMS Math. 5, No. 6, 6913--6928 (2020; Zbl 07515110) Full Text: DOI OpenURL
Luo, Danfeng; Zada, Akbar; Shaleena, Shaleena; Ahmad, Manzoor Analysis of a coupled system of fractional differential equations with non-separated boundary conditions. (English) Zbl 07507620 Adv. Difference Equ. 2020, Paper No. 590, 23 p. (2020). MSC: 26A33 34A08 34B27 PDF BibTeX XML Cite \textit{D. Luo} et al., Adv. Difference Equ. 2020, Paper No. 590, 23 p. (2020; Zbl 07507620) Full Text: DOI OpenURL
Afshari, Hojjat; Jarad, Fahd; Abdeljawad, Thabet On a new fixed point theorem with an application on a coupled system of fractional differential equations. (English) Zbl 07506565 Adv. Difference Equ. 2020, Paper No. 461, 13 p. (2020). MSC: 39-XX 34-XX PDF BibTeX XML Cite \textit{H. Afshari} et al., Adv. Difference Equ. 2020, Paper No. 461, 13 p. (2020; Zbl 07506565) Full Text: DOI OpenURL
Choudhury, Binayak S.; Metiya, Nikhilesh; Kundu, Sunirmal Existence, data-dependence and stability of coupled fixed point sets of some multivalued operators. (English) Zbl 1483.54027 Chaos Solitons Fractals 133, Article ID 109678, 7 p. (2020). MSC: 54H25 54C60 54E40 54F05 PDF BibTeX XML Cite \textit{B. S. Choudhury} et al., Chaos Solitons Fractals 133, Article ID 109678, 7 p. (2020; Zbl 1483.54027) Full Text: DOI OpenURL
Tijani, K. R.; Olatinwo, M. O. Some coupled fixed point Theorems for mappings satisfying rational type contractive conditions in partially ordered metric spaces. (English) Zbl 07479384 JP J. Fixed Point Theory Appl. 15, No. 1, 19-43 (2020). MSC: 47H06 54H25 PDF BibTeX XML Cite \textit{K. R. Tijani} and \textit{M. O. Olatinwo}, JP J. Fixed Point Theory Appl. 15, No. 1, 19--43 (2020; Zbl 07479384) Full Text: DOI OpenURL
Ahamad, Israr; Shah, Kamal; Abdeljawad, Thabet; Jarad, Fahd Qualitative study of nonlinear coupled pantograph differential equations of fractional order. (English) Zbl 07468627 Fractals 28, No. 8, Article ID 2040045, 11 p. (2020). MSC: 34K37 34K27 PDF BibTeX XML Cite \textit{I. Ahamad} et al., Fractals 28, No. 8, Article ID 2040045, 11 p. (2020; Zbl 07468627) Full Text: DOI OpenURL
Padcharoen, Anantachai; Sombut, Kamonrat Modified inertial double Mann type iterative algorithm for a bivariate weakly nonexpansive operator. (English) Zbl 07445664 Carpathian J. Math. 36, No. 1, 127-139 (2020). MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{A. Padcharoen} and \textit{K. Sombut}, Carpathian J. Math. 36, No. 1, 127--139 (2020; Zbl 07445664) Full Text: DOI OpenURL
Wairojjana, Nopparat; Rehman, Habib ur; Abdullahi, Muhammad Sirajo; Pakkaranang, Nuttapol Fixed point theorems for Meir-Keeler condensing operators in partially ordered Banach spaces. (English) Zbl 1482.47106 Thai J. Math. 18, No. 1, 77-93 (2020). MSC: 47H10 47H08 PDF BibTeX XML Cite \textit{N. Wairojjana} et al., Thai J. Math. 18, No. 1, 77--93 (2020; Zbl 1482.47106) Full Text: Link OpenURL
Abbas, Saïd; Ahmad, Bashir; Benchohra, Mouffak; Ntouyas, Sotiris Weak solutions for Caputo-Pettis fractional \(q\)-difference inclusions. (English) Zbl 07441109 Fract. Differ. Calc. 10, No. 1, 141-152 (2020). MSC: 34A08 26A33 PDF BibTeX XML Cite \textit{S. Abbas} et al., Fract. Differ. Calc. 10, No. 1, 141--152 (2020; Zbl 07441109) Full Text: DOI OpenURL
Magdaş, Adrian Coupled fixed points and coupled best proximity points for cyclic Ćirić type operators. (English) Zbl 1482.54067 Arab J. Math. Sci. 26, No. 1-2, 179-196 (2020). MSC: 54H25 54E40 54E50 54C60 PDF BibTeX XML Cite \textit{A. Magdaş}, Arab J. Math. Sci. 26, No. 1--2, 179--196 (2020; Zbl 1482.54067) Full Text: DOI OpenURL
Amini, Kheghat; Hosseinzadeh, Hasan; Vakilabad, Ali Bagheri; Abazari, Rasoul Coupled fixed point theorems on FLM algebras. (English) Zbl 07367393 Honam Math. J. 42, No. 3, 501-510 (2020). Reviewer: Mewomo Oluwatosin Temitope (Durban) MSC: 47H10 PDF BibTeX XML Cite \textit{K. Amini} et al., Honam Math. J. 42, No. 3, 501--510 (2020; Zbl 07367393) Full Text: DOI OpenURL
Hosseinzadeh, Hasan Some fixed point theorems in generalized metric spaces endowed with vector-valued metrics and application in linear and nonlinear matrix equations. (English) Zbl 1474.54165 Sahand Commun. Math. Anal. 17, No. 2, 37-53 (2020). MSC: 54H25 54E40 54F05 47H07 15A24 PDF BibTeX XML Cite \textit{H. Hosseinzadeh}, Sahand Commun. Math. Anal. 17, No. 2, 37--53 (2020; Zbl 1474.54165) Full Text: DOI OpenURL
Kishore, Gagula Naveen Venkata; Rao, Bagathi Srinuvasa; Radenovic, Stojan; Huang, Huaping Caristi type cyclic contraction and coupled fixed point results in bipolar metric spaces. (English) Zbl 1474.54185 Sahand Commun. Math. Anal. 17, No. 1, 1-22 (2020). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{G. N. V. Kishore} et al., Sahand Commun. Math. Anal. 17, No. 1, 1--22 (2020; Zbl 1474.54185) Full Text: DOI OpenURL
Ahmad, Manzoor; Zada, Akbar; Wang, Xiaoming Existence, uniqueness and stability of implicit switched coupled fractional differential equations of \(\psi \)-Hilfer type. (English) Zbl 07336601 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 3-4, 327-337 (2020). MSC: 26A33 34A08 34B27 PDF BibTeX XML Cite \textit{M. Ahmad} et al., Int. J. Nonlinear Sci. Numer. Simul. 21, No. 3--4, 327--337 (2020; Zbl 07336601) Full Text: DOI OpenURL
Rao, N. Seshagiri; Kalyani, Karusala Generalized contractions to coupled fixed point theorems in partially ordered metric spaces. (English) Zbl 07334109 J. Sib. Fed. Univ., Math. Phys. 13, No. 4, 492-502 (2020). MSC: 54Hxx 54Cxx PDF BibTeX XML Cite \textit{N. S. Rao} and \textit{K. Kalyani}, J. Sib. Fed. Univ., Math. Phys. 13, No. 4, 492--502 (2020; Zbl 07334109) Full Text: DOI MNR OpenURL
Abbas, Saïd; Al Arifi, Nassir; Benchohra, Mouffak; Henderson, Johnny Coupled Hilfer and Hadamard random fractional differential systems with finite delay in generalized Banach spaces. (English) Zbl 07332056 Differ. Equ. Appl. 12, No. 4, 337-353 (2020). MSC: 34K37 34K30 34K50 47N20 26A33 PDF BibTeX XML Cite \textit{S. Abbas} et al., Differ. Equ. Appl. 12, No. 4, 337--353 (2020; Zbl 07332056) Full Text: DOI OpenURL
Mohanty, R. K.; Manchanda, Geetan; Khurana, Gunjan; Khan, Arshad A new third order exponentially fitted discretization for the solution of non-linear two point boundary value problems on a graded mesh. (English) Zbl 07331977 J. Appl. Anal. Comput. 10, No. 5, 1741-1770 (2020). MSC: 65L10 65L12 65L20 PDF BibTeX XML Cite \textit{R. K. Mohanty} et al., J. Appl. Anal. Comput. 10, No. 5, 1741--1770 (2020; Zbl 07331977) Full Text: DOI OpenURL
Birba, Mamadou; Traoré, Oumar Null controllability of a system of degenerate nonlinear coupled equations derived from population dynamics. (English) Zbl 1460.35211 Seck, Diaraf (ed.) et al., Nonlinear analysis, geometry and applications. Proceedings of the first biennial international research symposium, NLAGA-BIRS, Dakar, Senegal, June 24–28, 2019. Cham: Birkhäuser. Trends Math., 35-66 (2020). MSC: 35K65 35K51 35K58 92D25 93B05 93B07 93C05 93C20 PDF BibTeX XML Cite \textit{M. Birba} and \textit{O. Traoré}, in: Nonlinear analysis, geometry and applications. Proceedings of the first biennial international research symposium, NLAGA-BIRS, Dakar, Senegal, June 24--28, 2019. Cham: Birkhäuser. 35--66 (2020; Zbl 1460.35211) Full Text: DOI OpenURL
Seshagiri Rao, N.; Kalyani, K. Coupled fixed point theorems with rational expressions in partially ordered metric spaces. (English) Zbl 1455.54037 J. Anal. 28, No. 4, 1085-1095 (2020). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{N. Seshagiri Rao} and \textit{K. Kalyani}, J. Anal. 28, No. 4, 1085--1095 (2020; Zbl 1455.54037) Full Text: DOI OpenURL
Pathak, Rohit Coupled fixed point theorem for hybrid pairs of mappings under \(\varphi-\psi\) contraction in fuzzy metric spaces. (English) Zbl 1474.54216 Jordan J. Math. Stat. 13, No. 1, 1-15 (2020). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{R. Pathak}, Jordan J. Math. Stat. 13, No. 1, 1--15 (2020; Zbl 1474.54216) Full Text: Link OpenURL
Ahmad, Bashir; Alghanmi, Madeaha; Alsaedi, Ahmed Existence results for a nonlinear coupled system involving both Caputo and Riemann-Liouville generalized fractional derivatives and coupled integral boundary conditions. (English) Zbl 1462.34009 Rocky Mt. J. Math. 50, No. 6, 1901-1922 (2020). Reviewer: Mohammed Kaabar (Gelugor) MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Rocky Mt. J. Math. 50, No. 6, 1901--1922 (2020; Zbl 1462.34009) Full Text: DOI Euclid OpenURL
Hu, Pin; Gu, Feng Some coupled coincidence point theorems in partially ordered Menger PSM-space. (Chinese. English summary) Zbl 1474.54166 Math. Appl. 33, No. 3, 733-746 (2020). MSC: 54H25 54E70 54F05 PDF BibTeX XML Cite \textit{P. Hu} and \textit{F. Gu}, Math. Appl. 33, No. 3, 733--746 (2020; Zbl 1474.54166) OpenURL
Peng, Zhongqi; Li, Yuan; Xue, Yimin Two positive solutions of boundary value problem for a class of coupled system of nonlinear fractional differential equations. (Chinese. English summary) Zbl 1463.34020 J. Jilin Univ., Sci. 58, No. 4, 775-781 (2020). MSC: 34A08 34B18 34B27 47N20 PDF BibTeX XML Cite \textit{Z. Peng} et al., J. Jilin Univ., Sci. 58, No. 4, 775--781 (2020; Zbl 1463.34020) Full Text: DOI OpenURL
Wang, Hailong; Guo, Cuihua The small global solution for the coupled \(2m\)th-order nonlinear system on real index Sobolev space. (Chinese. English summary) Zbl 1463.35045 J. Jiangxi Norm. Univ., Nat. Sci. Ed. 44, No. 3, 263-268 (2020). MSC: 35B08 35Q55 PDF BibTeX XML Cite \textit{H. Wang} and \textit{C. Guo}, J. Jiangxi Norm. Univ., Nat. Sci. Ed. 44, No. 3, 263--268 (2020; Zbl 1463.35045) Full Text: DOI OpenURL
Chifu, C.; Karapinar, E.; Petrusel, G. Fixed point results in \(\varepsilon\)-chainable complete \(b\)-metric spaces. (English) Zbl 07285137 Fixed Point Theory 21, No. 2, 453-464 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{C. Chifu} et al., Fixed Point Theory 21, No. 2, 453--464 (2020; Zbl 07285137) Full Text: Link OpenURL
Tian, Jingfeng; Hu, Ximei; O’Regan, Donal On \(\psi \)-contractions and common fixed point results in probabilistic metric spaces. (English) Zbl 1454.54036 Fixed Point Theory 21, No. 1, 319-338 (2020). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 47H10 54E70 PDF BibTeX XML Cite \textit{J. Tian} et al., Fixed Point Theory 21, No. 1, 319--338 (2020; Zbl 1454.54036) Full Text: Link OpenURL
Ahmad, Israr; Shah, Kamal; Rahman, Ghaus Ur; Baleanu, Dumitru Stability analysis for a nonlinear coupled system of fractional hybrid delay differential equations. (English) Zbl 1457.34114 Math. Methods Appl. Sci. 43, No. 15, 8669-8682 (2020). MSC: 34K37 34K27 47N20 PDF BibTeX XML Cite \textit{I. Ahmad} et al., Math. Methods Appl. Sci. 43, No. 15, 8669--8682 (2020; Zbl 1457.34114) Full Text: DOI OpenURL
Olatinwo, M. O.; Tijani, K. R. Some results on stability of coupled fixed point iterations in metric spaces. (English) Zbl 1461.54098 J. Adv. Math. Stud. 13, No. 2, 169-178 (2020). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{M. O. Olatinwo} and \textit{K. R. Tijani}, J. Adv. Math. Stud. 13, No. 2, 169--178 (2020; Zbl 1461.54098) Full Text: Link OpenURL
Baghani, Hamid; Alzabut, Jehad; Farokhi-Ostad, Javad; Nieto, Juan J. Existence and uniqueness of solutions for a coupled system of sequential fractional differential equations with initial conditions. (English) Zbl 1455.34004 J. Pseudo-Differ. Oper. Appl. 11, No. 4, 1731-1741 (2020). MSC: 34A08 34A12 34A45 47N20 PDF BibTeX XML Cite \textit{H. Baghani} et al., J. Pseudo-Differ. Oper. Appl. 11, No. 4, 1731--1741 (2020; Zbl 1455.34004) Full Text: DOI OpenURL
Xue, Yimin; Peng, Zhongqi On the existence of positive solutions to the coupled system of a class of nonlinear fractional differential equations. (Chinese. English summary) Zbl 1463.34109 J. South China Norm. Univ., Nat. Sci. Ed. 52, No. 2, 102-106 (2020). MSC: 34B18 34A08 34B27 47N20 PDF BibTeX XML Cite \textit{Y. Xue} and \textit{Z. Peng}, J. South China Norm. Univ., Nat. Sci. Ed. 52, No. 2, 102--106 (2020; Zbl 1463.34109) Full Text: DOI OpenURL
Prajisha, E.; Shaini, P. Coupled coincidence point theorems of mappings in partially ordered metric spaces. (English) Zbl 1474.54222 J. Nonlinear Anal. Optim. 11, No. 1, 29-40 (2020). MSC: 54H25 54E40 54F05 PDF BibTeX XML Cite \textit{E. Prajisha} and \textit{P. Shaini}, J. Nonlinear Anal. Optim. 11, No. 1, 29--40 (2020; Zbl 1474.54222) Full Text: Link OpenURL
Derbazi, C.; Baitiche, Z. Coupled systems of \(\psi\)-Caputo differential equations with initial conditions in Banach spaces. (English) Zbl 1453.34005 Mediterr. J. Math. 17, No. 5, Paper No. 169, 12 p. (2020). MSC: 34A08 34G20 34A12 26A33 47N20 PDF BibTeX XML Cite \textit{C. Derbazi} and \textit{Z. Baitiche}, Mediterr. J. Math. 17, No. 5, Paper No. 169, 12 p. (2020; Zbl 1453.34005) Full Text: DOI OpenURL
Coroian, Iulia Fixed point and extended coupled fixed point theorems for multi-valued contractions with respect to the Pompeiu functional. (English) Zbl 1474.54143 Miskolc Math. Notes 21, No. 1, 143-160 (2020). MSC: 54H25 54E40 54C60 39B82 PDF BibTeX XML Cite \textit{I. Coroian}, Miskolc Math. Notes 21, No. 1, 143--160 (2020; Zbl 1474.54143) Full Text: DOI OpenURL
Su, Lingling; Chen, Stephen; Wang, Jun-Min; Krstic, Miroslav Stabilization of a \(2 \times 2\) system of hyperbolic PDEs with recirculation in the unactuated channel. (English) Zbl 1448.93143 Automatica 120, Article ID 109147, 14 p. (2020). MSC: 93C20 93D23 93B52 PDF BibTeX XML Cite \textit{L. Su} et al., Automatica 120, Article ID 109147, 14 p. (2020; Zbl 1448.93143) Full Text: DOI OpenURL
Dang, Quang A.; Ngo, T. Kim Quy Existence results and iterative method for solving systems of beams equations. (English) Zbl 1454.34046 East-West J. Math. 22, No. 1, 30-51 (2020). Reviewer: Sergey Smirnov (Daugavpils) MSC: 34B15 34B27 34A45 47N20 PDF BibTeX XML Cite \textit{Q. A. Dang} and \textit{T. K. Q. Ngo}, East-West J. Math. 22, No. 1, 30--51 (2020; Zbl 1454.34046) Full Text: DOI Link OpenURL
Balraj, Duraisamy; Marudai, Muthaiah; Mitrovic, Zoran D.; Ege, Ozgur; Piramanantham, Veeraraghavan Existence of best proximity points satisfying two constraint inequalities. (English) Zbl 07249484 Electron Res. Arch. 28, No. 1, 549-557 (2020). MSC: 47H09 47H10 PDF BibTeX XML Cite \textit{D. Balraj} et al., Electron Res. Arch. 28, No. 1, 549--557 (2020; Zbl 07249484) Full Text: DOI OpenURL
Gabeleh, Moosa; Künzi, Hans-Peter A. Mappings of generalized condensing type in metric spaces with Busemann convex structure. (English) Zbl 1447.53063 Bull. Iran. Math. Soc. 46, No. 5, 1465-1483 (2020). MSC: 53C70 53C22 47H09 34A12 PDF BibTeX XML Cite \textit{M. Gabeleh} and \textit{H.-P. A. Künzi}, Bull. Iran. Math. Soc. 46, No. 5, 1465--1483 (2020; Zbl 1447.53063) Full Text: DOI OpenURL
Nantadilok, Jamnian; Jisabuy, Wichai Further investigation on coupled best proximity point results of some proximal contractive multivalued mappings. (Further investiagation on coupled best proximity point results of some proximal contractive multivalued mappings.) (English) Zbl 1440.54039 Nonlinear Funct. Anal. Appl. 25, No. 2, 383-399 (2020). MSC: 54H25 54C60 54E40 PDF BibTeX XML Cite \textit{J. Nantadilok} and \textit{W. Jisabuy}, Nonlinear Funct. Anal. Appl. 25, No. 2, 383--399 (2020; Zbl 1440.54039) Full Text: Link OpenURL
Swamy, K. Kumara; Phaneendra, T. Common coupled fixed point in a partially ordered \(b\)-metric space. (English) Zbl 1446.54032 Nonlinear Funct. Anal. Appl. 25, No. 2, 371-382 (2020). MSC: 54H25 PDF BibTeX XML Cite \textit{K. K. Swamy} and \textit{T. Phaneendra}, Nonlinear Funct. Anal. Appl. 25, No. 2, 371--382 (2020; Zbl 1446.54032) Full Text: Link OpenURL
Bota, Monica-Felicia; Guran, Liliana; Petruşel, Adrian New fixed point theorems on \(b\)-metric spaces with applications to coupled fixed point theory. (English) Zbl 07240948 J. Fixed Point Theory Appl. 22, No. 3, Paper No. 74, 14 p. (2020). MSC: 47H10 54H25 46T99 PDF BibTeX XML Cite \textit{M.-F. Bota} et al., J. Fixed Point Theory Appl. 22, No. 3, Paper No. 74, 14 p. (2020; Zbl 07240948) Full Text: DOI OpenURL
Saha, P.; Guria, S.; Choudhury, Binayak S.; Das, Pradyut Solution of a fuzzy global optimization problem by fixed point methodology using a weak coupled contraction. (English) Zbl 1436.90181 Soft Comput. 24, No. 6, 4121-4129 (2020). MSC: 90C70 90C26 PDF BibTeX XML Cite \textit{P. Saha} et al., Soft Comput. 24, No. 6, 4121--4129 (2020; Zbl 1436.90181) Full Text: DOI OpenURL
Ghasab, E. Lotfali; Majani, H.; Soleimani Rad, G. Integral type contraction and coupled fixed point theorems in ordered \(G\)-metric spaces. (English) Zbl 1442.54036 J. Linear Topol. Algebra 9, No. 2, 113-120 (2020). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{E. L. Ghasab} et al., J. Linear Topol. Algebra 9, No. 2, 113--120 (2020; Zbl 1442.54036) Full Text: Link OpenURL
Shukri, S. Existence and convergence of best proximity points in \( \mathrm{CAT}_\mathrm{p}(0)\) spaces. (English) Zbl 1435.54034 J. Fixed Point Theory Appl. 22, No. 2, Paper No. 48, 10 p. (2020). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{S. Shukri}, J. Fixed Point Theory Appl. 22, No. 2, Paper No. 48, 10 p. (2020; Zbl 1435.54034) Full Text: DOI OpenURL
Işık, Hüseyin; Park, Choonkil Existence of a common solution to systems of integral equations via fixed point results. (English) Zbl 1435.54024 Open Math. 18, 249-261 (2020). MSC: 54H25 54E40 54E50 54F05 45G15 PDF BibTeX XML Cite \textit{H. Işık} and \textit{C. Park}, Open Math. 18, 249--261 (2020; Zbl 1435.54024) Full Text: DOI OpenURL
Rohen, Yumnam; Mlaiki, Nabil Tripled best proximity point in complete metric spaces. (English) Zbl 1435.54031 Open Math. 18, 204-210 (2020). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{Y. Rohen} and \textit{N. Mlaiki}, Open Math. 18, 204--210 (2020; Zbl 1435.54031) Full Text: DOI OpenURL
Dhivya, P.; Marudai, M. New \(\alpha \)-coupled fixed point theorem for \(\theta \)-contraction and its application to a class of systems of functional equations arising in dynamic programming. (English) Zbl 07210519 Asian-Eur. J. Math. 13, No. 3, Article ID 2050063, 8 p. (2020). MSC: 47H10 37C25 54H25 55M20 PDF BibTeX XML Cite \textit{P. Dhivya} and \textit{M. Marudai}, Asian-Eur. J. Math. 13, No. 3, Article ID 2050063, 8 p. (2020; Zbl 07210519) Full Text: DOI OpenURL