×

Bootstrapping kernel intensity estimation for inhomogeneous point processes with spatial covariates. (English) Zbl 1504.60076

Summary: The bias-variance trade-off for inhomogeneous point processes with covariates is theoretically and empirically addressed. A consistent kernel estimator for the first-order intensity function based on covariates is constructed, which uses a convenient relationship between the intensity and the density of events location. The asymptotic bias and variance of the estimator are derived and hence the expression of its infeasible optimal bandwidth. Three data-driven bandwidth selectors are proposed to estimate the optimal bandwidth. One of them is based on a new smooth bootstrap proposal which is proved to be consistent under a Poisson assumption. The other two are a rule-of-thumb method based on assuming normality, and a simple non-model-based approach. An extensive simulation study is accomplished considering Poisson and non-Poisson scenarios, and including a comparison with other competitors. The practicality of the new proposals is shown through an application to real data about wildfires in Canada, using meteorological covariates.

MSC:

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
62G07 Density estimation
62G09 Nonparametric statistical resampling methods

Software:

spatstat; pyuvdata; ks; INLA
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Babu, G. J.; Feigelson, E. D., Astrostatistics, Vol. 3 (1996), CRC Press · Zbl 0871.62104
[2] Baddeley, A.; Chang, Y. M.; Song, Y.; Turner, R., Nonparametric estimation of the dependence of a spatial point process on spatial covariates, Stat. Interface, 5, 221-236 (2012) · Zbl 1383.62094
[3] Baddeley, A.; Rubak, E.; Turner, R., Spatial Point Patterns: Methodology and Applications with R (2015), CRC Press
[4] Borrajo, M. I.; González-Manteiga, W.; Martínez-Miranda, M. D., Bandwidth selection for kernel density estimation for length-biased data, J. Nonparametr. Stat., 29, 3, 636-668 (2017) · Zbl 1416.62191
[5] Brooks, M. M.; Marron, J. S., Asymptotic optimality of the least-squares cross-validation bandwidth for kernel estimates of intensity functions, Stochastic Process. Appl., 38, 1, 157-165 (1991) · Zbl 0724.62084
[6] Cao, R., Bootstrapping the mean integrated squared error, J. Multivariate Anal., 45, 1, 137-160 (1993) · Zbl 0779.62038
[7] Chacón, J. E.; Duong, T., Multivariate Kernel Smoothing and its Applications (2018), Chapman and Hall/CRC · Zbl 1402.62003
[8] Cowling, A.; Hall, P.; Phillips, M. J., Bootstrap confidence regions for the intensity of a Poisson point process, J. Amer. Statist. Assoc., 91, 436, 1516-1524 (1996) · Zbl 0882.62078
[9] Cressie, N. A.C., Statistics for Spatial Data (1993), Wiley-Interscience
[10] Cronie, O.; van Lieshout, M. N.M., A non-model-based approach to bandwidth selection for kernel estimators of spatial intensity functions, Biometrika, 105, 2, 455-462 (2018) · Zbl 07072424
[11] Cucala, L., Espacements bidimensionnels et données entachés d’erreurs dans l’analyse des procesus ponctuels spatiaux (2006), Université des Sciences de Toulouse I, (Ph.D. thesis)
[12] Daley, D. J.; Vere-Jones, D., An Introduction to the Theory of Point Processes (1988), Springer Verlag · Zbl 0657.60069
[13] Di Iorio, T., Anello, F., Bommarito, C., Cacciani, M., Denjean, C., De Silvestri, L., Di Biagio, C., di Sarra, A., Ellul, R., Formenti, P., et al., 2013. Long range transport of smoke particles from canadian forest fires to the mediterranean basin during june 2013. In: AGU Fall Meeting Abstracts.
[14] Díaz-Avalos, C.; Juan, P.; Mateu, J., Significance tests for covariate-dependent trends in inhomogeneous spatio-temporal point processes, Stoch. Environ. Res. Risk Assess., 28, 3, 593-609 (2014)
[15] Diggle, P., A kernel method for smoothing point process data, J. R. Stat. Soc. Ser. C. Appl. Stat., 34, 2, 138-147 (1985) · Zbl 0584.62140
[16] Diggle, P. J., A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point, J. R. Stat. Soc. Ser. A, 153, 3, 349-362 (1990)
[17] Diggle, P. J., Statistical Analysis of Spatial and Spatio-Temporal Point Patterns (2013), CRC Press
[18] Diggle, P.; Marron, J. S., Equivalence of smoothing parameter selectors in density and intensity estimation, J. Amer. Statist. Assoc., 83, 793-800 (1988) · Zbl 0662.62036
[19] Duong, T., 2017. ks: Kernel smoothing. R package version 1.10.5. https://CRAN.R-project.org/package=ks.
[20] Duong, T.; Hazelton, M., Plug-in bandwidth matrices for bivariate kernel density estimation, J. Nonparametr. Stat., 15, 1, 17-30 (2003) · Zbl 1019.62032
[21] Federer, H., Geometric measure theory, (Die Grundlehren der Mathematischen Wissenschaften, Vol. 153 (1969), Springer-Verlag: Springer-Verlag New York Inc) · Zbl 0176.00801
[22] Flannigan, M.; Harrington, J., A study of the relation of meteorological variables to monthly provincial area burned by wildfire in canada (1953-80), J. Appl. Meteorol., 27, 4, 441-452 (1988)
[23] Fuentes-Santos, I.; González-Manteiga, W.; Mateu, J., Consistent smooth bootstrap kernel intensity estimation for inhomogeneous spatial Poisson point processes, Scand. J. Stat., 43, 2, 416-435 (2015) · Zbl 1382.60073
[24] Gatrell, A. C.; Bailey, T. C.; Diggle, P. J.; Rowlingson, B. S., Spatial point pattern analysis and its application in geographical epidemiology, Trans. Inst. Br. Geogr., 21, 1, 256-274 (1996)
[25] Guan, Y., On consistent nonparametric intensity estimation for inhomogeneous spatial point processes, J. Amer. Statist. Assoc., 103, 483, 1238-1247 (2008) · Zbl 1205.62139
[26] Guan, Y.; Loh, J. M., A thinned block bootstrap variance estimation procedure for inhomogeneous spatial point patterns, J. Amer. Statist. Assoc., 102, 480, 1377-1386 (2007) · Zbl 1332.62108
[27] Guan, Y.; Shen, Y., A weighted estimating equation approach for inhomogeneous spatial point processes, Biometrika, 97, 4, 867-880 (2010) · Zbl 1204.62149
[28] Illian, J. B.; Møller, J.; Waagepetersen, R. P., Hierarchical spatial point process analysis for a plant community with high biodiversity, Environ. Ecol. Stat., 16, 3, 389-405 (2009)
[29] Illian, J. B.; Penttinen, A.; Stoyan, H.; Stoyan, D., Statistical Analysis and Modelling of Spatial Point Patterns (2008), John Wiley & Sons · Zbl 1197.62135
[30] Illian, J. B.; Sørbye, S. H.; Rue, H., A toolbox for fitting complex spatial point process models using integrated nested laplace approximation (INLA), Ann. Appl. Stat., 6, 4, 1499-1530 (2012) · Zbl 1257.62093
[31] Kerscher, M., Statistical analysis of large-scale structure in the universe, (Statistical Physics and Spatial Statistics, Vol. 554 (2000), Springer), 36-71
[32] Klemelä, J. S., Smoothing of Multivariate Data: Density Estimation and Visualization, Vol. 737 (2009), John Wiley and Sons · Zbl 1218.62027
[33] Law, R.; Illian, J.; Burslem, D. F.; Gratzer, G.; Gunatilleke, C.; Gunatilleke, I., Ecological information from spatial patterns of plants: insights from point process theory, J. Ecol., 97, 4, 616-628 (2009)
[34] Marron, J. S., Automatic smoothing parameter selection: a survey, Empir. Econom., 13, 3-4, 187-208 (1988)
[35] Moller, J.; Waagepetersen, R. P., Statistical Inference and Simulation for Spatial Point Processes (2003), CRC Press · Zbl 1039.62089
[36] Mrkvicka, T.; Muska, M.; Kubecka, J., Two step estimation for Neyman-Scott point process with inhomogeneous cluster centers, Statist. Comput., 24, 1, 91-100 (2014) · Zbl 1325.62077
[37] Ogata, Y., Statistical models for earthquake occurrences and residual analysis for point processes, J. Am. Stat. Assoc., 83, 401, 9-27 (1988)
[38] Ogata, Y., Space-time point-process models for earthquake occurrences, Ann. Inst. Statist. Math., 50, 2, 379-402 (1998) · Zbl 0947.62061
[39] Ogata, Y.; Zhuang, J., Space-time etas models and an improved extension, Tectonophysics, 413, 1, 13-23 (2006)
[40] Parzen, E., On estimation of a probability density function and mode, Ann. Math. Stat., 33, 3, 1065-1076 (1962) · Zbl 0116.11302
[41] Reiss, R. D., A Course on Point Processes (2012), Springer Science & Business Media · Zbl 0771.60037
[42] Rogers, B.; Randerson, J.; Bonan, G., High-latitude cooling associated with landscape changes from north american boreal forest fires, Biogeosciences, 10, 2, 699-718 (2013)
[43] Rosenblatt, M., Remarks on some nonparametric estimates of a density function, Ann. Math. Stat., 27, 3, 832-837 (1956) · Zbl 0073.14602
[44] Schoenberg, F. P., Consistent parametric estimation of the intensity of a spatial-temporal point process, J. Statist. Plann. Inference, 128, 1, 79-93 (2005) · Zbl 1058.62069
[45] Schoenberg, F. P., Multidimensional residual analysis of point process models for earthquake occurrences, J. Amer. Statist. Assoc., 98, 789-795 (2011)
[46] Scott, D. W., Multivariate Density Estimation: Theory, Practice and Visualisation (1992), Wiley · Zbl 0850.62006
[47] Scott, D. W., Multivariate Density Estimation: Theory, Practice, and Visualization (2015), John Wiley and Sons · Zbl 1311.62004
[48] Silverman, B. W., Density Estimation for Statistics and Data Analysis (1986), CRC press · Zbl 0617.62042
[49] Stoyan, D.; Penttinen, A., Recent applications of point process methods in forestry statistics, Statist. Sci., 15, 1, 61-78 (2000)
[50] Van Lieshout, M., Markov Point Processes and their Applications (2000), World Scientific · Zbl 0968.60005
[51] Waagepetersen, R. P., An estimating function approach to inference for inhomogeneous Neyman-Scott processes, Biometrics, 63, 1, 252-258 (2007) · Zbl 1122.62073
[52] Walter, C., Freitas, S., Kraut, I., Rieger, D., Vogel, H., Vogel, B., 2014. Influence of 2010 canadian forest fires on cloud formation on the regional scale. In: AGU Fall Meeting Abstracts.
[53] Yue, Y. R.; Loh, J. M., Bayesian semiparametric intensity estimation for inhomogeneous spatial point processes, Biometrics, 67, 3, 937-946 (2011) · Zbl 1226.62091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.