×

On cubic hypersurfaces with vanishing Hessian. (English) Zbl 1318.14039

This is a very interesting paper.
Continuing in the direction of the classification of the homogeneous polynomials satisfying the homogeneous (real) Monge-Ampere equation (but in the complex number field) of dimension \(\leq 5\) (or projective dimension \(\leq 4\)) by the algebraic geometry method in [A. Garbagnati and F. Repetto, Collect. Math. 60, No. 1, 27–41 (2009; Zbl 1180.14045)], the authors classified the degree \(3\) solutions in dimensions \(6\) and \(7\) (the projective dimensions \(5\) and \(6\)).
O. Hesse [J. Reine Angew. Math. 42, 117–124 (1851; Zbl 02750640); ibid. 56, 263–269 (1859; Zbl 02750296)] claimed that all the homogeneous polynomial solutions \(f(x_0 , x_1 , \dots , x_n )\) of the homogeneous Monge-Ampere equation \(\det (D^2 f)=0\) is a cone, i.e., after a projective transformation, \(f\) is only a polynomial of \(x_1 , \dots , x_n\).
P. Gordan and M. Nöther [Math. Ann. 10, 547–568 (1876; JFM 08.0064.05)] proved that for \(n\leq 3\), this is true. But it is not true for \(n=4\), e.g., with \(f=x_0 x_4 ^2 +x_1 x_3 ^2 +x_2 x_3 x_4\), and \(f\) is either a cone or the one given by this special \(f\). Notice that \(f=0\) gives a singular hypersurface \(X\) in the projective space \({\mathbb C}\mathbb{P}^n\). [Zbl 1180.14045] gave an modern algebraic geometry proof of this result.
In the paper under review, the authors concentrate on the cases that the degree of the homogeneous polynomial is \(3\), i.e., \(X_f\) is a cubic hypersurface in \({\mathbb C}\mathbb{P}^n\). They obtain the classifications for the cases \(n=5, 6\). They prove that the noncone hypersurfaces are the so called special Perazzo cubic hypersurfaces which are generic \({\mathbb C}\mathbb{P}^k\) fiber bundles through the Perazzo map (see Definition 2.9, Theorem 5.3, 5.4, 5.7).
The main method is considering the Legendre map \({\mathbb C}\mathbb{P}^n -\rightarrow ({\mathbb C}\mathbb{P}^n )^*\) (or Gauss map; polar map) \[ [x_0, x_1 , \dots , x_n ] \rightarrow [f_0 , f_1 , \dots , f_n ]. \] Since \(f\) satisfies the Monge-Ampere equation, \(f_0 , f_1, \dots , f_n\) are dependent. That is, the image subvariety \(Z\) is only a subset of the projective space.
In page 782 after Definition 1.5, the authors define the singularity of this map, which is the subvariety defined by the quadratics \(f_0, f_1, \dots , f_n\). In the point of view of the reviewer, this subvariety should be denoted by \(\text{Sing} f\) but not \(\text{Sing} X\). It is not the singularity of \(X\) and the later notation is very confusing.
One major result of [JFM 08.0064.05] is iii) of the corollary 1.10 that \(\text{Sing} f\) is nonempty. Therefore, the standard form for \(f\) could be \(x_0 (\sum _{i=k>0}^n x_i^2) +g(x_1 , \dots x_n )\). If \(n\leq 5\), by checking the \(x_0\) terms in the determinant and some elementary methods, one could prove that \(k=n\). Then the classification. If \(n=6\), one could prove that \(k=5\) or \(6\). When \(k=5\), one get Theorem 5.7, and when \(k=6\) one has Theorem 5.4.
For the reviewer, it is very striking that if one replaces \(x_0\) by \(t\) as in [Math. Res. Lett. 6, No. 5–6, 547–555 (1999; Zbl 0968.53050)] through the partial Legendre transformation on \(x_1 , \dots , x_n\), one could get a map between \(f(t, x_1 , \dots , t_n ) \rightarrow F(t, y_1 , \dots , y_n )\) with \(f_{tt} =F_{tt}=0\) and, both \(f\) and \(F\) satisfying the Monge-Ampere equation. One might be wondering how this might help even in the case in which \(f\) is a homogeneous cubic.

MSC:

14J70 Hypersurfaces and algebraic geometry
14N99 Projective and enumerative algebraic geometry
35C11 Polynomial solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Akivis, M. A.; Goldberg, V. V., Differential Geometry of Varieties with Degenerate Gauss Maps, CMS Books Math. (2004) · Zbl 1114.53009
[2] Akivis, M. A.; Goldberg, V. V., Smooth lines on projective planes over two-dimensional algebras and submanifolds with degenerate Gauss maps, Beitr. Algebra Geom. “Contrib. Algebra Geom.”, 44, 1, 165-178 (2003) · Zbl 1038.53014
[3] Alzati, A., Special linear systems and syzygies, Collect. Math., 59, 239-254 (2008) · Zbl 1194.14019
[4] Ciliberto, C., Ipersuperficie algebriche a punti parabolici e relative hessiane, Rend. Accad. Naz. Sci., 98, 25-42 (1979-1980)
[5] Ciliberto, C.; Russo, F.; Simis, A., Homaloidal hypersurfaces and hypersurfaces with vanishing Hessian, Adv. Math., 218, 1759-1805 (2008) · Zbl 1144.14009
[6] Degoli, L., Sui sistemi lineari di quadriche riducibili ed irriducibili a Jacobiana identicamente nulla, Collect. Math., 35, 131-148 (1984)
[7] Dolgachev, I., Classical Algebraic Geometry - A Modern View (2012), Cambridge University Press · Zbl 1252.14001
[8] Franchetta, A., Sulle forme algebriche di \(S_4\) aventi hessiana indeterminata, Rend. Mat., 13, 1-6 (1954) · Zbl 0058.37102
[9] Fischer, G.; Piontkowski, J., Ruled Varieties - An Introduction to Algebraic Differential Geometry, Advanced Lectures in Mathematics, x+142 (2001), Friedr. Vieweg & Sohn: Friedr. Vieweg & Sohn Braunschweig · Zbl 0976.14025
[10] Garbagnati, A.; Repetto, F., A geometrical approach to Gordan-Noether’s and Franchetta’s contributions to a question posed by Hesse, Collect. Math., 60, 27-41 (2009) · Zbl 1180.14045
[11] Gordan, P.; Nöther, M., Ueber die algebraischen Formen, deren Hesse’sche Determinante identisch verschwindet, Math. Ann., 10, 547-568 (1876) · JFM 08.0064.05
[12] Hesse, O., Über die Bedingung, unter welche eine homogene ganze Function von n unabhángigen Variabeln durch Lineäre Substitutionen von n andern unabhángigen Variabeln auf eine homogene Function sich zurück-führen lässt, die eine Variable weniger enthält, J. Reine Angew. Math., 42, 117-124 (1851) · ERAM 042.1147cj
[13] Hesse, O., Zur Theorie der ganzen homogenen Functionen, J. Reine Angew. Math., 56, 263-269 (1859) · ERAM 056.1491cj
[14] Landsberg, J. M., On degenerate secant and tangential varieties and local differential geometry, Duke Math. J., 85, 605-634 (1996) · Zbl 0879.14025
[15] Lossen, C., When does the Hessian determinant vanish identically? (On Gordan and Noether’s proof of Hesse’s claim), Bull. Braz. Math. Soc., 35, 71-82 (2004) · Zbl 1061.12002
[16] Perazzo, U., Sulle varietà cubiche la cui hessiana svanisce identicamente, G. Mat. Battaglini, 38, 337-354 (1900) · JFM 31.0127.02
[17] Permutti, R., Su certe forme a hessiana indeterminata, Ric. Mat., 6, 3-10 (1957) · Zbl 0077.34401
[18] Permutti, R., Sul teorema di Hesse per forme sopra un campo a caratteristica arbitraria, Le Matematiche, 13, 115-128 (1963) · Zbl 0196.30604
[19] Segre, B., Bertini forms and hessian matrices, J. Lond. Math. Soc., 26, 164-176 (1951) · Zbl 0042.39504
[20] Segre, C., Ricerche sui fasci di coni quadrici in uno spazio lineare qualunque, Atti R. Accad. Sci. Torino, XIX (1884) · JFM 16.0604.02
[21] Zak, F. L., Determinants of projective varieties and their degrees, (Algebraic Transformation Groups and Algebraic Varieties, Proc. Conference Interesting Algebraic Varieties Arising in Algebraic Transformation Group Theory. Algebraic Transformation Groups and Algebraic Varieties, Proc. Conference Interesting Algebraic Varieties Arising in Algebraic Transformation Group Theory, Enc. Math. Sci., vol. 132 (2004), Springer-Verlag: Springer-Verlag Berlin), 207-238 · Zbl 1063.14058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.