Gao, Qian; He, Xiaoming Normalized solutions for Schrödinger-Poisson systems involving critical Sobolev exponents. (English) Zbl 07904892 J. Geom. Anal. 34, No. 10, Paper No. 296, 49 p. (2024). MSC: 35J47 35J61 35B33 35A01 PDFBibTeX XMLCite \textit{Q. Gao} and \textit{X. He}, J. Geom. Anal. 34, No. 10, Paper No. 296, 49 p. (2024; Zbl 07904892) Full Text: DOI
Liang, Sihua; Pucci, Patrizia; Sun, Xueqi Normalized solutions for critical Schrödinger-Poisson system involving the \(p\)-subLaplacian in the Heisenberg group. (English) Zbl 07901127 Appl. Math. Lett. 158, Article ID 109245, 5 p. (2024). MSC: 35J57 35J62 35R03 35A01 PDFBibTeX XMLCite \textit{S. Liang} et al., Appl. Math. Lett. 158, Article ID 109245, 5 p. (2024; Zbl 07901127) Full Text: DOI
Wang, Ying; Yuan, Rong; Zhang, Ziheng Positive solutions for Kirchhoff equation in exterior domains with small Sobolev critical perturbation. (English) Zbl 07893754 Complex Var. Elliptic Equ. 69, No. 8, 1281-1319 (2024). MSC: 35J62 35B33 35A01 35A15 PDFBibTeX XMLCite \textit{Y. Wang} et al., Complex Var. Elliptic Equ. 69, No. 8, 1281--1319 (2024; Zbl 07893754) Full Text: DOI
Dai, Ting-Ting; Ou, Zeng-Qi; Tang, Chun-Lei; Lv, Ying Positive solutions of Kirchhoff type problems with critical growth on exterior domains. (English) Zbl 07892772 Anal. Math. Phys. 14, No. 4, Paper No. 87, 32 p. (2024). MSC: 35J62 35B33 35A01 PDFBibTeX XMLCite \textit{T.-T. Dai} et al., Anal. Math. Phys. 14, No. 4, Paper No. 87, 32 p. (2024; Zbl 07892772) Full Text: DOI
Dietze, Charlotte; Nam, Phan Thành Hardy-Sobolev interpolation inequalities. (English) Zbl 07882887 Calc. Var. Partial Differ. Equ. 63, No. 7, Paper No. 184, 14 p. (2024). MSC: 35A23 35B33 35Q55 PDFBibTeX XMLCite \textit{C. Dietze} and \textit{P. T. Nam}, Calc. Var. Partial Differ. Equ. 63, No. 7, Paper No. 184, 14 p. (2024; Zbl 07882887) Full Text: DOI arXiv OA License
Yang, Chen; Yu, Shu-Bin; Tang, Chun-Lei Normalized solutions of non-autonomous Schrödinger equations involving Sobolev critical exponent. (English) Zbl 07880958 J. Geom. Anal. 34, No. 9, Paper No. 284, 38 p. (2024). MSC: 35Q55 35J20 35B33 35A01 35R01 49J20 PDFBibTeX XMLCite \textit{C. Yang} et al., J. Geom. Anal. 34, No. 9, Paper No. 284, 38 p. (2024; Zbl 07880958) Full Text: DOI
Dasgupta, Aparajita; Kumar, Vishvesh; Mondal, Shyam Swarup; Ruzhansky, Michael Semilinear damped wave equations on the Heisenberg group with initial data from Sobolev spaces of negative order. (English) Zbl 07879418 J. Evol. Equ. 24, No. 3, Paper No. 51, 35 p. (2024). MSC: 35R03 35L15 35L71 35A01 35B33 35B44 43A80 PDFBibTeX XMLCite \textit{A. Dasgupta} et al., J. Evol. Equ. 24, No. 3, Paper No. 51, 35 p. (2024; Zbl 07879418) Full Text: DOI arXiv OA License
Li, Qi; Wen, Shixin Sign-changing solutions of fractional Laplacian system with critical exponent. (English) Zbl 07871695 Math. Methods Appl. Sci. 47, No. 8, 6962-6989 (2024). MSC: 35R11 35J47 35J50 PDFBibTeX XMLCite \textit{Q. Li} and \textit{S. Wen}, Math. Methods Appl. Sci. 47, No. 8, 6962--6989 (2024; Zbl 07871695) Full Text: DOI
Eddine, Nabil Chems; Nguyen, Anh Tuan; Ragusa, Maria Alessandra The Dirichlet problem for a class of anisotropic Schrödinger-Kirchhoff-type equations with critical exponent. (English) Zbl 07868769 Math. Model. Anal. 29, No. 2, 254-267 (2024). MSC: 35B33 35D30 35J20 35J92 46E35 PDFBibTeX XMLCite \textit{N. C. Eddine} et al., Math. Model. Anal. 29, No. 2, 254--267 (2024; Zbl 07868769) Full Text: DOI
Vétois, Jérôme A note on the classification of positive solutions to the critical \(p\)-Laplace equation in \(\mathbb{R}^n\). (English) Zbl 1540.35230 Adv. Nonlinear Stud. 24, No. 3, 543-552 (2024). MSC: 35J92 35B33 PDFBibTeX XMLCite \textit{J. Vétois}, Adv. Nonlinear Stud. 24, No. 3, 543--552 (2024; Zbl 1540.35230) Full Text: DOI arXiv OA License
Liu, Mei-Qi; Zou, Wenming Normalized solutions for a Schrödinger system with critical Sobolev growth in \(\mathbb{R}^3\). (English) Zbl 07849105 Math. Nachr. 297, No. 5, 1694-1711 (2024). MSC: 35J47 35J61 35B33 35A01 35A15 PDFBibTeX XMLCite \textit{M.-Q. Liu} and \textit{W. Zou}, Math. Nachr. 297, No. 5, 1694--1711 (2024; Zbl 07849105) Full Text: DOI
Liu, Ting Construction of infinitely many solutions for fractional Schrödinger equation with double potentials. (English) Zbl 07845575 Z. Angew. Math. Phys. 75, No. 3, Paper No. 102, 24 p. (2024). MSC: 35R11 35B33 35J61 PDFBibTeX XMLCite \textit{T. Liu}, Z. Angew. Math. Phys. 75, No. 3, Paper No. 102, 24 p. (2024; Zbl 07845575) Full Text: DOI
Zhang, Jinguo Sub-elliptic systems involving critical Hardy-Sobolev exponents and sign-changing weight functions on Carnot groups. (English) Zbl 1535.35041 J. Nonlinear Var. Anal. 8, No. 2, 199-231 (2024). MSC: 35H20 35R03 35J70 22E30 PDFBibTeX XMLCite \textit{J. Zhang}, J. Nonlinear Var. Anal. 8, No. 2, 199--231 (2024; Zbl 1535.35041) Full Text: DOI
Shen, Yansheng A fractional Hardy-Sobolev type inequality with applications to nonlinear elliptic equations with critical exponent and Hardy potential. (English) Zbl 1537.35020 Discrete Contin. Dyn. Syst. 44, No. 7, 1901-1937 (2024). MSC: 35A23 35A15 35B33 35J92 35R11 PDFBibTeX XMLCite \textit{Y. Shen}, Discrete Contin. Dyn. Syst. 44, No. 7, 1901--1937 (2024; Zbl 1537.35020) Full Text: DOI
Wang, Yue Multiple solutions to a transmission problem with a critical Hardy-Sobolev exponential source term. (English) Zbl 1540.35211 Qual. Theory Dyn. Syst. 23, No. 3, Paper No. 127, 24 p. (2024). MSC: 35J62 35B33 35A01 35A15 PDFBibTeX XMLCite \textit{Y. Wang}, Qual. Theory Dyn. Syst. 23, No. 3, Paper No. 127, 24 p. (2024; Zbl 1540.35211) Full Text: DOI
Jleli, Mohamed; Samet, Bessem On the critical behavior for a Sobolev-type inequality with Hardy potential. (English. French summary) Zbl 1535.35223 C. R., Math., Acad. Sci. Paris 362, 87-97 (2024). MSC: 35R45 35A01 35B33 35K20 35K70 PDFBibTeX XMLCite \textit{M. Jleli} and \textit{B. Samet}, C. R., Math., Acad. Sci. Paris 362, 87--97 (2024; Zbl 1535.35223) Full Text: DOI OA License
Meng, Yuxi; He, Xiaoming Normalized ground states for the fractional Schrödinger-Poisson system with critical nonlinearities. (English) Zbl 1534.35427 Calc. Var. Partial Differ. Equ. 63, No. 3, Paper No. 65, 50 p. (2024). MSC: 35R11 35A15 35B33 35J50 35J60 PDFBibTeX XMLCite \textit{Y. Meng} and \textit{X. He}, Calc. Var. Partial Differ. Equ. 63, No. 3, Paper No. 65, 50 p. (2024; Zbl 1534.35427) Full Text: DOI
Chen, Wenjing; Feng, Dongxue Critical fractional \((p, q)\)-Kirchhoff type problem with a generalized Choquard nonlinearity and magnetic field. (English) Zbl 1531.35352 Bull. Malays. Math. Sci. Soc. (2) 47, No. 1, Paper No. 33, 18 p. (2024). MSC: 35R11 35A15 35B33 35J92 PDFBibTeX XMLCite \textit{W. Chen} and \textit{D. Feng}, Bull. Malays. Math. Sci. Soc. (2) 47, No. 1, Paper No. 33, 18 p. (2024; Zbl 1531.35352) Full Text: DOI
Fan, Song; Li, Gui-Dong Normalized ground state solutions for critical growth Schrödinger equations. (English) Zbl 1529.35160 Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 38, 27 p. (2024). MSC: 35J10 35Q55 35B33 35A01 35A15 PDFBibTeX XMLCite \textit{S. Fan} and \textit{G.-D. Li}, Qual. Theory Dyn. Syst. 23, No. 1, Paper No. 38, 27 p. (2024; Zbl 1529.35160) Full Text: DOI
Angeloni, Sabina; Esposito, Pierpaolo The quasi-linear Brezis-Nirenberg problem in low dimensions. (English) Zbl 1528.35064 J. Funct. Anal. 286, No. 1, Article ID 110176, 26 p. (2024). MSC: 35J92 35B33 35A01 PDFBibTeX XMLCite \textit{S. Angeloni} and \textit{P. Esposito}, J. Funct. Anal. 286, No. 1, Article ID 110176, 26 p. (2024; Zbl 1528.35064) Full Text: DOI arXiv OA License
Benchira, Hayat; Matallah, Atika; El Mokhtar, Mohammed El Mokhtar Ould; Sabri, Khadija The existence result for a \(p\)-Kirchhoff-type problem involving critical Sobolev exponent. (English) Zbl 07904085 J. Funct. Spaces 2023, Article ID 3247421, 8 p. (2023). MSC: 35J62 35B33 35A01 PDFBibTeX XMLCite \textit{H. Benchira} et al., J. Funct. Spaces 2023, Article ID 3247421, 8 p. (2023; Zbl 07904085) Full Text: DOI OA License
Kaid, Rachida; Matallah, Atika; Messirdi, Sofiane Multiple solutions to \(p\)-Kirchhoff type problems involving critical Sobolev exponent in \(\mathbb{R}^N\). (English) Zbl 07858035 Mathematica 65(88), No. 1, 75-84 (2023). MSC: 35J20 35B33 35J60 PDFBibTeX XMLCite \textit{R. Kaid} et al., Mathematica 65(88), No. 1, 75--84 (2023; Zbl 07858035) Full Text: DOI
Duan, Yu; Sun, Xin; Liao, Jiafeng Positive solutions to a class of Kirchhoff-type problems with Hardy-Sobolev critical exponent in \(\mathbb{R}^N\). (Chinese. English summary) Zbl 07802330 Chin. Ann. Math., Ser. A 44, No. 3, 323-334 (2023). MSC: 35B09 35J15 35J20 PDFBibTeX XMLCite \textit{Y. Duan} et al., Chin. Ann. Math., Ser. A 44, No. 3, 323--334 (2023; Zbl 07802330) Full Text: DOI
Akhavan, A. A variational approach to quasilinear elliptic systems with critical Hardy-Sobolev and sign-changing function exponents. (English) Zbl 1529.35197 J. Linear Topol. Algebra 12, No. 3, 179-194 (2023). MSC: 35J57 35B33 35A01 35A15 PDFBibTeX XMLCite \textit{A. Akhavan}, J. Linear Topol. Algebra 12, No. 3, 179--194 (2023; Zbl 1529.35197) Full Text: DOI
Gérard, Patrick; Kappeler, Thomas; Topalov, Peter Sharp well-posedness results of the Benjamin-Ono equation in \(H^s(\mathbb{T},\mathbb{R})\) and qualitative properties of its solutions. (English) Zbl 1533.35061 Acta Math. 231, No. 1, 31-88 (2023). MSC: 35G31 35B15 35B65 35R09 PDFBibTeX XMLCite \textit{P. Gérard} et al., Acta Math. 231, No. 1, 31--88 (2023; Zbl 1533.35061) Full Text: DOI arXiv
López-Soriano, Rafael; Ortega, Alejandro Nonlinear elliptic systems involving Hardy-Sobolev criticalities. (English) Zbl 1526.35146 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 4, Paper No. 157, 27 p. (2023). MSC: 35J47 35J61 35A01 35A15 PDFBibTeX XMLCite \textit{R. López-Soriano} and \textit{A. Ortega}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 4, Paper No. 157, 27 p. (2023; Zbl 1526.35146) Full Text: DOI arXiv
Bouabid, Khalid; Echarghaoui, Rachid Infinitely many positive energy solutions for an elliptic equation involving critical Sobolev growth, Hardy potential and concave-convex nonlinearity. (English) Zbl 1526.35183 J. Elliptic Parabol. Equ. 9, No. 2, 1211-1232 (2023). MSC: 35J91 35J25 35B33 35A01 PDFBibTeX XMLCite \textit{K. Bouabid} and \textit{R. Echarghaoui}, J. Elliptic Parabol. Equ. 9, No. 2, 1211--1232 (2023; Zbl 1526.35183) Full Text: DOI
Rimouche, Ali Multiple solutions for a boundary singular semilinear equation with sublinear term involving Hardy potential and Hardy-Sobolev Exponent. (English) Zbl 1526.35179 J. Elliptic Parabol. Equ. 9, No. 2, 961-987 (2023). MSC: 35J75 35J61 35J25 35A01 PDFBibTeX XMLCite \textit{A. Rimouche}, J. Elliptic Parabol. Equ. 9, No. 2, 961--987 (2023; Zbl 1526.35179) Full Text: DOI
Sun, Xueqi; Yang, Baoling; Song, Yueqiang Multiplicity of solutions for the noncooperative Choquard-Kirchhoff system involving Hardy-Littlewood-Sobolev critical exponent on the Heisenberg group. (English) Zbl 1526.35278 Rend. Circ. Mat. Palermo (2) 72, No. 7, 3439-3457 (2023). MSC: 35R03 35B33 35J57 PDFBibTeX XMLCite \textit{X. Sun} et al., Rend. Circ. Mat. Palermo (2) 72, No. 7, 3439--3457 (2023; Zbl 1526.35278) Full Text: DOI
Pu, Ma; Huang, Shuibo; Tian, Qiaoyu Asymptotic behaviors of solutions to quasilinear elliptic equation with Hardy potential and critical Sobolev exponent. (English) Zbl 1523.35179 Qual. Theory Dyn. Syst. 22, No. 4, Paper No. 153, 31 p. (2023). MSC: 35J62 35B33 35B40 PDFBibTeX XMLCite \textit{M. Pu} et al., Qual. Theory Dyn. Syst. 22, No. 4, Paper No. 153, 31 p. (2023; Zbl 1523.35179) Full Text: DOI
Yang, Baoling; Zhang, Deli; Liang, Sihua On critical double phase Choquard problems with singular nonlinearity. (English) Zbl 1522.35292 Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107420, 21 p. (2023). MSC: 35J92 35B33 35A01 35A15 PDFBibTeX XMLCite \textit{B. Yang} et al., Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107420, 21 p. (2023; Zbl 1522.35292) Full Text: DOI
Jin, Zhen-Feng; Sun, Hong-Rui; Zhang, Weimin The effect of the domain topology on the number of positive solutions for fractional \(p\)-Laplacian equation with critical growth. (English) Zbl 1522.35558 Result. Math. 78, No. 5, Paper No. 205, 26 p. (2023). MSC: 35R11 35A15 35J92 58E05 PDFBibTeX XMLCite \textit{Z.-F. Jin} et al., Result. Math. 78, No. 5, Paper No. 205, 26 p. (2023; Zbl 1522.35558) Full Text: DOI
Bouabid, Khalid; Echarghaoui, Rachid; El Mansour, Mohssine Two disjoint and infinite sets of solutions for an elliptic equation involving critical Hardy-Sobolev exponents. (English) Zbl 1524.35233 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 5, 2061-2074 (2023). MSC: 35J60 35B33 PDFBibTeX XMLCite \textit{K. Bouabid} et al., Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 5, 2061--2074 (2023; Zbl 1524.35233) Full Text: DOI
Saifia, Ouarda; Vélin, Jean On a fractional \(p\)-Laplacian equation with critical fractional Sobolev exponent. (English) Zbl 1518.35415 Mediterr. J. Math. 20, No. 4, Paper No. 221, 23 p. (2023). MSC: 35J92 35R11 35B33 35A01 PDFBibTeX XMLCite \textit{O. Saifia} and \textit{J. Vélin}, Mediterr. J. Math. 20, No. 4, Paper No. 221, 23 p. (2023; Zbl 1518.35415) Full Text: DOI
Ho, Ky; Perera, Kanishka; Sim, Inbo On the Brezis-Nirenberg problem for the \((p, q)\)-Laplacian. (English) Zbl 1518.35403 Ann. Mat. Pura Appl. (4) 202, No. 4, 1991-2005 (2023). MSC: 35J92 35B33 PDFBibTeX XMLCite \textit{K. Ho} et al., Ann. Mat. Pura Appl. (4) 202, No. 4, 1991--2005 (2023; Zbl 1518.35403) Full Text: DOI arXiv
Li, Quanqing; Wang, Wenbo; Liu, Meiqi Normalized solutions for the fractional Choquard equations with Sobolev critical and double mass supercritical growth. (English) Zbl 1518.35340 Lett. Math. Phys. 113, No. 2, Paper No. 49, 9 p. (2023). MSC: 35J61 35B33 35A01 PDFBibTeX XMLCite \textit{Q. Li} et al., Lett. Math. Phys. 113, No. 2, Paper No. 49, 9 p. (2023; Zbl 1518.35340) Full Text: DOI
Akahori, Takafumi; Murata, Miho Nondegeneracy of ground states for nonlinear scalar field equations involving the Sobolev-critical exponent at high frequencies in three and four dimensions. (English) Zbl 1518.35383 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 232, Article ID 113285, 32 p. (2023). MSC: 35J91 35J15 35B33 PDFBibTeX XMLCite \textit{T. Akahori} and \textit{M. Murata}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 232, Article ID 113285, 32 p. (2023; Zbl 1518.35383) Full Text: DOI arXiv
Hasani, Erisa; Perera, Kanishka On the critical \(p\)-Kirchhoff equation. (English) Zbl 1514.35238 Topol. Methods Nonlinear Anal. 61, No. 1, 383-391 (2023). MSC: 35J92 35B33 35A01 PDFBibTeX XMLCite \textit{E. Hasani} and \textit{K. Perera}, Topol. Methods Nonlinear Anal. 61, No. 1, 383--391 (2023; Zbl 1514.35238) Full Text: DOI arXiv
Wang, Ji-xiu; Gao, Qi On the existence of ground state solutions to a quasilinear Schrödinger equation involving \(p\)-Laplacian. (English) Zbl 1514.35247 Acta Math. Appl. Sin., Engl. Ser. 39, No. 2, 381-395 (2023). MSC: 35J92 35B33 35J20 PDFBibTeX XMLCite \textit{J.-x. Wang} and \textit{Q. Gao}, Acta Math. Appl. Sin., Engl. Ser. 39, No. 2, 381--395 (2023; Zbl 1514.35247) Full Text: DOI
Nguyen, Van Hoang On the maximizing problem associated with critical Sobolev inequality under inhomogeneous constraints. (English) Zbl 07683476 Complex Var. Elliptic Equ. 68, No. 5, 681-700 (2023). MSC: 26D10 46E35 PDFBibTeX XMLCite \textit{V. H. Nguyen}, Complex Var. Elliptic Equ. 68, No. 5, 681--700 (2023; Zbl 07683476) Full Text: DOI
Ding, Chengjun; Yang, Yang Existence of solutions for fractional \(p\&q\)-Laplacian system involving critical sandwich-type nonlinearities. (English) Zbl 1512.35612 Appl. Anal. 102, No. 2, 485-493 (2023). MSC: 35R11 35A15 35B33 35J57 35J61 46E35 PDFBibTeX XMLCite \textit{C. Ding} and \textit{Y. Yang}, Appl. Anal. 102, No. 2, 485--493 (2023; Zbl 1512.35612) Full Text: DOI
Lei, Chunyu; Lei, Jun; Suo, Hongmin Groundstate for the Schrödinger-Poisson-Slater equation involving the Coulomb-Sobolev critical exponent. (English) Zbl 1514.35194 Adv. Nonlinear Anal. 12, Article ID 20220299, 17 p. (2023). MSC: 35J61 35B33 35J20 PDFBibTeX XMLCite \textit{C. Lei} et al., Adv. Nonlinear Anal. 12, Article ID 20220299, 17 p. (2023; Zbl 1514.35194) Full Text: DOI OA License
Fan, Hai Ning; Zhang, Bin Lin Fractional Schrödinger equations with logarithmic and critical nonlinearities. (English) Zbl 1512.35615 Acta Math. Sin., Engl. Ser. 39, No. 2, 285-325 (2023). MSC: 35R11 35A15 35B33 35B38 35J61 PDFBibTeX XMLCite \textit{H. N. Fan} and \textit{B. L. Zhang}, Acta Math. Sin., Engl. Ser. 39, No. 2, 285--325 (2023; Zbl 1512.35615) Full Text: DOI
Yang, Tao A global compactness result with applications to a nonlinear elliptic equation arising in astrophysics. (English) Zbl 1520.35003 J. Differ. Equations 360, 201-231 (2023). MSC: 35A23 35B33 35J20 35J61 PDFBibTeX XMLCite \textit{T. Yang}, J. Differ. Equations 360, 201--231 (2023; Zbl 1520.35003) Full Text: DOI
Vo Van Au; Meng, Fanfei An asymptotic analysis and stability for a class of focusing Sobolev critical nonlinear Schrödinger equations. (English) Zbl 1512.35553 J. Differ. Equations 359, 365-392 (2023). MSC: 35Q55 35Q41 35B40 35B33 35B35 35B44 35B45 35L65 PDFBibTeX XMLCite \textit{Vo Van Au} and \textit{F. Meng}, J. Differ. Equations 359, 365--392 (2023; Zbl 1512.35553) Full Text: DOI
Ogawa, Takayoshi; Tsuhara, Shun Global well-posedness for the Sobolev critical nonlinear Schrödinger system in four space dimensions. (English) Zbl 1512.35547 J. Math. Anal. Appl. 524, No. 1, Article ID 127052, 27 p. (2023). Reviewer: Changxing Miao (Beijing) MSC: 35Q55 35Q41 35B33 35A01 35A02 35P25 PDFBibTeX XMLCite \textit{T. Ogawa} and \textit{S. Tsuhara}, J. Math. Anal. Appl. 524, No. 1, Article ID 127052, 27 p. (2023; Zbl 1512.35547) Full Text: DOI
Guan, Wen; Rădulescu, Vicenţiu D.; Wang, Da-Bin Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent. (English) Zbl 1512.35618 J. Differ. Equations 355, 219-247 (2023). MSC: 35R11 35A15 35B33 35B38 35J61 47H11 58E30 81Q05 PDFBibTeX XMLCite \textit{W. Guan} et al., J. Differ. Equations 355, 219--247 (2023; Zbl 1512.35618) Full Text: DOI
Su, Yu Fractional \(p\)-Laplacian problem with critical Stein-Weiss type term. (English) Zbl 1510.35387 J. Geom. Anal. 33, No. 5, Paper No. 160, 22 p. (2023). MSC: 35R11 35A15 35A23 46B50 PDFBibTeX XMLCite \textit{Y. Su}, J. Geom. Anal. 33, No. 5, Paper No. 160, 22 p. (2023; Zbl 1510.35387) Full Text: DOI
Guo, Yuxia; Hu, Yichen; Liu, Ting; Nie, Jianjun Non-degeneracy of the bubble solutions for the fractional prescribed curvature problem and applications. (English) Zbl 1510.35378 J. Geom. Anal. 33, No. 5, Paper No. 141, 51 p. (2023). MSC: 35R11 35B33 35J91 PDFBibTeX XMLCite \textit{Y. Guo} et al., J. Geom. Anal. 33, No. 5, Paper No. 141, 51 p. (2023; Zbl 1510.35378) Full Text: DOI
Chen, Qingfang; Liao, Jiafeng Positive ground state solutions for Schrödinger-Poisson system with general nonlinearity and critical exponent. (English) Zbl 1524.35069 J. Partial Differ. Equations 36, No. 1, 68-81 (2023). MSC: 35B33 35J20 35J60 PDFBibTeX XMLCite \textit{Q. Chen} and \textit{J. Liao}, J. Partial Differ. Equations 36, No. 1, 68--81 (2023; Zbl 1524.35069) Full Text: DOI
Chen, Wenhui; Reissig, Michael On the critical exponent and sharp lifespan estimates for semilinear damped wave equations with data from Sobolev spaces of negative order. (English) Zbl 1506.35124 J. Evol. Equ. 23, No. 1, Paper No. 13, 21 p. (2023). MSC: 35L71 35L15 35B33 35B44 PDFBibTeX XMLCite \textit{W. Chen} and \textit{M. Reissig}, J. Evol. Equ. 23, No. 1, Paper No. 13, 21 p. (2023; Zbl 1506.35124) Full Text: DOI arXiv OA License
Li, Quanqing; Rădulescu, Vicenţiu D.; Zhang, Jian; Zhao, Xin Normalized solutions of the autonomous Kirchhoff equation with Sobolev critical exponent: sub- and super-critical cases. (English) Zbl 1506.35052 Proc. Am. Math. Soc. 151, No. 2, 663-678 (2023). Reviewer: Calogero Vetro (Palermo) MSC: 35J20 35J50 35J15 35J60 35J70 PDFBibTeX XMLCite \textit{Q. Li} et al., Proc. Am. Math. Soc. 151, No. 2, 663--678 (2023; Zbl 1506.35052) Full Text: DOI
Anoop, T. V.; Das, Ujjal On the generalised Brézis-Nirenberg problem. (English) Zbl 1510.35041 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 4, 36 p. (2023). Reviewer: Tobias König (Frankfurt am Main) MSC: 35B33 35J60 35J92 58E30 PDFBibTeX XMLCite \textit{T. V. Anoop} and \textit{U. Das}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 4, 36 p. (2023; Zbl 1510.35041) Full Text: DOI arXiv
Wang, Lu Shun; Yang, Tao; Yang, Xiao Long A global compactness result with applications to a Hardy-Sobolev critical elliptic system involving coupled perturbation terms. (English) Zbl 1505.35152 Adv. Nonlinear Anal. 12, Article ID 20220276, 31 p. (2023). MSC: 35J47 35B33 35J50 PDFBibTeX XMLCite \textit{L. S. Wang} et al., Adv. Nonlinear Anal. 12, Article ID 20220276, 31 p. (2023; Zbl 1505.35152) Full Text: DOI OA License
Juncheng, Wei; Qidi, Zhang; Yifu, Zhou On the parabolic gluing method and singularity formation. (English. French summary) Zbl 07908846 C. R. Math. Acad. Sci., Soc. R. Can. 44, No. 4, 69-87 (2022). MSC: 35-02 35A21 35B40 35K58 PDFBibTeX XMLCite \textit{W. Juncheng} et al., C. R. Math. Acad. Sci., Soc. R. Can. 44, No. 4, 69--87 (2022; Zbl 07908846) Full Text: Link
Qian, Xiaotao Positive solutions for a nonlocal problem with critical Sobolev exponent in higher dimensions. (English) Zbl 07908199 J. Appl. Anal. Comput. 12, No. 5, 2033-2042 (2022). MSC: 35J20 35J60 PDFBibTeX XMLCite \textit{X. Qian}, J. Appl. Anal. Comput. 12, No. 5, 2033--2042 (2022; Zbl 07908199) Full Text: DOI
Matallah, Atika; Litimein, Sara; Messirdi, Sofiane Existence of multiple solutions for a nonhomogeneous \(p\)-Laplacian elliptic equation with critical Sobolev-Hardy exponent. (English) Zbl 07801851 Bol. Soc. Parana. Mat. (3) 40, Paper No. 63, 12 p. (2022). MSC: 35J20 35J70 47J30 58E30 35J92 PDFBibTeX XMLCite \textit{A. Matallah} et al., Bol. Soc. Parana. Mat. (3) 40, Paper No. 63, 12 p. (2022; Zbl 07801851) Full Text: DOI OA License
Yang, Jie; Chen, Haibo; Liu, Senli Existence and multiple solutions for the critical fractional \(p\)-Kirchhoff type problems involving sign-changing weight functions. (English) Zbl 1532.35501 Math. Methods Appl. Sci. 45, No. 11, 6546-6567 (2022). Reviewer: Mingqi Xiang (Tianjin) MSC: 35R11 35A15 35J25 35J92 PDFBibTeX XMLCite \textit{J. Yang} et al., Math. Methods Appl. Sci. 45, No. 11, 6546--6567 (2022; Zbl 1532.35501) Full Text: DOI
Qian, Xiaoyong; Wang, Jun; Zhu, Maochun Existence of solutions for a coupled Schrödinger equations with critical exponent. (English) Zbl 1512.35548 Electron. Res. Arch. 30, No. 7, 2730-2747 (2022). MSC: 35Q55 35Q41 78A60 35B33 35B20 35A15 35A01 35A02 82C10 PDFBibTeX XMLCite \textit{X. Qian} et al., Electron. Res. Arch. 30, No. 7, 2730--2747 (2022; Zbl 1512.35548) Full Text: DOI OA License
Guo, Zhenyu; Zhong, Xuexiu On a fractional Hardy-Sobolev inequality with two-variables. (English) Zbl 1504.35014 Rocky Mt. J. Math. 52, No. 5, 1643-1660 (2022). MSC: 35A23 35B33 35R11 PDFBibTeX XMLCite \textit{Z. Guo} and \textit{X. Zhong}, Rocky Mt. J. Math. 52, No. 5, 1643--1660 (2022; Zbl 1504.35014) Full Text: DOI Link
Deng, Zhiying; Huang, Yisheng Infinitely many solutions for fractional elliptic systems involving critical nonlinearities and Hardy potentials. (English) Zbl 1505.35193 Results Appl. Math. 16, Article ID 100341, 22 p. (2022). MSC: 35J62 35R11 35B33 35A01 PDFBibTeX XMLCite \textit{Z. Deng} and \textit{Y. Huang}, Results Appl. Math. 16, Article ID 100341, 22 p. (2022; Zbl 1505.35193) Full Text: DOI OA License
Premoselli, Bruno; Vétois, Jérôme Sign-changing blow-up for the Yamabe equation at the lowest energy level. (English) Zbl 1507.35049 Adv. Math. 410, Part B, Article ID 108769, 50 p. (2022). Reviewer: Alberto Saldaña (Ciudad de México) MSC: 35B44 35J61 35R01 58J05 58J55 PDFBibTeX XMLCite \textit{B. Premoselli} and \textit{J. Vétois}, Adv. Math. 410, Part B, Article ID 108769, 50 p. (2022; Zbl 1507.35049) Full Text: DOI arXiv
Ahmedou, Mohameden; Ayed, Mohamed Ben Non simple blow ups for the Nirenberg problem on half spheres. (English) Zbl 1502.35004 Discrete Contin. Dyn. Syst. 42, No. 12, 5967-6005 (2022). MSC: 35A15 35J20 35R01 58J05 58E05 PDFBibTeX XMLCite \textit{M. Ahmedou} and \textit{M. B. Ayed}, Discrete Contin. Dyn. Syst. 42, No. 12, 5967--6005 (2022; Zbl 1502.35004) Full Text: DOI arXiv
Sun, Xueqi; Bai, Shujie; Song, Yueqiang On the noncooperative Schrödinger-Kirchhoff system involving the critical nonlinearities on the Heisenberg group. (English) Zbl 1505.35151 Bound. Value Probl. 2022, Paper No. 75, 19 p. (2022). MSC: 35J47 35R03 35J92 35A01 PDFBibTeX XMLCite \textit{X. Sun} et al., Bound. Value Probl. 2022, Paper No. 75, 19 p. (2022; Zbl 1505.35151) Full Text: DOI OA License
Panda, Akasmika; Choudhuri, Debajyoti Infinitely many solutions for a doubly nonlocal fractional problem involving two critical nonlinearities. (English) Zbl 1501.35444 Complex Var. Elliptic Equ. 67, No. 12, 2835-2865 (2022). MSC: 35R11 35B33 35D30 35J92 46E35 PDFBibTeX XMLCite \textit{A. Panda} and \textit{D. Choudhuri}, Complex Var. Elliptic Equ. 67, No. 12, 2835--2865 (2022; Zbl 1501.35444) Full Text: DOI
Deng, Yin; Jia, Gao Multiple solutions for a quasilinear Schrödinger equation involving critical Hardy-Sobolev exponent with Robin boundary condition. (English) Zbl 1501.35145 Complex Var. Elliptic Equ. 67, No. 11, 2602-2618 (2022). MSC: 35J10 35J62 35J25 35A01 PDFBibTeX XMLCite \textit{Y. Deng} and \textit{G. Jia}, Complex Var. Elliptic Equ. 67, No. 11, 2602--2618 (2022; Zbl 1501.35145) Full Text: DOI
Su, Yu; Feng, Zhaosheng Fractional Sobolev embedding with radial potential. (English) Zbl 1500.35304 J. Differ. Equations 340, 1-44 (2022). MSC: 35R11 35J20 46E35 PDFBibTeX XMLCite \textit{Y. Su} and \textit{Z. Feng}, J. Differ. Equations 340, 1--44 (2022; Zbl 1500.35304) Full Text: DOI
Premoselli, Bruno; Vétois, Jérôme Stability and instability results for sign-changing solutions to second-order critical elliptic equations. (English. French summary) Zbl 1498.58018 J. Math. Pures Appl. (9) 167, 257-293 (2022). MSC: 58J05 35J15 35J61 35Q55 PDFBibTeX XMLCite \textit{B. Premoselli} and \textit{J. Vétois}, J. Math. Pures Appl. (9) 167, 257--293 (2022; Zbl 1498.58018) Full Text: DOI arXiv
Li, Gui-Dong; Li, Yong-Yong; Tang, Chun-Lei Ground state solutions for critical Schrödinger equations with Hardy potential. (English) Zbl 1498.35260 Nonlinearity 35, No. 10, 5076-5108 (2022). MSC: 35J61 35J10 35B33 35A01 35J20 PDFBibTeX XMLCite \textit{G.-D. Li} et al., Nonlinearity 35, No. 10, 5076--5108 (2022; Zbl 1498.35260) Full Text: DOI
Akahori, Takafumi; Murata, Miho Uniqueness of ground states for combined power-type nonlinear scalar field equations involving the Sobolev critical exponent at high frequencies in three and four dimensions. (English) Zbl 1500.35254 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 6, Paper No. 71, 54 p. (2022). Reviewer: Federico Bernini (Bari) MSC: 35Q55 35A02 35B33 PDFBibTeX XMLCite \textit{T. Akahori} and \textit{M. Murata}, NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 6, Paper No. 71, 54 p. (2022; Zbl 1500.35254) Full Text: DOI
Li, Zhouxin; Yuan, Xiang; Zhang, Qi Existence of critical points for noncoercive functionals with critical Sobolev exponent. (English) Zbl 1498.35212 Appl. Anal. 101, No. 15, 5358-5375 (2022). MSC: 35J20 35B33 35A01 PDFBibTeX XMLCite \textit{Z. Li} et al., Appl. Anal. 101, No. 15, 5358--5375 (2022; Zbl 1498.35212) Full Text: DOI
Zheng, Tiantian; Wang, Zhiyong; Ma, Pei; Zhang, Jihui Multiple positive solutions for an elliptic problem involving a critical Sobolev exponent. (English) Zbl 1498.35305 Appl. Anal. 101, No. 15, 5334-5357 (2022). MSC: 35J91 35B33 35A01 35A15 PDFBibTeX XMLCite \textit{T. Zheng} et al., Appl. Anal. 101, No. 15, 5334--5357 (2022; Zbl 1498.35305) Full Text: DOI
Li, Quanqing; Zou, Wenming The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the \(L^2\)-subcritical and \(L^2\)-supercritical cases. (English) Zbl 1498.35197 Adv. Nonlinear Anal. 11, 1531-1551 (2022). MSC: 35J10 35R11 35A01 35J20 PDFBibTeX XMLCite \textit{Q. Li} and \textit{W. Zou}, Adv. Nonlinear Anal. 11, 1531--1551 (2022; Zbl 1498.35197) Full Text: DOI OA License
Qu, Siqi; He, Xiaoming Multiplicity of high energy solutions for fractional Schrödinger-Poisson systems with critical frequency. (English) Zbl 1496.35437 Electron. J. Differ. Equ. 2022, Paper No. 47, 21 p. (2022). MSC: 35R11 35A15 35B25 35B33 35B35 35B40 35J47 35J61 92C17 PDFBibTeX XMLCite \textit{S. Qu} and \textit{X. He}, Electron. J. Differ. Equ. 2022, Paper No. 47, 21 p. (2022; Zbl 1496.35437) Full Text: Link
Li, Gongbao; Luo, Xiao; Yang, Tao Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent. (English) Zbl 1497.35232 Ann. Fenn. Math. 47, No. 2, 895-925 (2022). MSC: 35J62 35B33 35B40 35A15 PDFBibTeX XMLCite \textit{G. Li} et al., Ann. Fenn. Math. 47, No. 2, 895--925 (2022; Zbl 1497.35232) Full Text: DOI arXiv OA License
Wan, Youyan; Xie, Jun The existence of two positive solutions to an elliptic system with critical Sobolev exponents. (Chinese. English summary) Zbl 1513.35040 Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 1, 103-130 (2022). MSC: 35B09 35J50 35J10 35B33 PDFBibTeX XMLCite \textit{Y. Wan} and \textit{J. Xie}, Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 1, 103--130 (2022; Zbl 1513.35040) Full Text: Link
Lv, Huilin; Zheng, Shenzhou Existence and multiplicity for fractional \(p\)-Kirchhoff problem with competitive nonlinearities and critical growth. (English) Zbl 1494.35164 Anal. Math. Phys. 12, No. 4, Paper No. 96, 30 p. (2022). MSC: 35R11 35A15 35B33 35J92 47G20 PDFBibTeX XMLCite \textit{H. Lv} and \textit{S. Zheng}, Anal. Math. Phys. 12, No. 4, Paper No. 96, 30 p. (2022; Zbl 1494.35164) Full Text: DOI
Duan, Lipeng; Tian, Shuying Concentrated solutions for a critical elliptic equation. (English) Zbl 1497.35256 Discrete Contin. Dyn. Syst. 42, No. 8, 4061-4094 (2022). MSC: 35J91 35J25 35A01 35A02 PDFBibTeX XMLCite \textit{L. Duan} and \textit{S. Tian}, Discrete Contin. Dyn. Syst. 42, No. 8, 4061--4094 (2022; Zbl 1497.35256) Full Text: DOI
Chen, Shaowei; Gou, Tianxiang Higher topological type semiclassical states for Sobolev critical Dirac equations with degenerate potential. (English) Zbl 1494.35018 J. Geom. Anal. 32, No. 9, Paper No. 231, 39 p. (2022). MSC: 35B25 35A15 35B33 35Q40 35Q41 PDFBibTeX XMLCite \textit{S. Chen} and \textit{T. Gou}, J. Geom. Anal. 32, No. 9, Paper No. 231, 39 p. (2022; Zbl 1494.35018) Full Text: DOI arXiv
Kou, Bingyu; An, Tianqing The existence of positive solutions for the Neumann problem of \(p\)-Laplacian elliptic systems with Sobolev critical exponent. (English) Zbl 1497.35187 Bound. Value Probl. 2022, Paper No. 22, 24 p. (2022). MSC: 35J57 35J92 35B33 PDFBibTeX XMLCite \textit{B. Kou} and \textit{T. An}, Bound. Value Probl. 2022, Paper No. 22, 24 p. (2022; Zbl 1497.35187) Full Text: DOI OA License
Guo, Ting; Tang, Xianhua; Zhang, Qi Ground state solutions for Choquard equations with Hardy potentials and critical nonlinearity. (English) Zbl 1496.35206 Complex Var. Elliptic Equ. 67, No. 7, 1579-1597 (2022). MSC: 35J61 35B33 35A01 35J20 PDFBibTeX XMLCite \textit{T. Guo} et al., Complex Var. Elliptic Equ. 67, No. 7, 1579--1597 (2022; Zbl 1496.35206) Full Text: DOI
Fang, Fei; Zhang, Binlin Global existence and blow-up for semilinear parabolic equation with critical exponent in \(\mathbb{R}^N\). (English) Zbl 1499.35355 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 3, 23 p. (2022). MSC: 35K58 35A01 35B44 35K15 PDFBibTeX XMLCite \textit{F. Fang} and \textit{B. Zhang}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 3, 23 p. (2022; Zbl 1499.35355) Full Text: DOI OA License
Yin, Songting; Abdelhakim, Ahmed A. Optimal critical exponent \(L^p\) inequalities of Hardy type on the sphere via Xiao’s method. (English) Zbl 1500.26015 J. Math. Inequal. 16, No. 1, 265-272 (2022). MSC: 26D10 35A23 46E35 PDFBibTeX XMLCite \textit{S. Yin} and \textit{A. A. Abdelhakim}, J. Math. Inequal. 16, No. 1, 265--272 (2022; Zbl 1500.26015) Full Text: DOI arXiv
Liu, Min; Chen, Deyan; Guo, Zhenyu A fractional magnetic Hardy-Sobolev inequality with two variables. (English) Zbl 1490.35522 J. Math. Inequal. 16, No. 1, 181-187 (2022). MSC: 35R11 35A23 35B33 PDFBibTeX XMLCite \textit{M. Liu} et al., J. Math. Inequal. 16, No. 1, 181--187 (2022; Zbl 1490.35522) Full Text: DOI
Qu, Siqi; He, Xiaoming On the number of concentrating solutions of a fractional Schrödinger-Poisson system with doubly critical growth. (English) Zbl 1485.35194 Anal. Math. Phys. 12, No. 2, Paper No. 59, 49 p. (2022). MSC: 35J60 35R11 35B33 35B09 PDFBibTeX XMLCite \textit{S. Qu} and \textit{X. He}, Anal. Math. Phys. 12, No. 2, Paper No. 59, 49 p. (2022; Zbl 1485.35194) Full Text: DOI
Zhu, Gaili; Duan, Chunping; Zhang, Jianjun; Zhang, Huixing Ground states of coupled critical Choquard equations with weighted potentials. (English) Zbl 1492.35030 Opusc. Math. 42, No. 2, 337-354 (2022). Reviewer: Chao Ji (Shanghai) MSC: 35B33 35B25 35J47 35J50 35J61 PDFBibTeX XMLCite \textit{G. Zhu} et al., Opusc. Math. 42, No. 2, 337--354 (2022; Zbl 1492.35030) Full Text: DOI
Zhang, Youpei; Tang, Xianhua; Rădulescu, Vicenţiu D. High and low perturbations of Choquard equations with critical reaction and variable growth. (English) Zbl 07481828 Discrete Contin. Dyn. Syst. 42, No. 4, 1971-2003 (2022). MSC: 47G20 35B38 58E50 PDFBibTeX XMLCite \textit{Y. Zhang} et al., Discrete Contin. Dyn. Syst. 42, No. 4, 1971--2003 (2022; Zbl 07481828) Full Text: DOI
Choudhuri, D.; Zuo, Jiabin Critical Kirchhoff \(p(\cdot) \& q(\cdot)\)-fractional variable-order systems with variable exponent growth. (English) Zbl 1481.35377 Anal. Math. Phys. 12, No. 1, Paper No. 30, 29 p. (2022). MSC: 35R11 35B40 47G20 35S15 35J60 PDFBibTeX XMLCite \textit{D. Choudhuri} and \textit{J. Zuo}, Anal. Math. Phys. 12, No. 1, Paper No. 30, 29 p. (2022; Zbl 1481.35377) Full Text: DOI
Yin, Xin; Zou, Wenming Positive least energy solutions for \(k\)-coupled Schrödinger system with critical exponent: the higher dimension and cooperative case. (English) Zbl 1481.35185 J. Fixed Point Theory Appl. 24, No. 1, Paper No. 5, 39 p. (2022). MSC: 35J57 35J61 35B33 35A01 PDFBibTeX XMLCite \textit{X. Yin} and \textit{W. Zou}, J. Fixed Point Theory Appl. 24, No. 1, Paper No. 5, 39 p. (2022; Zbl 1481.35185) Full Text: DOI arXiv
D’Abbicco, M.; Ebert, M. R. The critical exponent for semilinear \(\sigma \)-evolution equations with a strong non-effective damping. (English) Zbl 1481.35040 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 215, Article ID 112637, 26 p. (2022). Reviewer: Michael Reissig (Freiberg) MSC: 35B33 35L15 35L71 35R11 PDFBibTeX XMLCite \textit{M. D'Abbicco} and \textit{M. R. Ebert}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 215, Article ID 112637, 26 p. (2022; Zbl 1481.35040) Full Text: DOI arXiv
Duan, Yu; Li, Hong-Ying; Sun, Xin Uniqueness of positive solutions for a class of \(p\)-Kirchhoff type problems with singularity. (English) Zbl 1490.35164 Rocky Mt. J. Math. 51, No. 5, 1629-1637 (2021). MSC: 35J62 35J75 35A02 35A15 PDFBibTeX XMLCite \textit{Y. Duan} et al., Rocky Mt. J. Math. 51, No. 5, 1629--1637 (2021; Zbl 1490.35164) Full Text: DOI Link
Zhang, Jinguo Nonexistence of critical fractional Sobolev-Hardy elliptic problems. (English) Zbl 1481.35201 J. Anal. 29, No. 4, 1105-1115 (2021). MSC: 35J61 35J25 35B33 35A02 PDFBibTeX XMLCite \textit{J. Zhang}, J. Anal. 29, No. 4, 1105--1115 (2021; Zbl 1481.35201) Full Text: DOI
Liu, Min; Liu, Jiu Ground state solution for an autonomous nonlinear Schrödinger system. (English) Zbl 1479.35805 J. Funct. Spaces 2021, Article ID 1003941, 7 p. (2021). MSC: 35Q55 81Q05 PDFBibTeX XMLCite \textit{M. Liu} and \textit{J. Liu}, J. Funct. Spaces 2021, Article ID 1003941, 7 p. (2021; Zbl 1479.35805) Full Text: DOI OA License
Li, Shiyu; Wei, Gongming; Duan, Xueliang On existence and asymptotic behavior of solutions of elliptic equations with nearly critical exponent and singular coefficients. (English) Zbl 1488.35005 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 64, 25 p. (2021). MSC: 35A15 35A24 35B40 35J25 PDFBibTeX XMLCite \textit{S. Li} et al., Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 64, 25 p. (2021; Zbl 1488.35005) Full Text: DOI OA License
Rawat, Sushmita; Sreenadh, Konijeti Multiple positive solutions for degenerate Kirchhoff equations with singular and Choquard nonlinearity. (English) Zbl 1479.35926 Math. Methods Appl. Sci. 44, No. 18, 13812-13832 (2021). MSC: 35R11 35J20 35J25 35J61 35R09 PDFBibTeX XMLCite \textit{S. Rawat} and \textit{K. Sreenadh}, Math. Methods Appl. Sci. 44, No. 18, 13812--13832 (2021; Zbl 1479.35926) Full Text: DOI arXiv
Clapp, Mónica; Fernández, Juan Carlos; Saldaña, Alberto Critical polyharmonic systems and optimal partitions. (English) Zbl 1480.35172 Commun. Pure Appl. Anal. 20, No. 11, 4007-4023 (2021). MSC: 35J48 35B33 35A01 PDFBibTeX XMLCite \textit{M. Clapp} et al., Commun. Pure Appl. Anal. 20, No. 11, 4007--4023 (2021; Zbl 1480.35172) Full Text: DOI arXiv
Bonheure, Denis; Cheikh Ali, Hussein; Nascimento, Robson A Paneitz-Branson type equation with Neumann boundary conditions. (English) Zbl 1479.35460 Adv. Calc. Var. 14, No. 4, 499-519 (2021). MSC: 35J91 35J40 PDFBibTeX XMLCite \textit{D. Bonheure} et al., Adv. Calc. Var. 14, No. 4, 499--519 (2021; Zbl 1479.35460) Full Text: DOI arXiv
Tahri, Kamel; Yazid, Fares Biharmonic-Kirchhoff type equation involving critical Sobolev exponent with singular term. (English) Zbl 1475.35146 Commun. Korean Math. Soc. 36, No. 2, 247-256 (2021). MSC: 35J40 35J62 35A01 35J35 PDFBibTeX XMLCite \textit{K. Tahri} and \textit{F. Yazid}, Commun. Korean Math. Soc. 36, No. 2, 247--256 (2021; Zbl 1475.35146) Full Text: DOI
Jiang, Ruiting; Zhai, Chengbo Existence of solution for the critical biharmonic equations involving Rellich potentials. (Chinese. English summary) Zbl 1488.31015 J. Shandong Univ., Nat. Sci. 56, No. 6, 42-46 (2021). MSC: 31B30 35J30 35B33 PDFBibTeX XMLCite \textit{R. Jiang} and \textit{C. Zhai}, J. Shandong Univ., Nat. Sci. 56, No. 6, 42--46 (2021; Zbl 1488.31015)
Lin, Xiaolu; Zheng, Shenzhou Multiplicity and asymptotic behavior of solutions to fractional \((p,q)\)-Kirchhoff type problems with critical Sobolev-Hardy exponent. (English) Zbl 1471.35303 Electron. J. Differ. Equ. 2021, Paper No. 66, 20 p. (2021). MSC: 35R11 35A15 35B33 35B40 35J25 35J92 PDFBibTeX XMLCite \textit{X. Lin} and \textit{S. Zheng}, Electron. J. Differ. Equ. 2021, Paper No. 66, 20 p. (2021; Zbl 1471.35303) Full Text: Link