Govindan, Vediyappan; Pinelas, Sandra; Lee, Jung Rye; Park, Choonkil Stability of an \(l\)-variable cubic functional equation. (English) Zbl 07891354 Kragujevac J. Math. 47, No. 6, 851-864 (2023). MSC: 39B52 47H10 39B72 39B82 × Cite Format Result Cite Review PDF Full Text: Link
Pimenov, Vladimir Germanovich; Tashirova, Ekaterina Evgen’evna Asymptotic expansion of the error of the numerical method for solving wave equation with functional delay. (Russian. English summary) Zbl 1530.65089 Izv. Inst. Mat. Inform., Udmurt. Gos. Univ. 62, 71-86 (2023). MSC: 65M06 65M12 65M15 × Cite Format Result Cite Review PDF Full Text: DOI MNR
Kotti, Ramanuja Rao; Mudaliar, Rajnesh Krishnan; Devi, Kaushal Neelam; Narayan, Shailendra Vikash Using direct and fixed point technique of cubic functional equation and its Hyers-Ulam stability. (English) Zbl 1538.39033 Aust. J. Math. Anal. Appl. 20, No. 2, Paper No. 10, 13 p. (2023). MSC: 39B52 47H10 47S40 46S40 × Cite Format Result Cite Review PDF Full Text: Link
Park, Choonkil; Tareeghee, Mohammad Amin; Najati, Abbas; Yengejeh, Yavar Khedmati; Paokanta, Siriluk Asymptotic behavior of Fréchet functional equation and some characterizations of inner product spaces. (English) Zbl 1530.39020 Demonstr. Math. 56, Article ID 20230265, 13 p. (2023). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B52 39B62 39B82 46C15 × Cite Format Result Cite Review PDF Full Text: DOI
Aribou, Youssef; Dimou, Hajira; Rossafi, Mohamed Hyperstability of cubic functional equation in Banach space. (English) Zbl 1526.39013 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 69, No. 2, 317-328 (2023). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Pimenov, V. G.; Lozhnikov, A. B. Richardson method for a diffusion equation with functional delay. (English. Russian original) Zbl 07739097 Proc. Steklov Inst. Math. 321, Suppl. 1, S204-S215 (2023); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 29, No. 2, 133-144 (2023). MSC: 65-XX 35-XX × Cite Format Result Cite Review PDF Full Text: DOI
Yu, Jicheng; Feng, Yuqiang Lie symmetry analysis and exact solutions of space-time fractional cubic Schrödinger equation. (English) Zbl 07818884 Int. J. Geom. Methods Mod. Phys. 19, No. 5, Article ID 2250077, 20 p. (2022). MSC: 76M60 34K37 × Cite Format Result Cite Review PDF Full Text: DOI
Govindan, Vediyappan; Lee, Jung-Rye; Pinelas, Sandra; Muniyappan, P. General solution and Ulam stability of generalized CQ functional equation. (English) Zbl 1498.39028 Korean J. Math. 30, No. 2, 403-412 (2022). MSC: 39B52 39B82 46S10 × Cite Format Result Cite Review PDF Full Text: DOI
Sayar, Khaled Yahya Naif; Bergam, Amal A fixed point approach to stability of a cubic functional equation in 2-Banach spaces. (English) Zbl 1497.39019 Facta Univ., Ser. Math. Inf. 37, No. 2, 239-249 (2022). MSC: 39B52 39B82 47H10 65Q20 × Cite Format Result Cite Review PDF Full Text: DOI
Lee, Eun Hye; Takloo-Bighash, Ramin On a multiple Dirichlet series associated to binary cubic forms. (English) Zbl 1515.11085 J. Number Theory 238, 535-556 (2022). Reviewer: Roma Kačinskaitė (Vilnius) MSC: 11M41 11M32 11S90 × Cite Format Result Cite Review PDF Full Text: DOI
Pasupathi, Narasimman; Rassias, John Michael; Lee, Jung Rye; Shim, Eun Hwa Orthogonal stability of an Euler-Lagrange-Jensen \((a, b)\)-cubic functional equation. (English) Zbl 1493.39028 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 29, No. 2, 189-199 (2022). MSC: 39B52 39B72 39B82 46B03 × Cite Format Result Cite Review PDF Full Text: DOI
Nikoufar, Ismail Lipschitz stability of \(n\)-cubic functional equations and application. (English) Zbl 1499.39125 Miskolc Math. Notes 23, No. 1, 389-399 (2022). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Dung, N. V.; Sintunavarat, W. Improvements on the stability of Euler-Lagrange type cubic maps in quasi-Banach spaces. (English) Zbl 1499.39116 Anal. Math. 48, No. 1, 69-84 (2022). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 46A16 × Cite Format Result Cite Review PDF Full Text: DOI
Koh, Heejeong A new generalized cubic functional equation and its stability problems. (English) Zbl 1493.39027 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 28, No. 1, 15-26 (2021). MSC: 39B52 39B82 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Zhihua Approximate mixed type quadratic-cubic functional equation. (English) Zbl 1525.39024 AIMS Math. 6, No. 4, 3546-3561 (2021). MSC: 39B82 39B52 39B72 × Cite Format Result Cite Review PDF Full Text: DOI
Yaseen, Muhammad; Abbas, Muhammad; Ahmad, Bashir Numerical simulation of the nonlinear generalized time-fractional Klein-Gordon equation using cubic trigonometric B-spline functions. (English) Zbl 1512.65116 Math. Methods Appl. Sci. 44, No. 1, 901-916 (2021). MSC: 65L03 65D07 65D25 65L06 65L10 × Cite Format Result Cite Review PDF Full Text: DOI
Thanyacharoen, Anurak; Sintunavarat, Wutiphol; Van Dung, Nguyen Stability of Euler-Lagrange-type cubic functional equations in quasi-Banach spaces. (English) Zbl 1459.39055 Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 251-266 (2021). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Ramzanpour, Elahe; Bodaghi, Abasalt Approximate multi-Jensen-cubic mappings and a fixed point theorem. (English) Zbl 1524.39056 Ann. Univ. Paedagog. Crac., Stud. Math. 340(19), 141-154 (2020). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Tiwari, Rina Stability of cubic mappings in fuzzy normed spaces: a fixed point approach. (English) Zbl 1524.39058 Gaṇita 70, No. 1, 9-15 (2020). MSC: 39B82 39B52 46S40 26E50 46S50 × Cite Format Result Cite Review PDF Full Text: Link
Nikoufar, Ismail Almost tri-cubic functions with Lipschitz condition. (English) Zbl 1500.39018 Tbil. Math. J. 13, No. 2, 207-216 (2020). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Zhihua; Hu, Chaozhu The cubic \(\rho\)-functional equation in matrix non-Archimedean random normed spaces. (English) Zbl 1499.39126 Filomat 34, No. 8, 2643-2653 (2020). MSC: 39B82 39B72 47H10 46L07 46S10 × Cite Format Result Cite Review PDF Full Text: DOI
Govindan, Vediyappan; Park, Choonkil; Pinelas, Sandra; Baskaran, S. Solution of a 3-D cubic functional equation and its stability. (English) Zbl 1484.39024 AIMS Math. 5, No. 3, 1693-1705 (2020). MSC: 39B52 39B72 39B82 × Cite Format Result Cite Review PDF Full Text: DOI
Akram, Tayyaba; Abbas, Muhammad; Riaz, Muhammad Bilal; Ismail, Ahmad Izani; Ali, Norhashidah Mohd. Development and analysis of new approximation of extended cubic B-spline to the nonlinear time fractional Klein-Gordon equation. (English) Zbl 1482.65022 Fractals 28, No. 8, Article ID 2040039, 20 p. (2020). MSC: 65D07 65M70 34K37 × Cite Format Result Cite Review PDF Full Text: DOI
Park, Choonkil; Bodaghi, Abasalt Two multi-cubic functional equations and some results on the stability in modular spaces. (English) Zbl 1503.39021 J. Inequal. Appl. 2020, Paper No. 6, 16 p. (2020). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Govindan, V.; Murthy, S.; Saravanan, M. Solution and stability of a cubic type functional equation: using direct and fixed point methods. (English) Zbl 1488.39067 Kragujevac J. Math. 44, No. 1, 7-26 (2020). MSC: 39B52 39B22 × Cite Format Result Cite Review PDF Full Text: Link
Jin, Sun-Sook; Lee, Yang-Hi A fixed point approach to the stability of the additive-cubic functional equations. (English) Zbl 1467.39021 Honam Math. J. 42, No. 3, 449-460 (2020). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Kaskasem, Prondanai; Janchada, Aekarach; Klin-eam, Chakkrid On approximate solutions of the generalized radical cubic functional equation in quasi-\(\beta\)-Banach spaces. (English) Zbl 1474.39062 Sahand Commun. Math. Anal. 17, No. 1, 69-90 (2020). MSC: 39B52 39B82 × Cite Format Result Cite Review PDF Full Text: DOI
Behroozizadeh, H.; Azadi Kenary, H. Stability of special functional equations on Banach lattices. (English) Zbl 1454.47062 J. Math. Ext. 14, No. 2, 69-80 (2020). MSC: 39B82 39B72 × Cite Format Result Cite Review PDF Full Text: Link
Pinelas, Sandra; Govindan, V.; Tamilvanan, K.; Baskaran, S. Intuitionistic fuzzy stability of an finite dimensional cubic functional equation. (English) Zbl 1453.39023 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 333, 713-731 (2020). MSC: 39B82 54A40 × Cite Format Result Cite Review PDF Full Text: DOI
Bodaghi, Abasalt; Pinelas, Sandra; Vediyappan, Govindan; Gunesekaran, Kokila An \(n\)-dimensional cubic functional equation and its Hyers-Ulam stability. (English) Zbl 1450.39011 J. Anal. 28, No. 3, 663-682 (2020). MSC: 39B52 39B72 39B82 54A40 × Cite Format Result Cite Review PDF Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo Generalized Hyers-Ulam stability of some cubic-quadratic-additive type functional equations. (English) Zbl 1450.39018 Kyungpook Math. J. 60, No. 1, 133-144 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Lee, Yang-Hi Hyers-Ulam-Rassias stability of a quadratic-cubic-quartic functional equation. (English) Zbl 1447.39020 Korean J. Math. 28, No. 2, 159-168 (2020). MSC: 39B82 × Cite Format Result Cite Review PDF Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo Stability of some cubic-additive functional equations. (English) Zbl 1447.39021 Nonlinear Funct. Anal. Appl. 25, No. 1, 35-54 (2020). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: Link
Aribou, Youssef; Dimou, Hajira; Kabbaj, Samir The generalized hyper-stability of cubic functional equation. (English) Zbl 1429.39022 Palest. J. Math. 9, No. 1, 485-492 (2020). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: Link
Senthil Kumar, Beri Venkatachalapathy; Dutta, Hemen Fundamental stabilities of various forms of complex valued functional equations. (English) Zbl 1423.39037 Dutta, Hemen (ed.) et al., Applied mathematical analysis: theory, methods, and applications. Cham: Springer. Stud. Syst. Decis. Control 177, 29-59 (2020). MSC: 39B82 39B72 × Cite Format Result Cite Review PDF Full Text: DOI
Lee, Yang-Hi A fixed point approach to the stability of an additive-cubic-quartic functional equation. (English) Zbl 1431.39014 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 4, 267-276 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B22 47H10 × Cite Format Result Cite Review PDF Full Text: DOI
Lee, Yang-Hi On the Hyers-Ulam-Rassias stability of an additive-cubic-quartic functional equation. (English) Zbl 1434.39025 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 4, 247-254 (2019). Reviewer: Ghadir Sadeghi (Sabzevār) MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Lee, Yang-Hi A fixed point approach to the stability of a quadratic-cubic-quartic functional equation. (Korean. English summary) Zbl 1429.39023 East Asian Math. J. 35, No. 5, 559-568 (2019). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Aribou, Youssef; Dimou, Hajira; Kabbaj, Samir Hyperstability of a mixed type cubic-quartic functional equation in ultrametric spaces. (English) Zbl 1436.39020 J. Class. Anal. 14, No. 2, 105-120 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 47H10 × Cite Format Result Cite Review PDF Full Text: DOI
Maghsoudi, Mohammad; Bodaghi, Abasalt; Motlagh, Abolfazl Niazi; Karami, Majid Almost additive-quadratic-cubic mappings in modular spaces. (English) Zbl 1428.39030 Rev. Unión Mat. Argent. 60, No. 2, 359-379 (2019). MSC: 39B52 39B72 39B82 47H09 × Cite Format Result Cite Review PDF
Lee, Yang-Hi On the stability of a general quadratic-cubic functional equation in non-Archimedean normed spaces. (English) Zbl 1427.39015 East Asian Math. J. 35, No. 3, 331-340 (2019). MSC: 39B82 39B22 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Lee, Yang-Hi A fixed point approach to the stability of a quadratic-cubic functional equation. (English) Zbl 1426.39027 Korean J. Math. 27, No. 2, 343-355 (2019). MSC: 39B82 47H10 × Cite Format Result Cite Review PDF Full Text: DOI
Lee, Yang-Hi Generalized Hyers-Ulam stability of a quadratic-cubic functional equation in modular spaces. (English) Zbl 1423.39036 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 1, 49-58 (2019). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B82 39B52 × Cite Format Result Cite Review PDF
Aribou, Y.; Dimou, H.; Kabbaj, S. Generalized hyperstability of the cubic functional equation in ultrametric spaces. (English) Zbl 1437.39011 J. Linear Topol. Algebra 8, No. 2, 97-104 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 47H10 × Cite Format Result Cite Review PDF Full Text: Link
Karthikeyan, S.; Rassias, John M.; Arunkumar, M.; Sathya, E. Generalized Ulam-Hyers stability of \((a,b;k>0)\)-cubic functional equation in intuitionistic fuzzy normed spaces. (English) Zbl 1420.39023 J. Anal. 27, No. 2, 391-415 (2019). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B82 39B52 39B72 × Cite Format Result Cite Review PDF Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo A general theorem on the stability of a class of functional equations including quartic-cubic-quadratic-additive equations. (English) Zbl 1425.39018 Mathematics 6, No. 12, Paper No. 282, 24 p. (2018). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Nathan Kutz, J.; Proctor, J. L.; Brunton, S. L. Applied Koopman theory for partial differential equations and data-driven modeling of spatio-temporal systems. (English) Zbl 1409.37029 Complexity 2018, Article ID 6010634, 16 p. (2018). MSC: 37C30 37M10 68Q32 35Q56 35Q55 37L65 × Cite Format Result Cite Review PDF Full Text: DOI
Nazarianpoor, Mahdi; Sadeghi, Ghadir On the stability of the Pexiderized cubic functional equation in multi-normed spaces. (English) Zbl 1413.39057 Sahand Commun. Math. Anal. 9, No. 1, 45-83 (2018). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Kim, Hark-Mahn; Shin, Hwan-Yong Approximate cubic Lie derivations on \(\rho\)-complete convex modular algebras. (English) Zbl 1400.39031 J. Funct. Spaces 2018, Article ID 3613178, 8 p. (2018). MSC: 39B82 39B52 16W25 17B50 × Cite Format Result Cite Review PDF Full Text: DOI
Nikoufar, Ismail Behavior of bi-cubic functions in Lipschitz spaces. (English) Zbl 1402.39011 Lobachevskii J. Math. 39, No. 6, 803-808 (2018). MSC: 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Murali, Ramdoss; Pinelas, Sandra; Raj, Aruldass Antony Orthogonal stability of mixed type additive-cubic functional equations in multi-Banach spaces. (English) Zbl 1390.39103 Demonstr. Math. 51, 106-111 (2018). MSC: 39B82 39B52 46B99 47H10 × Cite Format Result Cite Review PDF Full Text: DOI
Narasimman, Pasupathi; Bodaghi, Abasalt Solution and stability of a mixed type functional equation. (English) Zbl 1488.39072 Filomat 31, No. 5, 1229-1239 (2017). MSC: 39B82 39B22 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Kim, Sang Og; Senthil Kumar, Beri Venkatachalapathy; Bodaghi, Abasalt Approximation on the reciprocal-cubic and reciprocal-quartic functional equations in non-Archimedean fields. (English) Zbl 1422.39062 Adv. Difference Equ. 2017, Paper No. 77, 12 p. (2017). MSC: 39B82 39B72 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Aribou, Youssef; Almahalebi, Muaadh; Kabbaj, Samir Hyperstability of cubic functional equation in ultrametric spaces. (English) Zbl 1400.39028 Proyecciones 36, No. 3, 461-484 (2017). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Pramod Chakravarthy, P.; Dinesh Kumar, S.; Nageshwar Rao, R. Numerical solution of second order singularly perturbed delay differential equations via cubic spline in tension. (English) Zbl 1397.65027 Int. J. Appl. Comput. Math. 3, No. 3, 1703-1717 (2017). MSC: 65D07 65L03 92-08 × Cite Format Result Cite Review PDF Full Text: DOI
Pan, Xiaowei A note on the arithmetic functional equation \(\sigma \left ( {{x^3}} \right) = {y^2}\). (Chinese. English summary) Zbl 1399.11093 Basic Sci. J. Text. Univ. 30, No. 3, 302-304, 310 (2017). MSC: 11D25 × Cite Format Result Cite Review PDF Full Text: DOI
Bodaghi, A.; Kang, D.; Rassias, J. M. The mixed cubic-quartic functional equation. (English) Zbl 1399.39062 An. Științ. Univ. Al. I. Cuza Iași, Ser. Nouă, Mat. 63, No. 1, 215-227 (2017). MSC: 39B82 39B22 × Cite Format Result Cite Review PDF
Pramod Chakravarthy, Podila; Dinesh Kumar, S.; Nageshwar Rao, R. An exponentially fitted spline method for second-order singularly perturbed delay differential equations. (English) Zbl 1380.65118 Iran. J. Sci. Technol., Trans. A, Sci. 41, No. 2, 515-519 (2017). MSC: 65L03 65L11 65L60 65D07 × Cite Format Result Cite Review PDF Full Text: DOI
Park, Choonkil Fixed point method for set-valued functional equations. (English) Zbl 1490.39035 J. Fixed Point Theory Appl. 19, No. 4, 2297-2308 (2017). MSC: 39B52 39B82 47H04 × Cite Format Result Cite Review PDF Full Text: DOI
Korotkikh, A. S. Stable concentrations defined by two-dimensional equation of diffusion with cubic nonlinearity. (Russian. English summary) Zbl 1373.35170 Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2017, No. 1, 115-127 (2017). MSC: 35K57 × Cite Format Result Cite Review PDF
Salehi, N.; Modarres, S. M. S. A fixed point method for the stability of a maximum preserving quadratic functional equation in Banach lattices. (English) Zbl 1419.39056 J. Fixed Point Theory Appl. 19, No. 2, 1515-1524 (2017). MSC: 39B82 46B42 47H10 × Cite Format Result Cite Review PDF Full Text: DOI
EL-Fassi, Iz-iddine On a new type of hyperstability for radical cubic functional equation in non-Archimedean metric spaces. (English) Zbl 1371.39036 Result. Math. 72, No. 1-2, 991-1005 (2017); erratum ibid. 72, No. 4, 2271 (2017). MSC: 39B82 39B62 47H10 × Cite Format Result Cite Review PDF Full Text: DOI
Song, Aimin The Ulam stability of matrix intuitionistic fuzzy normed spaces. (English) Zbl 1375.39049 J. Intell. Fuzzy Syst. 32, No. 1, 629-641 (2017). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 46S40 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Choi, Chang-Kwon; Chung, Jaeyoung; Ju, Yumin; Rassias, John Cubic functional equations on restricted domains of Lebesgue measure zero. (English) Zbl 1359.39016 Can. Math. Bull. 60, No. 1, 95-103 (2017). MSC: 39B82 × Cite Format Result Cite Review PDF Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo General uniqueness theorem concerning the stability of additive, quadratic, and cubic functional equations. (English) Zbl 1419.39055 Adv. Difference Equ. 2016, Paper No. 75, 12 p. (2016). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Salehi, N.; Modarres, S. M. S. Stablity of maximum preserving quadratic functional equation in Banach lattices. (English) Zbl 1389.39037 Miskolc Math. Notes 17, No. 1, 581-589 (2016). MSC: 39B22 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Park, Choonkil; Shin, Dong Yun; Saadati, Reza; Lee, Jung Rye A fixed point approach to the fuzzy stability of an aqcq-functional equation. (English) Zbl 1465.47058 Filomat 30, No. 7, 1833-1851 (2016). MSC: 47S40 47H10 39B52 54E40 46S40 × Cite Format Result Cite Review PDF Full Text: DOI
Kim, Seong Sik; Rassias, John Michael; Hussain, Nawab; Cho, Yeol Je Generalized Hyers-Ulam stability of general cubic functional equation in random normed spaces. (English) Zbl 1390.39101 Filomat 30, No. 1, 89-98 (2016). MSC: 39B82 39B52 39B72 47H09 × Cite Format Result Cite Review PDF Full Text: DOI
Song, Aimin The Ulam stability of Cauchy-Drygas functional equation. (Chinese. English summary) Zbl 1374.39039 J. Sichuan Norm. Univ., Nat. Sci. 39, No. 6, 851-856 (2016). MSC: 39B82 39B52 46S40 × Cite Format Result Cite Review PDF Full Text: DOI
Song, Aimin The Ulam stability of Drygas-quadratic functional equation. (Chinese. English summary) Zbl 1374.39038 J. Northwest Norm. Univ., Nat. Sci. 52, No. 6, 22-28 (2016). MSC: 39B82 39B52 46S40 × Cite Format Result Cite Review PDF Full Text: DOI
Bodaghi, Abasalt Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations. (English) Zbl 1361.39013 J. Intell. Fuzzy Syst. 30, No. 4, 2309-2317 (2016). MSC: 39B82 × Cite Format Result Cite Review PDF Full Text: DOI
Song, Aimin The Ulam stability of functional equation on matrix quasi-normed spaces. (Chinese. English summary) Zbl 1374.39036 Adv. Math., Beijing 45, No. 5, 747-754 (2016). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF
Cheng, Lihua Stability of the Euler-Lagrange type cubic functional equation. (Chinese. English summary) Zbl 1363.39035 J. Anhui Univ., Nat. Sci. 40, No. 4, 6-11 (2016). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Lee, Jung Rye; Shin, Dong-Yun Fuzzy stability of an AQCQ-functional equation in matrix fuzzy normed spaces. (English) Zbl 1443.39016 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 23, No. 3, 287-307 (2016). Reviewer: Ismat Beg (Lahore) MSC: 39B82 39B52 47S40 26E50 × Cite Format Result Cite Review PDF Full Text: DOI
Park, Won-Gil; Bae, Jae-Hyeong A multi-dimensional functional equation having cubic forms as solutions. (English) Zbl 1352.39015 J. Nonlinear Sci. Appl. 9, No. 8, 5238-5244 (2016). MSC: 39B52 39B82 × Cite Format Result Cite Review PDF Full Text: DOI Link
Xue, Wenping; Ji, Peisheng On the HUR stability of a mixed functional equation deriving from AQC mappings in FFNLS. (Chinese. English summary) Zbl 1363.39042 J. Shandong Univ., Nat. Sci. 51, No. 4, 1-8 (2016). MSC: 39B82 39B52 39B55 46S40 × Cite Format Result Cite Review PDF Full Text: DOI
Almahalebi, M.; Chahbi, A.; Kabbaj, S. A fixed point approach to the stability of a bi-cubic functional equation in 2-Banach spaces. (English) Zbl 1346.39038 Palest. J. Math. 5, No. 2, 220-227 (2016). MSC: 39B82 46B99 × Cite Format Result Cite Review PDF Full Text: Link
Eghbali, Nasrin; Rassias, John Michael; Taheri, Maryam On the stability of a \(k\)-cubic functional equation in intuitionistic fuzzy \(n\)-normed spaces. (English) Zbl 1360.39022 Result. Math. 70, No. 1-2, 233-248 (2016). Reviewer: Prasanna Sahoo (Louisville) MSC: 39B82 46S40 × Cite Format Result Cite Review PDF Full Text: DOI
Wang, Zhihua Stability of two types of cubic fuzzy set-valued functional equations. (English) Zbl 1352.39025 Result. Math. 70, No. 1-2, 1-14 (2016). MSC: 39B82 47H10 54C60 × Cite Format Result Cite Review PDF Full Text: DOI
Chu, Hahng-Yun; Yoo, Seung Ki On characterizations of set-valued dynamics. (English) Zbl 1352.39020 Bull. Korean Math. Soc. 53, No. 4, 959-970 (2016). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B82 54C60 × Cite Format Result Cite Review PDF Full Text: DOI Link
El-Fassi, Iz-iddine; Kabbaj, Samir On the generalized orthogonal stability of mixed type additive-cubic functional equations in modular spaces. (English) Zbl 1338.39036 Tbil. Math. J. 9, No. 1, 231-243 (2016). MSC: 39B52 39B55 39B82 47H09 × Cite Format Result Cite Review PDF Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo A fixed point approach to the stability of an additive-quadratic-cubic-quartic type functional equation. (English) Zbl 1339.39028 J. Funct. Spaces 2016, Article ID 8746728, 7 p. (2016). MSC: 39B82 39B55 39B22 × Cite Format Result Cite Review PDF Full Text: DOI
Park, Choonkil; Shin, Dong Yun; Lee, Sungjin A fixed point approach to the stability of an AQCQ-functional equation in RN-spaces. (English) Zbl 1334.39051 J. Nonlinear Sci. Appl. 9, No. 4, 1787-1806 (2016). MSC: 39B52 39B82 47H10 × Cite Format Result Cite Review PDF Full Text: DOI Link
Pramod Chakravarthy, Podila; Dinesh Kumar, S.; Nageshwar Rao, Ragi; Ghate, Devendra P. A fitted numerical scheme for second order singularly perturbed delay differential equations via cubic spline in compression. (English) Zbl 1422.34213 Adv. Difference Equ. 2015, Paper No. 300, 14 p. (2015). MSC: 34K28 65L10 34K26 34K10 65L12 × Cite Format Result Cite Review PDF Full Text: DOI
Balamurugan, K.; Arunkumar, M.; Ravindiran, P. A fixed point approach to the stability of a mixed additive-quadratic-cubic-quartic (AQCQ) functional equation in quasi-\(\beta\)-normed spaces. (English) Zbl 1371.39028 Malaya J. Mat., Spec. Iss. 1, 153-171 (2015). MSC: 39B52 39B72 39B82 × Cite Format Result Cite Review PDF Full Text: Link
Saadati, Reza; Cho, Yeol Je; Rassias, John Michael Nonlinear \(\mathcal L\)-fuzzy stability of \(k\)-cubic functional equation. (English) Zbl 1461.54029 Filomat 29, No. 5, 1137-1148 (2015). MSC: 54A40 39B82 46S50 46S40 × Cite Format Result Cite Review PDF Full Text: DOI
Ravi, Krishnan; Rassias, Matina J.; Narasimman, Pasupathi; Kumar, Ravi K. Stabilities of a general \(k\)-cubic functional equation in Banach spaces. (English) Zbl 1355.39036 Contemp. Anal. Appl. Math. 3, No. 1, 1-12 (2015). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Ji, Pei Sheng; Zhou, Shu Juan; Xue, Hai Yan On a Jensen-cubic functional equation and its Hyers-Ulam stability. (English) Zbl 1334.39053 Acta Math. Sin., Engl. Ser. 31, No. 12, 1929-1940 (2015). MSC: 39B72 47H14 × Cite Format Result Cite Review PDF Full Text: DOI
Ji, Peisheng; Zhao, Yingzi On a Jensen-quadratic functional equation and its Hyers-Ulam stability. (Chinese. English summary) Zbl 1340.39043 Acta Math. Sin., Chin. Ser. 58, No. 2, 251-260 (2015). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF
Arunkumar, M.; Mary, C. Devi Shyamala; Shobana, G. Simple \(AQ\) and simple \(CQ\) functional equations. (English) Zbl 1331.39018 J. Concr. Appl. Math. 13, No. 1-2, 120-151 (2015). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 39B52 39B55 × Cite Format Result Cite Review PDF
Kim, Seong Sik; Rassias, John Michael; Abdou, Afrah A. N.; Cho, Yeol Je A fixed point approach to stability of cubic Lie derivatives in Banach algebras. (English) Zbl 1337.39008 J. Comput. Anal. Appl. 19, No. 2, 378-388 (2015). Reviewer: Jens Schwaiger (Graz) MSC: 39B82 39B72 39B52 46L57 × Cite Format Result Cite Review PDF
Ostadbashia, S.; Kazemzadehb, J. Orthogonal stability of mixed type additive and cubic functional equations. (English) Zbl 1327.39019 Int. J. Nonlinear Anal. Appl. 6, No. 1, 35-43 (2015). MSC: 39B52 39B82 × Cite Format Result Cite Review PDF
Park, Choonkil; Jang, Sun Young; Saadati, Reza; Shin, Dong Yun An AQCQ-functional equation in normed 2-Banach spaces. (English) Zbl 1325.39023 J. Comput. Anal. Appl. 18, No. 5, 875-884 (2015). Reviewer: Ghadir Sadeghi (Sabzevār) MSC: 39B82 39B52 39B55 × Cite Format Result Cite Review PDF
Wang, Zhihua; Sahoo, Prasanna K. Stability of an ACQ-functional equation in various matrix normed spaces. (English) Zbl 1310.39016 J. Nonlinear Sci. Appl. 8, No. 1, 64-85 (2015). MSC: 39B52 39B82 × Cite Format Result Cite Review PDF Full Text: DOI Link
Lee, Yang-Hi; Jung, Soon-Mo A general uniqueness theorem concerning the stability of monomial functional equations in fuzzy spaces. (English) Zbl 1311.39048 J. Inequal. Appl. 2015, Paper No. 66, 11 p. (2015). MSC: 39B82 39B52 46S40 × Cite Format Result Cite Review PDF Full Text: DOI
Park, Choonkil; Cho, Yeol Je; Cholamjiak, Prasit; Suantai, Suthep Fixed points and orthogonal stability of functional equations in non-Archimedean spaces. (English) Zbl 1364.39024 J. Appl. Funct. Anal. 9, No. 1-2, 25-41 (2014). Reviewer: Ghadir Sadeghi (Sabzevār) MSC: 39B82 39B52 46S10 × Cite Format Result Cite Review PDF
Xu, Tian Zhou On fuzzy approximately cubic type mapping in fuzzy Banach spaces. (English) Zbl 06679893 Inf. Sci. 278, 56-66 (2014). MSC: 47S40 47H10 × Cite Format Result Cite Review PDF Full Text: DOI
Ebadian, A.; Ghobadipour, N.; Nikoufar, I.; Eshaghi, Gordji M. Approximation of the cubic functional equations in Lipschitz spaces. (English) Zbl 1340.39040 Anal. Theory Appl. 30, No. 4, 354-362 (2014). MSC: 39B82 39B52 × Cite Format Result Cite Review PDF Full Text: DOI
Yun, Yong Sik; Kim, Chang Il The Hyers-Ulam stability of cubic functrional equations in fuzzy Banach spaces. (English) Zbl 1333.39042 East Asian Math. J. 30, No. 3, 271-281 (2014). Reviewer: Prasanna Sahoo (Louisville) MSC: 39B82 39B52 46S40 × Cite Format Result Cite Review PDF Full Text: DOI
Lee, Jung Rye; Park, Choonkil; Rassias, Themistocles M. An AQCQ-functional equation in matrix random normed spaces. (English) Zbl 1332.39024 Rassias, Themistocles M. (ed.) et al., Topics in mathematical analysis and applications. Cham: Springer (ISBN 978-3-319-06553-3/hbk; 978-3-319-06554-0/ebook). Springer Optimization and Its Applications 94, 523-540 (2014). Reviewer: Andrzej Smajdor (Kraków) MSC: 39B82 39B52 46S50 × Cite Format Result Cite Review PDF Full Text: DOI