Li, Quanqing; Zou, Wenming Normalized ground states for Sobolev critical nonlinear Schrödinger equation in the \(L^2\)-supercritical case. (English) Zbl 07770129 Discrete Contin. Dyn. Syst. 44, No. 1, 205-227 (2024). MSC: 35J20 35J50 35J15 35J60 35J70 PDF BibTeX XML Cite \textit{Q. Li} and \textit{W. Zou}, Discrete Contin. Dyn. Syst. 44, No. 1, 205--227 (2024; Zbl 07770129) Full Text: DOI
López-Soriano, Rafael; Ortega, Alejandro Nonlinear elliptic systems involving Hardy-Sobolev criticalities. (English) Zbl 07762396 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 4, Paper No. 157, 27 p. (2023). MSC: 35J47 35J61 35A01 35A15 PDF BibTeX XML Cite \textit{R. López-Soriano} and \textit{A. Ortega}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 117, No. 4, Paper No. 157, 27 p. (2023; Zbl 07762396) Full Text: DOI arXiv
Bouabid, Khalid; Echarghaoui, Rachid Infinitely many positive energy solutions for an elliptic equation involving critical Sobolev growth, Hardy potential and concave-convex nonlinearity. (English) Zbl 07758551 J. Elliptic Parabol. Equ. 9, No. 2, 1211-1232 (2023). MSC: 35J91 35J25 35B33 35A01 PDF BibTeX XML Cite \textit{K. Bouabid} and \textit{R. Echarghaoui}, J. Elliptic Parabol. Equ. 9, No. 2, 1211--1232 (2023; Zbl 07758551) Full Text: DOI
Rimouche, Ali Multiple solutions for a boundary singular semilinear equation with sublinear term involving Hardy potential and Hardy-Sobolev Exponent. (English) Zbl 07758541 J. Elliptic Parabol. Equ. 9, No. 2, 961-987 (2023). MSC: 35J75 35J61 35J25 35A01 PDF BibTeX XML Cite \textit{A. Rimouche}, J. Elliptic Parabol. Equ. 9, No. 2, 961--987 (2023; Zbl 07758541) Full Text: DOI
Sun, Xueqi; Yang, Baoling; Song, Yueqiang Multiplicity of solutions for the noncooperative Choquard-Kirchhoff system involving Hardy-Littlewood-Sobolev critical exponent on the Heisenberg group. (English) Zbl 07753845 Rend. Circ. Mat. Palermo (2) 72, No. 7, 3439-3457 (2023). MSC: 35R03 35B33 35J57 PDF BibTeX XML Cite \textit{X. Sun} et al., Rend. Circ. Mat. Palermo (2) 72, No. 7, 3439--3457 (2023; Zbl 07753845) Full Text: DOI
Pu, Ma; Huang, Shuibo; Tian, Qiaoyu Asymptotic behaviors of solutions to quasilinear elliptic equation with Hardy potential and critical Sobolev exponent. (English) Zbl 07736306 Qual. Theory Dyn. Syst. 22, No. 4, Paper No. 153, 31 p. (2023). MSC: 35J62 35B33 35B40 PDF BibTeX XML Cite \textit{M. Pu} et al., Qual. Theory Dyn. Syst. 22, No. 4, Paper No. 153, 31 p. (2023; Zbl 07736306) Full Text: DOI
Yang, Baoling; Zhang, Deli; Liang, Sihua On critical double phase Choquard problems with singular nonlinearity. (English) Zbl 07733085 Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107420, 21 p. (2023). MSC: 35J92 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{B. Yang} et al., Commun. Nonlinear Sci. Numer. Simul. 125, Article ID 107420, 21 p. (2023; Zbl 07733085) Full Text: DOI
Jin, Zhen-Feng; Sun, Hong-Rui; Zhang, Weimin The effect of the domain topology on the number of positive solutions for fractional \(p\)-Laplacian equation with critical growth. (English) Zbl 07732349 Result. Math. 78, No. 5, Paper No. 205, 26 p. (2023). MSC: 35R11 35A15 35J92 58E05 PDF BibTeX XML Cite \textit{Z.-F. Jin} et al., Result. Math. 78, No. 5, Paper No. 205, 26 p. (2023; Zbl 07732349) Full Text: DOI
Bouabid, Khalid; Echarghaoui, Rachid; El Mansour, Mohssine Two disjoint and infinite sets of solutions for an elliptic equation involving critical Hardy-Sobolev exponents. (English) Zbl 07713399 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 5, 2061-2074 (2023). MSC: 35J60 35B33 PDF BibTeX XML Cite \textit{K. Bouabid} et al., Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 5, 2061--2074 (2023; Zbl 07713399) Full Text: DOI
Saifia, Ouarda; Vélin, Jean On a fractional \(p\)-Laplacian equation with critical fractional Sobolev exponent. (English) Zbl 1518.35415 Mediterr. J. Math. 20, No. 4, Paper No. 221, 23 p. (2023). MSC: 35J92 35R11 35B33 35A01 PDF BibTeX XML Cite \textit{O. Saifia} and \textit{J. Vélin}, Mediterr. J. Math. 20, No. 4, Paper No. 221, 23 p. (2023; Zbl 1518.35415) Full Text: DOI
Ho, Ky; Perera, Kanishka; Sim, Inbo On the Brezis-Nirenberg problem for the \((p, q)\)-Laplacian. (English) Zbl 1518.35403 Ann. Mat. Pura Appl. (4) 202, No. 4, 1991-2005 (2023). MSC: 35J92 35B33 PDF BibTeX XML Cite \textit{K. Ho} et al., Ann. Mat. Pura Appl. (4) 202, No. 4, 1991--2005 (2023; Zbl 1518.35403) Full Text: DOI arXiv
Li, Quanqing; Wang, Wenbo; Liu, Meiqi Normalized solutions for the fractional Choquard equations with Sobolev critical and double mass supercritical growth. (English) Zbl 1518.35340 Lett. Math. Phys. 113, No. 2, Paper No. 49, 9 p. (2023). MSC: 35J61 35B33 35A01 PDF BibTeX XML Cite \textit{Q. Li} et al., Lett. Math. Phys. 113, No. 2, Paper No. 49, 9 p. (2023; Zbl 1518.35340) Full Text: DOI
Akahori, Takafumi; Murata, Miho Nondegeneracy of ground states for nonlinear scalar field equations involving the Sobolev-critical exponent at high frequencies in three and four dimensions. (English) Zbl 1518.35383 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 232, Article ID 113285, 32 p. (2023). MSC: 35J91 35J15 35B33 PDF BibTeX XML Cite \textit{T. Akahori} and \textit{M. Murata}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 232, Article ID 113285, 32 p. (2023; Zbl 1518.35383) Full Text: DOI arXiv
Hasani, Erisa; Perera, Kanishka On the critical \(p\)-Kirchhoff equation. (English) Zbl 1514.35238 Topol. Methods Nonlinear Anal. 61, No. 1, 383-391 (2023). MSC: 35J92 35B33 35A01 PDF BibTeX XML Cite \textit{E. Hasani} and \textit{K. Perera}, Topol. Methods Nonlinear Anal. 61, No. 1, 383--391 (2023; Zbl 1514.35238) Full Text: DOI arXiv
Wang, Ji-xiu; Gao, Qi On the existence of ground state solutions to a quasilinear Schrödinger equation involving \(p\)-Laplacian. (English) Zbl 1514.35247 Acta Math. Appl. Sin., Engl. Ser. 39, No. 2, 381-395 (2023). MSC: 35J92 35B33 35J20 PDF BibTeX XML Cite \textit{J.-x. Wang} and \textit{Q. Gao}, Acta Math. Appl. Sin., Engl. Ser. 39, No. 2, 381--395 (2023; Zbl 1514.35247) Full Text: DOI
Nguyen, Van Hoang On the maximizing problem associated with critical Sobolev inequality under inhomogeneous constraints. (English) Zbl 07683476 Complex Var. Elliptic Equ. 68, No. 5, 681-700 (2023). MSC: 26D10 46E35 PDF BibTeX XML Cite \textit{V. H. Nguyen}, Complex Var. Elliptic Equ. 68, No. 5, 681--700 (2023; Zbl 07683476) Full Text: DOI
Ding, Chengjun; Yang, Yang Existence of solutions for fractional \(p\&q\)-Laplacian system involving critical sandwich-type nonlinearities. (English) Zbl 1512.35612 Appl. Anal. 102, No. 2, 485-493 (2023). MSC: 35R11 35A15 35B33 35J57 35J61 46E35 PDF BibTeX XML Cite \textit{C. Ding} and \textit{Y. Yang}, Appl. Anal. 102, No. 2, 485--493 (2023; Zbl 1512.35612) Full Text: DOI
Lei, Chunyu; Lei, Jun; Suo, Hongmin Groundstate for the Schrödinger-Poisson-Slater equation involving the Coulomb-Sobolev critical exponent. (English) Zbl 1514.35194 Adv. Nonlinear Anal. 12, Article ID 20220299, 17 p. (2023). MSC: 35J61 35B33 35J20 PDF BibTeX XML Cite \textit{C. Lei} et al., Adv. Nonlinear Anal. 12, Article ID 20220299, 17 p. (2023; Zbl 1514.35194) Full Text: DOI
Fan, Hai Ning; Zhang, Bin Lin Fractional Schrödinger equations with logarithmic and critical nonlinearities. (English) Zbl 1512.35615 Acta Math. Sin., Engl. Ser. 39, No. 2, 285-325 (2023). MSC: 35R11 35A15 35B33 35B38 35J61 PDF BibTeX XML Cite \textit{H. N. Fan} and \textit{B. L. Zhang}, Acta Math. Sin., Engl. Ser. 39, No. 2, 285--325 (2023; Zbl 1512.35615) Full Text: DOI
Yang, Tao A global compactness result with applications to a nonlinear elliptic equation arising in astrophysics. (English) Zbl 1520.35003 J. Differ. Equations 360, 201-231 (2023). MSC: 35A23 35B33 35J20 35J61 PDF BibTeX XML Cite \textit{T. Yang}, J. Differ. Equations 360, 201--231 (2023; Zbl 1520.35003) Full Text: DOI
Vo Van Au; Meng, Fanfei An asymptotic analysis and stability for a class of focusing Sobolev critical nonlinear Schrödinger equations. (English) Zbl 1512.35553 J. Differ. Equations 359, 365-392 (2023). MSC: 35Q55 35Q41 35B40 35B33 35B35 35B44 35B45 35L65 PDF BibTeX XML Cite \textit{Vo Van Au} and \textit{F. Meng}, J. Differ. Equations 359, 365--392 (2023; Zbl 1512.35553) Full Text: DOI
Ogawa, Takayoshi; Tsuhara, Shun Global well-posedness for the Sobolev critical nonlinear Schrödinger system in four space dimensions. (English) Zbl 1512.35547 J. Math. Anal. Appl. 524, No. 1, Article ID 127052, 27 p. (2023). Reviewer: Changxing Miao (Beijing) MSC: 35Q55 35Q41 35B33 35A01 35A02 35P25 PDF BibTeX XML Cite \textit{T. Ogawa} and \textit{S. Tsuhara}, J. Math. Anal. Appl. 524, No. 1, Article ID 127052, 27 p. (2023; Zbl 1512.35547) Full Text: DOI
Guan, Wen; Rădulescu, Vicenţiu D.; Wang, Da-Bin Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent. (English) Zbl 1512.35618 J. Differ. Equations 355, 219-247 (2023). MSC: 35R11 35A15 35B33 35B38 35J61 47H11 58E30 81Q05 PDF BibTeX XML Cite \textit{W. Guan} et al., J. Differ. Equations 355, 219--247 (2023; Zbl 1512.35618) Full Text: DOI
Su, Yu Fractional \(p\)-Laplacian problem with critical Stein-Weiss type term. (English) Zbl 1510.35387 J. Geom. Anal. 33, No. 5, Paper No. 160, 22 p. (2023). MSC: 35R11 35A15 35A23 46B50 PDF BibTeX XML Cite \textit{Y. Su}, J. Geom. Anal. 33, No. 5, Paper No. 160, 22 p. (2023; Zbl 1510.35387) Full Text: DOI
Guo, Yuxia; Hu, Yichen; Liu, Ting; Nie, Jianjun Non-degeneracy of the bubble solutions for the fractional prescribed curvature problem and applications. (English) Zbl 1510.35378 J. Geom. Anal. 33, No. 5, Paper No. 141, 51 p. (2023). MSC: 35R11 35B33 35J91 PDF BibTeX XML Cite \textit{Y. Guo} et al., J. Geom. Anal. 33, No. 5, Paper No. 141, 51 p. (2023; Zbl 1510.35378) Full Text: DOI
Chen, Qingfang; Liao, Jiafeng Positive ground state solutions for Schrödinger-Poisson system with general nonlinearity and critical exponent. (English) Zbl 07659930 J. Partial Differ. Equations 36, No. 1, 68-81 (2023). MSC: 35B33 35J20 35J60 PDF BibTeX XML Cite \textit{Q. Chen} and \textit{J. Liao}, J. Partial Differ. Equations 36, No. 1, 68--81 (2023; Zbl 07659930) Full Text: DOI
Chen, Wenhui; Reissig, Michael On the critical exponent and sharp lifespan estimates for semilinear damped wave equations with data from Sobolev spaces of negative order. (English) Zbl 1506.35124 J. Evol. Equ. 23, No. 1, Paper No. 13, 21 p. (2023). MSC: 35L71 35L15 35B33 35B44 PDF BibTeX XML Cite \textit{W. Chen} and \textit{M. Reissig}, J. Evol. Equ. 23, No. 1, Paper No. 13, 21 p. (2023; Zbl 1506.35124) Full Text: DOI arXiv
Li, Quanqing; Rădulescu, Vicenţiu D.; Zhang, Jian; Zhao, Xin Normalized solutions of the autonomous Kirchhoff equation with Sobolev critical exponent: sub- and super-critical cases. (English) Zbl 1506.35052 Proc. Am. Math. Soc. 151, No. 2, 663-678 (2023). Reviewer: Calogero Vetro (Palermo) MSC: 35J20 35J50 35J15 35J60 35J70 PDF BibTeX XML Cite \textit{Q. Li} et al., Proc. Am. Math. Soc. 151, No. 2, 663--678 (2023; Zbl 1506.35052) Full Text: DOI
Anoop, T. V.; Das, Ujjal On the generalised Brézis-Nirenberg problem. (English) Zbl 1510.35041 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 4, 36 p. (2023). Reviewer: Tobias König (Frankfurt am Main) MSC: 35B33 35J60 35J92 58E30 PDF BibTeX XML Cite \textit{T. V. Anoop} and \textit{U. Das}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 4, 36 p. (2023; Zbl 1510.35041) Full Text: DOI arXiv
Wang, Lu Shun; Yang, Tao; Yang, Xiao Long A global compactness result with applications to a Hardy-Sobolev critical elliptic system involving coupled perturbation terms. (English) Zbl 1505.35152 Adv. Nonlinear Anal. 12, Article ID 20220276, 31 p. (2023). MSC: 35J47 35B33 35J50 PDF BibTeX XML Cite \textit{L. S. Wang} et al., Adv. Nonlinear Anal. 12, Article ID 20220276, 31 p. (2023; Zbl 1505.35152) Full Text: DOI
Yang, Jie; Chen, Haibo; Liu, Senli Existence and multiple solutions for the critical fractional \(p\)-Kirchhoff type problems involving sign-changing weight functions. (English) Zbl 07771051 Math. Methods Appl. Sci. 45, No. 11, 6546-6567 (2022). MSC: 35R11 35A15 35J25 35J92 PDF BibTeX XML Cite \textit{J. Yang} et al., Math. Methods Appl. Sci. 45, No. 11, 6546--6567 (2022; Zbl 07771051) Full Text: DOI
Qian, Xiaoyong; Wang, Jun; Zhu, Maochun Existence of solutions for a coupled Schrödinger equations with critical exponent. (English) Zbl 1512.35548 Electron Res. Arch. 30, No. 7, 2730-2747 (2022). MSC: 35Q55 35Q41 78A60 35B33 35B20 35A15 35A01 35A02 82C10 PDF BibTeX XML Cite \textit{X. Qian} et al., Electron Res. Arch. 30, No. 7, 2730--2747 (2022; Zbl 1512.35548) Full Text: DOI
Guo, Zhenyu; Zhong, Xuexiu On a fractional Hardy-Sobolev inequality with two-variables. (English) Zbl 1504.35014 Rocky Mt. J. Math. 52, No. 5, 1643-1660 (2022). MSC: 35A23 35B33 35R11 PDF BibTeX XML Cite \textit{Z. Guo} and \textit{X. Zhong}, Rocky Mt. J. Math. 52, No. 5, 1643--1660 (2022; Zbl 1504.35014) Full Text: DOI Link
Deng, Zhiying; Huang, Yisheng Infinitely many solutions for fractional elliptic systems involving critical nonlinearities and Hardy potentials. (English) Zbl 1505.35193 Results Appl. Math. 16, Article ID 100341, 22 p. (2022). MSC: 35J62 35R11 35B33 35A01 PDF BibTeX XML Cite \textit{Z. Deng} and \textit{Y. Huang}, Results Appl. Math. 16, Article ID 100341, 22 p. (2022; Zbl 1505.35193) Full Text: DOI
Premoselli, Bruno; Vétois, Jérôme Sign-changing blow-up for the Yamabe equation at the lowest energy level. (English) Zbl 1507.35049 Adv. Math. 410 B, Article ID 108769, 50 p. (2022). Reviewer: Alberto Saldaña (Ciudad de México) MSC: 35B44 35J61 35R01 58J05 58J55 PDF BibTeX XML Cite \textit{B. Premoselli} and \textit{J. Vétois}, Adv. Math. 410 B, Article ID 108769, 50 p. (2022; Zbl 1507.35049) Full Text: DOI arXiv
Ahmedou, Mohameden; Ayed, Mohamed Ben Non simple blow ups for the Nirenberg problem on half spheres. (English) Zbl 1502.35004 Discrete Contin. Dyn. Syst. 42, No. 12, 5967-6005 (2022). MSC: 35A15 35J20 35R01 58J05 58E05 PDF BibTeX XML Cite \textit{M. Ahmedou} and \textit{M. B. Ayed}, Discrete Contin. Dyn. Syst. 42, No. 12, 5967--6005 (2022; Zbl 1502.35004) Full Text: DOI arXiv
Sun, Xueqi; Bai, Shujie; Song, Yueqiang On the noncooperative Schrödinger-Kirchhoff system involving the critical nonlinearities on the Heisenberg group. (English) Zbl 1505.35151 Bound. Value Probl. 2022, Paper No. 75, 19 p. (2022). MSC: 35J47 35R03 35J92 35A01 PDF BibTeX XML Cite \textit{X. Sun} et al., Bound. Value Probl. 2022, Paper No. 75, 19 p. (2022; Zbl 1505.35151) Full Text: DOI
Panda, Akasmika; Choudhuri, Debajyoti Infinitely many solutions for a doubly nonlocal fractional problem involving two critical nonlinearities. (English) Zbl 1501.35444 Complex Var. Elliptic Equ. 67, No. 12, 2835-2865 (2022). MSC: 35R11 35B33 35D30 35J92 46E35 PDF BibTeX XML Cite \textit{A. Panda} and \textit{D. Choudhuri}, Complex Var. Elliptic Equ. 67, No. 12, 2835--2865 (2022; Zbl 1501.35444) Full Text: DOI
Deng, Yin; Jia, Gao Multiple solutions for a quasilinear Schrödinger equation involving critical Hardy-Sobolev exponent with Robin boundary condition. (English) Zbl 1501.35145 Complex Var. Elliptic Equ. 67, No. 11, 2602-2618 (2022). MSC: 35J10 35J62 35J25 35A01 PDF BibTeX XML Cite \textit{Y. Deng} and \textit{G. Jia}, Complex Var. Elliptic Equ. 67, No. 11, 2602--2618 (2022; Zbl 1501.35145) Full Text: DOI
Su, Yu; Feng, Zhaosheng Fractional Sobolev embedding with radial potential. (English) Zbl 1500.35304 J. Differ. Equations 340, 1-44 (2022). MSC: 35R11 35J20 46E35 PDF BibTeX XML Cite \textit{Y. Su} and \textit{Z. Feng}, J. Differ. Equations 340, 1--44 (2022; Zbl 1500.35304) Full Text: DOI
Premoselli, Bruno; Vétois, Jérôme Stability and instability results for sign-changing solutions to second-order critical elliptic equations. (English. French summary) Zbl 1498.58018 J. Math. Pures Appl. (9) 167, 257-293 (2022). MSC: 58J05 35J15 35J61 35Q55 PDF BibTeX XML Cite \textit{B. Premoselli} and \textit{J. Vétois}, J. Math. Pures Appl. (9) 167, 257--293 (2022; Zbl 1498.58018) Full Text: DOI arXiv
Li, Gui-Dong; Li, Yong-Yong; Tang, Chun-Lei Ground state solutions for critical Schrödinger equations with Hardy potential. (English) Zbl 1498.35260 Nonlinearity 35, No. 10, 5076-5108 (2022). MSC: 35J61 35J10 35B33 35A01 35J20 PDF BibTeX XML Cite \textit{G.-D. Li} et al., Nonlinearity 35, No. 10, 5076--5108 (2022; Zbl 1498.35260) Full Text: DOI
Akahori, Takafumi; Murata, Miho Uniqueness of ground states for combined power-type nonlinear scalar field equations involving the Sobolev critical exponent at high frequencies in three and four dimensions. (English) Zbl 1500.35254 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 6, Paper No. 71, 54 p. (2022). Reviewer: Federico Bernini (Bari) MSC: 35Q55 35A02 35B33 PDF BibTeX XML Cite \textit{T. Akahori} and \textit{M. Murata}, NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 6, Paper No. 71, 54 p. (2022; Zbl 1500.35254) Full Text: DOI
Li, Zhouxin; Yuan, Xiang; Zhang, Qi Existence of critical points for noncoercive functionals with critical Sobolev exponent. (English) Zbl 1498.35212 Appl. Anal. 101, No. 15, 5358-5375 (2022). MSC: 35J20 35B33 35A01 PDF BibTeX XML Cite \textit{Z. Li} et al., Appl. Anal. 101, No. 15, 5358--5375 (2022; Zbl 1498.35212) Full Text: DOI
Zheng, Tiantian; Wang, Zhiyong; Ma, Pei; Zhang, Jihui Multiple positive solutions for an elliptic problem involving a critical Sobolev exponent. (English) Zbl 1498.35305 Appl. Anal. 101, No. 15, 5334-5357 (2022). MSC: 35J91 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{T. Zheng} et al., Appl. Anal. 101, No. 15, 5334--5357 (2022; Zbl 1498.35305) Full Text: DOI
Li, Quanqing; Zou, Wenming The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the \(L^2\)-subcritical and \(L^2\)-supercritical cases. (English) Zbl 1498.35197 Adv. Nonlinear Anal. 11, 1531-1551 (2022). MSC: 35J10 35R11 35A01 35J20 PDF BibTeX XML Cite \textit{Q. Li} and \textit{W. Zou}, Adv. Nonlinear Anal. 11, 1531--1551 (2022; Zbl 1498.35197) Full Text: DOI
Qu, Siqi; He, Xiaoming Multiplicity of high energy solutions for fractional Schrödinger-Poisson systems with critical frequency. (English) Zbl 1496.35437 Electron. J. Differ. Equ. 2022, Paper No. 47, 21 p. (2022). MSC: 35R11 35A15 35B25 35B33 35B35 35B40 35J47 35J61 92C17 PDF BibTeX XML Cite \textit{S. Qu} and \textit{X. He}, Electron. J. Differ. Equ. 2022, Paper No. 47, 21 p. (2022; Zbl 1496.35437) Full Text: Link
Li, Gongbao; Luo, Xiao; Yang, Tao Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent. (English) Zbl 1497.35232 Ann. Fenn. Math. 47, No. 2, 895-925 (2022). MSC: 35J62 35B33 35B40 35A15 PDF BibTeX XML Cite \textit{G. Li} et al., Ann. Fenn. Math. 47, No. 2, 895--925 (2022; Zbl 1497.35232) Full Text: DOI arXiv
Wan, Youyan; Xie, Jun The existence of two positive solutions to an elliptic system with critical Sobolev exponents. (Chinese. English summary) Zbl 1513.35040 Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 1, 103-130 (2022). MSC: 35B09 35J50 35J10 35B33 PDF BibTeX XML Cite \textit{Y. Wan} and \textit{J. Xie}, Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 1, 103--130 (2022; Zbl 1513.35040) Full Text: Link
Lv, Huilin; Zheng, Shenzhou Existence and multiplicity for fractional \(p\)-Kirchhoff problem with competitive nonlinearities and critical growth. (English) Zbl 1494.35164 Anal. Math. Phys. 12, No. 4, Paper No. 96, 30 p. (2022). MSC: 35R11 35A15 35B33 35J92 47G20 PDF BibTeX XML Cite \textit{H. Lv} and \textit{S. Zheng}, Anal. Math. Phys. 12, No. 4, Paper No. 96, 30 p. (2022; Zbl 1494.35164) Full Text: DOI
Duan, Lipeng; Tian, Shuying Concentrated solutions for a critical elliptic equation. (English) Zbl 1497.35256 Discrete Contin. Dyn. Syst. 42, No. 8, 4061-4094 (2022). MSC: 35J91 35J25 35A01 35A02 PDF BibTeX XML Cite \textit{L. Duan} and \textit{S. Tian}, Discrete Contin. Dyn. Syst. 42, No. 8, 4061--4094 (2022; Zbl 1497.35256) Full Text: DOI
Chen, Shaowei; Gou, Tianxiang Higher topological type semiclassical states for Sobolev critical Dirac equations with degenerate potential. (English) Zbl 1494.35018 J. Geom. Anal. 32, No. 9, Paper No. 231, 39 p. (2022). MSC: 35B25 35A15 35B33 35Q40 35Q41 PDF BibTeX XML Cite \textit{S. Chen} and \textit{T. Gou}, J. Geom. Anal. 32, No. 9, Paper No. 231, 39 p. (2022; Zbl 1494.35018) Full Text: DOI arXiv
Kou, Bingyu; An, Tianqing The existence of positive solutions for the Neumann problem of \(p\)-Laplacian elliptic systems with Sobolev critical exponent. (English) Zbl 1497.35187 Bound. Value Probl. 2022, Paper No. 22, 24 p. (2022). MSC: 35J57 35J92 35B33 PDF BibTeX XML Cite \textit{B. Kou} and \textit{T. An}, Bound. Value Probl. 2022, Paper No. 22, 24 p. (2022; Zbl 1497.35187) Full Text: DOI
Guo, Ting; Tang, Xianhua; Zhang, Qi Ground state solutions for Choquard equations with Hardy potentials and critical nonlinearity. (English) Zbl 1496.35206 Complex Var. Elliptic Equ. 67, No. 7, 1579-1597 (2022). MSC: 35J61 35B33 35A01 35J20 PDF BibTeX XML Cite \textit{T. Guo} et al., Complex Var. Elliptic Equ. 67, No. 7, 1579--1597 (2022; Zbl 1496.35206) Full Text: DOI
Fang, Fei; Zhang, Binlin Global existence and blow-up for semilinear parabolic equation with critical exponent in \(\mathbb{R}^N\). (English) Zbl 1499.35355 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 3, 23 p. (2022). MSC: 35K58 35A01 35B44 35K15 PDF BibTeX XML Cite \textit{F. Fang} and \textit{B. Zhang}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 3, 23 p. (2022; Zbl 1499.35355) Full Text: DOI
Yin, Songting; Abdelhakim, Ahmed A. Optimal critical exponent \(L^p\) inequalities of Hardy type on the sphere via Xiao’s method. (English) Zbl 1500.26015 J. Math. Inequal. 16, No. 1, 265-272 (2022). MSC: 26D10 35A23 46E35 PDF BibTeX XML Cite \textit{S. Yin} and \textit{A. A. Abdelhakim}, J. Math. Inequal. 16, No. 1, 265--272 (2022; Zbl 1500.26015) Full Text: DOI arXiv
Liu, Min; Chen, Deyan; Guo, Zhenyu A fractional magnetic Hardy-Sobolev inequality with two variables. (English) Zbl 1490.35522 J. Math. Inequal. 16, No. 1, 181-187 (2022). MSC: 35R11 35A23 35B33 PDF BibTeX XML Cite \textit{M. Liu} et al., J. Math. Inequal. 16, No. 1, 181--187 (2022; Zbl 1490.35522) Full Text: DOI
Qu, Siqi; He, Xiaoming On the number of concentrating solutions of a fractional Schrödinger-Poisson system with doubly critical growth. (English) Zbl 1485.35194 Anal. Math. Phys. 12, No. 2, Paper No. 59, 49 p. (2022). MSC: 35J60 35R11 35B33 35B09 PDF BibTeX XML Cite \textit{S. Qu} and \textit{X. He}, Anal. Math. Phys. 12, No. 2, Paper No. 59, 49 p. (2022; Zbl 1485.35194) Full Text: DOI
Zhu, Gaili; Duan, Chunping; Zhang, Jianjun; Zhang, Huixing Ground states of coupled critical Choquard equations with weighted potentials. (English) Zbl 1492.35030 Opusc. Math. 42, No. 2, 337-354 (2022). Reviewer: Chao Ji (Shanghai) MSC: 35B33 35B25 35J47 35J50 35J61 PDF BibTeX XML Cite \textit{G. Zhu} et al., Opusc. Math. 42, No. 2, 337--354 (2022; Zbl 1492.35030) Full Text: DOI
Zhang, Youpei; Tang, Xianhua; Rădulescu, Vicenţiu D. High and low perturbations of Choquard equations with critical reaction and variable growth. (English) Zbl 07481828 Discrete Contin. Dyn. Syst. 42, No. 4, 1971-2003 (2022). MSC: 47G20 35B38 58E50 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Discrete Contin. Dyn. Syst. 42, No. 4, 1971--2003 (2022; Zbl 07481828) Full Text: DOI
Choudhuri, D.; Zuo, Jiabin Critical Kirchhoff \(p(\cdot) \& q(\cdot)\)-fractional variable-order systems with variable exponent growth. (English) Zbl 1481.35377 Anal. Math. Phys. 12, No. 1, Paper No. 30, 29 p. (2022). MSC: 35R11 35B40 47G20 35S15 35J60 PDF BibTeX XML Cite \textit{D. Choudhuri} and \textit{J. Zuo}, Anal. Math. Phys. 12, No. 1, Paper No. 30, 29 p. (2022; Zbl 1481.35377) Full Text: DOI
Yin, Xin; Zou, Wenming Positive least energy solutions for \(k\)-coupled Schrödinger system with critical exponent: the higher dimension and cooperative case. (English) Zbl 1481.35185 J. Fixed Point Theory Appl. 24, No. 1, Paper No. 5, 39 p. (2022). MSC: 35J57 35J61 35B33 35A01 PDF BibTeX XML Cite \textit{X. Yin} and \textit{W. Zou}, J. Fixed Point Theory Appl. 24, No. 1, Paper No. 5, 39 p. (2022; Zbl 1481.35185) Full Text: DOI arXiv
D’Abbicco, M.; Ebert, M. R. The critical exponent for semilinear \(\sigma \)-evolution equations with a strong non-effective damping. (English) Zbl 1481.35040 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 215, Article ID 112637, 26 p. (2022). Reviewer: Michael Reissig (Freiberg) MSC: 35B33 35L15 35L71 35R11 PDF BibTeX XML Cite \textit{M. D'Abbicco} and \textit{M. R. Ebert}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 215, Article ID 112637, 26 p. (2022; Zbl 1481.35040) Full Text: DOI arXiv
Duan, Yu; Li, Hong-Ying; Sun, Xin Uniqueness of positive solutions for a class of \(p\)-Kirchhoff type problems with singularity. (English) Zbl 1490.35164 Rocky Mt. J. Math. 51, No. 5, 1629-1637 (2021). MSC: 35J62 35J75 35A02 35A15 PDF BibTeX XML Cite \textit{Y. Duan} et al., Rocky Mt. J. Math. 51, No. 5, 1629--1637 (2021; Zbl 1490.35164) Full Text: DOI Link
Zhang, Jinguo Nonexistence of critical fractional Sobolev-Hardy elliptic problems. (English) Zbl 1481.35201 J. Anal. 29, No. 4, 1105-1115 (2021). MSC: 35J61 35J25 35B33 35A02 PDF BibTeX XML Cite \textit{J. Zhang}, J. Anal. 29, No. 4, 1105--1115 (2021; Zbl 1481.35201) Full Text: DOI
Liu, Min; Liu, Jiu Ground state solution for an autonomous nonlinear Schrödinger system. (English) Zbl 1479.35805 J. Funct. Spaces 2021, Article ID 1003941, 7 p. (2021). MSC: 35Q55 81Q05 PDF BibTeX XML Cite \textit{M. Liu} and \textit{J. Liu}, J. Funct. Spaces 2021, Article ID 1003941, 7 p. (2021; Zbl 1479.35805) Full Text: DOI
Li, Shiyu; Wei, Gongming; Duan, Xueliang On existence and asymptotic behavior of solutions of elliptic equations with nearly critical exponent and singular coefficients. (English) Zbl 1488.35005 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 64, 25 p. (2021). MSC: 35A15 35A24 35B40 35J25 PDF BibTeX XML Cite \textit{S. Li} et al., Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 64, 25 p. (2021; Zbl 1488.35005) Full Text: DOI
Rawat, Sushmita; Sreenadh, Konijeti Multiple positive solutions for degenerate Kirchhoff equations with singular and Choquard nonlinearity. (English) Zbl 1479.35926 Math. Methods Appl. Sci. 44, No. 18, 13812-13832 (2021). MSC: 35R11 35J20 35J25 35J61 35R09 PDF BibTeX XML Cite \textit{S. Rawat} and \textit{K. Sreenadh}, Math. Methods Appl. Sci. 44, No. 18, 13812--13832 (2021; Zbl 1479.35926) Full Text: DOI arXiv
Clapp, Mónica; Fernández, Juan Carlos; Saldaña, Alberto Critical polyharmonic systems and optimal partitions. (English) Zbl 1480.35172 Commun. Pure Appl. Anal. 20, No. 11, 4007-4023 (2021). MSC: 35J48 35B33 35A01 PDF BibTeX XML Cite \textit{M. Clapp} et al., Commun. Pure Appl. Anal. 20, No. 11, 4007--4023 (2021; Zbl 1480.35172) Full Text: DOI arXiv
Bonheure, Denis; Cheikh Ali, Hussein; Nascimento, Robson A Paneitz-Branson type equation with Neumann boundary conditions. (English) Zbl 1479.35460 Adv. Calc. Var. 14, No. 4, 499-519 (2021). MSC: 35J91 35J40 PDF BibTeX XML Cite \textit{D. Bonheure} et al., Adv. Calc. Var. 14, No. 4, 499--519 (2021; Zbl 1479.35460) Full Text: DOI arXiv
Tahri, Kamel; Yazid, Fares Biharmonic-Kirchhoff type equation involving critical Sobolev exponent with singular term. (English) Zbl 1475.35146 Commun. Korean Math. Soc. 36, No. 2, 247-256 (2021). MSC: 35J40 35J62 35A01 35J35 PDF BibTeX XML Cite \textit{K. Tahri} and \textit{F. Yazid}, Commun. Korean Math. Soc. 36, No. 2, 247--256 (2021; Zbl 1475.35146) Full Text: DOI
Jiang, Ruiting; Zhai, Chengbo Existence of solution for the critical biharmonic equations involving Rellich potentials. (Chinese. English summary) Zbl 1488.31015 J. Shandong Univ., Nat. Sci. 56, No. 6, 42-46 (2021). MSC: 31B30 35J30 35B33 PDF BibTeX XML Cite \textit{R. Jiang} and \textit{C. Zhai}, J. Shandong Univ., Nat. Sci. 56, No. 6, 42--46 (2021; Zbl 1488.31015)
Lin, Xiaolu; Zheng, Shenzhou Multiplicity and asymptotic behavior of solutions to fractional \((p,q)\)-Kirchhoff type problems with critical Sobolev-Hardy exponent. (English) Zbl 1471.35303 Electron. J. Differ. Equ. 2021, Paper No. 66, 20 p. (2021). MSC: 35R11 35A15 35B33 35B40 35J25 35J92 PDF BibTeX XML Cite \textit{X. Lin} and \textit{S. Zheng}, Electron. J. Differ. Equ. 2021, Paper No. 66, 20 p. (2021; Zbl 1471.35303) Full Text: Link
Guo, Lun; Li, Qi Multiple positive solutions to critical p-Laplacian equations with vanishing potential. (English) Zbl 1473.35314 Z. Angew. Math. Phys. 72, No. 4, Paper No. 167, 20 p. (2021). MSC: 35J92 35B33 35B09 35A01 PDF BibTeX XML Cite \textit{L. Guo} and \textit{Q. Li}, Z. Angew. Math. Phys. 72, No. 4, Paper No. 167, 20 p. (2021; Zbl 1473.35314) Full Text: DOI
Dehsari, Iraj; Nyamoradi, Nemat Solutions for the fractional \(p\)-Laplacian systems with several critical Sobolev-Hardy terms. (English) Zbl 1488.35058 Differ. Equ. Appl. 13, No. 1, 15-33 (2021). MSC: 35B33 35J60 35J65 PDF BibTeX XML Cite \textit{I. Dehsari} and \textit{N. Nyamoradi}, Differ. Equ. Appl. 13, No. 1, 15--33 (2021; Zbl 1488.35058) Full Text: DOI
Chen, Shaowei; Gou, Tianxiang Infinitely many localized semiclassical states for critical nonlinear Dirac equations. (English) Zbl 1470.58010 Nonlinearity 34, No. 9, 6358-6397 (2021). MSC: 58E05 35L20 PDF BibTeX XML Cite \textit{S. Chen} and \textit{T. Gou}, Nonlinearity 34, No. 9, 6358--6397 (2021; Zbl 1470.58010) Full Text: DOI
Zuo, Jiabin; An, Tianqing; Fiscella, Alessio A critical Kirchhoff-type problem driven by a \(p ( \cdot )\)-fractional Laplace operator with variable \(s ( \cdot )\) -order. (English) Zbl 1469.35236 Math. Methods Appl. Sci. 44, No. 1, 1071-1085 (2021). MSC: 35R11 35J25 35J62 47G20 35S15 PDF BibTeX XML Cite \textit{J. Zuo} et al., Math. Methods Appl. Sci. 44, No. 1, 1071--1085 (2021; Zbl 1469.35236) Full Text: DOI
Ji, Chao; Rădulescu, Vicenţiu D. Multi-bump solutions for quasilinear elliptic equations with variable exponents and critical growth in \(\mathbb{R}^N\). (English) Zbl 1479.35483 Commun. Contemp. Math. 23, No. 5, Article ID 2050013, 41 p. (2021). Reviewer: Leszek Gasiński (Kraków) MSC: 35J92 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{C. Ji} and \textit{V. D. Rădulescu}, Commun. Contemp. Math. 23, No. 5, Article ID 2050013, 41 p. (2021; Zbl 1479.35483) Full Text: DOI
Guo, Yuxia; Liu, Ting Construction of solutions for Hénon-type equation with critical growth. (English) Zbl 1472.35193 Adv. Nonlinear Stud. 21, No. 2, 347-367 (2021). MSC: 35J91 35J25 35B33 35A01 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{T. Liu}, Adv. Nonlinear Stud. 21, No. 2, 347--367 (2021; Zbl 1472.35193) Full Text: DOI
Zhang, Jinguo; Yang, Dengyun Critical Hardy-Sobolev exponents problem with Grushin operator and Hardy-type singularity terms. (English) Zbl 1467.35166 Acta Appl. Math. 172, Paper No. 4, 15 p. (2021). MSC: 35J70 35J75 35A01 35A15 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{D. Yang}, Acta Appl. Math. 172, Paper No. 4, 15 p. (2021; Zbl 1467.35166) Full Text: DOI
Rimouche, Ali Positive solution for a boundary singular semilinear equation with Hardy-Sobolev exponent. (English) Zbl 1467.35182 Complex Var. Elliptic Equ. 66, No. 6-7, 1151-1161 (2021); correction ibid. 66, No. 6-7, 1211 (2021). MSC: 35J91 35J75 35J25 35B09 35A01 PDF BibTeX XML Cite \textit{A. Rimouche}, Complex Var. Elliptic Equ. 66, No. 6--7, 1151--1161 (2021; Zbl 1467.35182) Full Text: DOI
Luo, Xiaorong; Mao, Anmin; Sang, Yanbin Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. (English) Zbl 1466.35164 Commun. Pure Appl. Anal. 20, No. 4, 1319-1345 (2021). MSC: 35J60 35A01 35J20 PDF BibTeX XML Cite \textit{X. Luo} et al., Commun. Pure Appl. Anal. 20, No. 4, 1319--1345 (2021; Zbl 1466.35164) Full Text: DOI
Shen, Zupei; Yu, Jianshe Multiple solutions for weighted Kirchhoff equations involving critical Hardy-Sobolev exponent. (English) Zbl 1466.35196 Adv. Nonlinear Anal. 10, 673-683 (2021). MSC: 35J62 35B33 35A01 PDF BibTeX XML Cite \textit{Z. Shen} and \textit{J. Yu}, Adv. Nonlinear Anal. 10, 673--683 (2021; Zbl 1466.35196) Full Text: DOI
Liang, Sihua; Pucci, Patrizia; Zhang, Binlin Multiple solutions for critical Choquard-Kirchhoff type equations. (English) Zbl 1465.35215 Adv. Nonlinear Anal. 10, 400-419 (2021). MSC: 35J60 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{S. Liang} et al., Adv. Nonlinear Anal. 10, 400--419 (2021; Zbl 1465.35215) Full Text: DOI
Wang, Li; Han, Tao; Wang, Ji Xiu Infinitely many solutions for Schrödinger-Choquard-Kirchhoff equations involving the fractional \(p\)-Laplacian. (English) Zbl 1462.35448 Acta Math. Sin., Engl. Ser. 37, No. 2, 315-332 (2021). MSC: 35R11 35A15 35J50 35J92 PDF BibTeX XML Cite \textit{L. Wang} et al., Acta Math. Sin., Engl. Ser. 37, No. 2, 315--332 (2021; Zbl 1462.35448) Full Text: DOI
Bartsch, Thomas; Xu, Tian A spinorial analogue of the Brezis-Nirenberg theorem involving the critical Sobolev exponent. (English) Zbl 1472.53057 J. Funct. Anal. 280, No. 12, Article ID 108991, 47 p. (2021). Reviewer: Georges Habib (Beirut) MSC: 53C27 35R01 35Q41 57R15 58E05 PDF BibTeX XML Cite \textit{T. Bartsch} and \textit{T. Xu}, J. Funct. Anal. 280, No. 12, Article ID 108991, 47 p. (2021; Zbl 1472.53057) Full Text: DOI arXiv
Su, Yu; Chen, Haibo; Liu, Senli; Che, Guofeng Ground state solution of \(p\)-Laplacian equation with finite many critical nonlinearities. (English) Zbl 1460.35180 Complex Var. Elliptic Equ. 66, No. 2, 283-311 (2021). MSC: 35J92 35B33 35A01 35J20 PDF BibTeX XML Cite \textit{Y. Su} et al., Complex Var. Elliptic Equ. 66, No. 2, 283--311 (2021; Zbl 1460.35180) Full Text: DOI
Clapp, Mónica; Pardo, Rosa; Pistoia, Angela; Saldaña, Alberto A solution to a slightly subcritical elliptic problem with non-power nonlinearity. (English) Zbl 1465.35242 J. Differ. Equations 275, 418-446 (2021). Reviewer: Davide Buoso (Alessandria) MSC: 35J91 35B44 35B33 PDF BibTeX XML Cite \textit{M. Clapp} et al., J. Differ. Equations 275, 418--446 (2021; Zbl 1465.35242) Full Text: DOI arXiv
Zhang, Jinguo; Hsu, Tsing-San Multiplicity of positive solutions for a nonlocal elliptic problem involving critical Sobolev-Hardy exponents and concave-convex nonlinearities. (English) Zbl 1499.35247 Acta Math. Sci., Ser. B, Engl. Ed. 40, No. 3, 679-699 (2020). MSC: 35J50 35B09 35J05 26A33 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{T.-S. Hsu}, Acta Math. Sci., Ser. B, Engl. Ed. 40, No. 3, 679--699 (2020; Zbl 1499.35247) Full Text: DOI
Bazarbacha, Imen The effect of a discontinuous weight for a critical Sobolev problem. (English) Zbl 1499.35059 Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 21, No. 4, 303-309 (2020). MSC: 35B33 PDF BibTeX XML Cite \textit{I. Bazarbacha}, Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 21, No. 4, 303--309 (2020; Zbl 1499.35059)
Zhang, Jinguo; Hsu, Tsing-San Multiple solutions for a fractional Laplacian system involving critical Sobolev-Hardy exponents and homogeneous term. (English) Zbl 1480.35196 Math. Model. Anal. 25, No. 1, 1-20 (2020). MSC: 35J60 35R11 35A01 35J50 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{T.-S. Hsu}, Math. Model. Anal. 25, No. 1, 1--20 (2020; Zbl 1480.35196) Full Text: DOI
Loiudice, Annunziata A multiplicity result for a non-homogeneous subelliptic problem with Sobolev exponent. (English) Zbl 1471.35094 Georgiev, Vladimir (ed.) et al., Advances in harmonic analysis and partial differential equations. Based on the 12th ISAAC congress, session “Harmonic analysis and partial differential equations”, Aveiro, Portugal, July 29 – August 2, 2019. Cham: Birkhäuser. Trends Math., 99-120 (2020). MSC: 35H20 35J25 35R03 PDF BibTeX XML Cite \textit{A. Loiudice}, in: Advances in harmonic analysis and partial differential equations. Based on the 12th ISAAC congress, session ``Harmonic analysis and partial differential equations'', Aveiro, Portugal, July 29 -- August 2, 2019. Cham: Birkhäuser. 99--120 (2020; Zbl 1471.35094) Full Text: DOI
Sreenadh, K.; Mukherjee, T. Critical growth elliptic problems with Choquard type nonlinearity: a survey. (English) Zbl 07357287 Manchanda, Pammy (ed.) et al., Mathematical modelling, optimization, analytic and numerical solutions. Selected papers based on the presentations at the international conference in conjunction with 14th biennial conference of ISIAM, Guru Nanak Dev University, Amritsar, India, February 2–4, 2018. Singapore: Springer. Ind. Appl. Math., 197-229 (2020). MSC: 65-XX PDF BibTeX XML Cite \textit{K. Sreenadh} and \textit{T. Mukherjee}, in: Mathematical modelling, optimization, analytic and numerical solutions. Selected papers based on the presentations at the international conference in conjunction with 14th biennial conference of ISIAM, Guru Nanak Dev University, Amritsar, India, February 2--4, 2018. Singapore: Springer. 197--229 (2020; Zbl 07357287) Full Text: DOI arXiv
Gao, Fengshuang; Guo, Yuxia Multiple solutions for quasilinear equation involving Hardy critical Sobolev exponents. (English) Zbl 1466.35190 Topol. Methods Nonlinear Anal. 56, No. 1, 31-61 (2020). MSC: 35J62 35B33 35A01 35J20 PDF BibTeX XML Cite \textit{F. Gao} and \textit{Y. Guo}, Topol. Methods Nonlinear Anal. 56, No. 1, 31--61 (2020; Zbl 1466.35190) Full Text: DOI Euclid
Bueno, H.; Lisboa, N. da Hora; Vieira, L. L. Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy-Littlewood-Sobolev critical exponent. (English) Zbl 1464.35311 Z. Angew. Math. Phys. 71, No. 4, Paper No. 143, 26 p. (2020). MSC: 35Q55 35Q40 35J20 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{H. Bueno} et al., Z. Angew. Math. Phys. 71, No. 4, Paper No. 143, 26 p. (2020; Zbl 1464.35311) Full Text: DOI arXiv
Zhong, Qiuping; Wu, Tiantian Existence and multiplicity of solutions for a class of \(({p_1} (x), {p_2} (x))\)-biharmonic equations. (Chinese. English summary) Zbl 1474.35315 Math. Pract. Theory 50, No. 16, 239-249 (2020). MSC: 35J60 35J40 PDF BibTeX XML Cite \textit{Q. Zhong} and \textit{T. Wu}, Math. Pract. Theory 50, No. 16, 239--249 (2020; Zbl 1474.35315)
Zhao, Fu; Liu, Zeyi; Liang, Sihua Existence of infinite many solutions for fractional Kirchhoff type equations with critical indexes. (Chinese. English summary) Zbl 1474.35010 J. Nat. Sci. Heilongjiang Univ. 37, No. 5, 544-548 (2020). MSC: 35A01 35R11 PDF BibTeX XML Cite \textit{F. Zhao} et al., J. Nat. Sci. Heilongjiang Univ. 37, No. 5, 544--548 (2020; Zbl 1474.35010) Full Text: DOI
El Mokhtar, Mohammed El Mokhtar Ould; Almuhiameed, Zeid I. On singular elliptic equation with singular nonlinearities, Hardy-Sobolev critical exponent and weights. (English) Zbl 1474.35328 Differ. Equ. Appl. 12, No. 4, 397-410 (2020). MSC: 35J66 35J56 35B40 PDF BibTeX XML Cite \textit{M. E. M. O. El Mokhtar} and \textit{Z. I. Almuhiameed}, Differ. Equ. Appl. 12, No. 4, 397--410 (2020; Zbl 1474.35328) Full Text: DOI
Rashidi, Ali Jabar; Shekarbaigi, Mohsen A variational method for solving quasilinear elliptic systems involving symmetric multi-polar potentials. (English) Zbl 1474.35023 Differ. Equ. Appl. 12, No. 4, 355-375 (2020). MSC: 35A15 35B33 35J70 PDF BibTeX XML Cite \textit{A. J. Rashidi} and \textit{M. Shekarbaigi}, Differ. Equ. Appl. 12, No. 4, 355--375 (2020; Zbl 1474.35023) Full Text: DOI
Che, Guofeng; Chen, Haibo Existence and concentration result for Kirchhoff equations with critical exponent and Hartree nonlinearity. (English) Zbl 1471.35019 J. Appl. Anal. Comput. 10, No. 5, 2121-2144 (2020). Reviewer: Shuangjie Peng (Wuhan) MSC: 35B25 35B38 35J62 35B33 PDF BibTeX XML Cite \textit{G. Che} and \textit{H. Chen}, J. Appl. Anal. Comput. 10, No. 5, 2121--2144 (2020; Zbl 1471.35019) Full Text: DOI