×

Invariant measures exist without a growth condition. (English) Zbl 1098.37034

Summary: Given a non-flat \(S\)-unimodal interval map \(f\), we show that there exists \(C\) which only depends on the order of the critical point \(c\) such that if \(| Df^n(f(c))|\geq C\) for all \(n\) sufficiently large, then \(f\) admits an absolutely continuous invariant probability measure (acip). As part of the proof we show that if the quotients of successive intervals of the principal nest of \(f\) are sufficiently small, then \(f\) admits an acip. As a special case, any \(S\)-unimodal map with critical order \(\ell<2+\varepsilon\) having no central returns possesses an acip. These results imply that the summability assumptions in the theorems of T. Nowicki and S. van Strien [Invent. Math. 105, No. 1, 123–136 (1991; Zbl 0736.58030)] and M. Martens and T. Nowicki [Astérisque 261, 239–252 (2000; Zbl 0939.37020)] can be weakened considerably.

MSC:

37E05 Dynamical systems involving maps of the interval
37A05 Dynamical aspects of measure-preserving transformations
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bowen, R.: Invariant measures for Markov maps of the interval. Commun. Math. Phys. 69, 1–17 (1979) · Zbl 0421.28016 · doi:10.1007/BF01941319
[2] Bruin, H.: Topological conditions for the existence of invariant measures for unimodal maps. Ergod. Th. &amp; Dynam. Sys. 14, 433–451 (1994) · Zbl 0812.58052
[3] Bruin, H.: Topological conditions for the existence of Cantor attractors. Trans. Am. Math. Soc. 350, 2229–2263 (1998) · Zbl 0901.58029 · doi:10.1090/S0002-9947-98-02109-6
[4] Bruin, H., Keller, G., Nowicki, T., van Strien, S.: Wild Cantor attractors exist. Ann. Math. 143, 97–130 (1996) · Zbl 0848.58016 · doi:10.2307/2118654
[5] Collet, P., Eckmann, J.-P.: Positive Liapunov exponents and absolute continuity for maps of the interval. Ergod. Th. &amp; Dyn. Sys. 3, 13–46 (1983) · Zbl 0532.28014
[6] Graczyk, J., Świ tek, G.: Induced expansion for quadratic polynomials. Ann. Sci Éc. Norm. Súp. 29, 399–482 (1996) · Zbl 0867.58048
[7] Graczyk, J., Sands, D., Świ tek, G.: Decay of geometry for unimodal maps: Negative Schwarzian case. Preprint, 2000 · Zbl 1091.37015
[8] Jakobson, M.V.: Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun. Math. Phys. 81, 39–88 (1981) · Zbl 0497.58017 · doi:10.1007/BF01941800
[9] Jakobson, M., Świ tek, G.: Metric properties of non-renormalizable S-unimodal maps. I. Induced expansion and invariant measures. Ergod. Th. &amp; Dynam. Sys. 14, 721–755 (1994) · Zbl 0830.58019
[10] Johnson, S.: Singular measures without restrictive intervals. Commun. Math. Phys. 110, 185–190 (1987) · Zbl 0641.58024 · doi:10.1007/BF01207362
[11] Keller, G., Nowicki, T.: Fibonacci maps re(a)visited. Ergod. Th. &amp; Dyn. Sys. 15, 99–120 (1995) · Zbl 0853.58072
[12] Lyubich, M.: Combinatorics, geometry and attractors of quasi-quadratic maps. Ann. of Math. 140, 347–404 (1994) and Erratum Manuscript, 2000 · Zbl 0821.58014 · doi:10.2307/2118604
[13] Lyubich, M., Milnor, J.: The Fibonacci unimodal map. J. Am. Math. Soc. 6, 425–457 (1993) · Zbl 0778.58040 · doi:10.1090/S0894-0347-1993-1182670-0
[14] Mañé, R.: Hyperbolicity, sinks and measure in one-dimensional dynamics. Commun. Math. Phys. 100(4), 495–524 (1985) · Zbl 0583.58016 · doi:10.1007/BF01217727
[15] Martens, M.: Interval dynamics. Ph.D. Thesis, Delft, 1990
[16] Martens, M.: Distortion results and invariant Cantor sets of unimodal maps. Ergod. Th. &amp; Dynam. Sys. 14, 331–349 (1994) · Zbl 0809.58026
[17] Martens, M., Nowicki, T.: Invariant measures for typical quadratic maps, Géométrie complexe et systèmes dynamiques (Orsay, 1995). Astérisque 261, 239–252 (2000) · Zbl 0939.37020
[18] de Melo, W., van Strien, S.: One-dimensional dynamics. Berlin-Heidelberg-New York: Springer, 1993 · Zbl 0791.58003
[19] Misiurewicz, M.: Absolutely continuous measures for certain maps of an interval. Publ. Math. I.H.E.S. 53, 17–51 (1981) · Zbl 0477.58020 · doi:10.1007/BF02698686
[20] Nowicki, T.: A positive Liapunov exponent for the critical value of an S-unimodal mapping implies uniform hyperbolicity. Ergod. Th. &amp; Dynam. Sys. 8, 425–435 (1988) · Zbl 0638.58021
[21] Nowicki, T., van Strien, S.: Invariant measures exist under a summability condition. Invent. Math. 105, 123–136 (1991) · Zbl 0736.58030 · doi:10.1007/BF01232258
[22] Pianigiani, G.: Absolutely continuous invariant measures on the interval for the process x n+1=Ax n (1-x n ). Boll. Un. Mat. Ital. 16, 364–378 (1979) · Zbl 0453.28013
[23] Shen, W.: Decay geometry for unimodal maps: An elementary proof. Preprint Warwick, 2002
[24] Straube, E.: On the existence of invariant absolutely continuous measures. Commun. Math. Phys. 81, 27–30 (1981) · Zbl 0463.28011 · doi:10.1007/BF01941798
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.