Pimenov, V. G.; Lozhnikov, A. B. Richardson method for a diffusion equation with functional delay. (English. Russian original) Zbl 07739097 Proc. Steklov Inst. Math. 321, Suppl. 1, S204-S215 (2023); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 29, No. 2, 133-144 (2023). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{V. G. Pimenov} and \textit{A. B. Lozhnikov}, Proc. Steklov Inst. Math. 321, S204--S215 (2023; Zbl 07739097); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 29, No. 2, 133--144 (2023) Full Text: DOI
Govindan, Vediyappan; Lee, Jung-Rye; Pinelas, Sandra; Muniyappan, P. General solution and Ulam stability of generalized CQ functional equation. (English) Zbl 1498.39028 Korean J. Math. 30, No. 2, 403-412 (2022). MSC: 39B52 39B82 46S10 PDF BibTeX XML Cite \textit{V. Govindan} et al., Korean J. Math. 30, No. 2, 403--412 (2022; Zbl 1498.39028) Full Text: DOI
Sayar, Khaled Yahya Naif; Bergam, Amal A fixed point approach to stability of a cubic functional equation in 2-Banach spaces. (English) Zbl 1497.39019 Facta Univ., Ser. Math. Inf. 37, No. 2, 239-249 (2022). MSC: 39B52 39B82 47H10 65Q20 PDF BibTeX XML Cite \textit{K. Y. N. Sayar} and \textit{A. Bergam}, Facta Univ., Ser. Math. Inf. 37, No. 2, 239--249 (2022; Zbl 1497.39019) Full Text: DOI
Lee, Eun Hye; Takloo-Bighash, Ramin On a multiple Dirichlet series associated to binary cubic forms. (English) Zbl 1515.11085 J. Number Theory 238, 535-556 (2022). Reviewer: Roma Kačinskaitė (Vilnius) MSC: 11M41 11M32 11S90 PDF BibTeX XML Cite \textit{E. H. Lee} and \textit{R. Takloo-Bighash}, J. Number Theory 238, 535--556 (2022; Zbl 1515.11085) Full Text: DOI
Pasupathi, Narasimman; Rassias, John Michael; Lee, Jung Rye; Shim, Eun Hwa Orthogonal stability of an Euler-Lagrange-Jensen \((a, b)\)-cubic functional equation. (English) Zbl 1493.39028 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 29, No. 2, 189-199 (2022). MSC: 39B52 39B72 39B82 46B03 PDF BibTeX XML Cite \textit{N. Pasupathi} et al., J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 29, No. 2, 189--199 (2022; Zbl 1493.39028) Full Text: DOI
Nikoufar, Ismail Lipschitz stability of \(n\)-cubic functional equations and application. (English) Zbl 1499.39125 Miskolc Math. Notes 23, No. 1, 389-399 (2022). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{I. Nikoufar}, Miskolc Math. Notes 23, No. 1, 389--399 (2022; Zbl 1499.39125) Full Text: DOI
Dung, N. V.; Sintunavarat, W. Improvements on the stability of Euler-Lagrange type cubic maps in quasi-Banach spaces. (English) Zbl 1499.39116 Anal. Math. 48, No. 1, 69-84 (2022). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 46A16 PDF BibTeX XML Cite \textit{N. V. Dung} and \textit{W. Sintunavarat}, Anal. Math. 48, No. 1, 69--84 (2022; Zbl 1499.39116) Full Text: DOI
Koh, Heejeong A new generalized cubic functional equation and its stability problems. (English) Zbl 1493.39027 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 28, No. 1, 15-26 (2021). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{H. Koh}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 28, No. 1, 15--26 (2021; Zbl 1493.39027) Full Text: DOI
Wang, Zhihua Approximate mixed type quadratic-cubic functional equation. (English) Zbl 07543285 AIMS Math. 6, No. 4, 3546-3561 (2021). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{Z. Wang}, AIMS Math. 6, No. 4, 3546--3561 (2021; Zbl 07543285) Full Text: DOI
Yaseen, Muhammad; Abbas, Muhammad; Ahmad, Bashir Numerical simulation of the nonlinear generalized time-fractional Klein-Gordon equation using cubic trigonometric B-spline functions. (English) Zbl 1512.65116 Math. Methods Appl. Sci. 44, No. 1, 901-916 (2021). MSC: 65L03 65D07 65D25 65L06 65L10 PDF BibTeX XML Cite \textit{M. Yaseen} et al., Math. Methods Appl. Sci. 44, No. 1, 901--916 (2021; Zbl 1512.65116) Full Text: DOI
Thanyacharoen, Anurak; Sintunavarat, Wutiphol; Van Dung, Nguyen Stability of Euler-Lagrange-type cubic functional equations in quasi-Banach spaces. (English) Zbl 1459.39055 Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 251-266 (2021). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{A. Thanyacharoen} et al., Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 251--266 (2021; Zbl 1459.39055) Full Text: DOI arXiv
Ramzanpour, Elahe; Bodaghi, Abasalt Approximate multi-Jensen-cubic mappings and a fixed point theorem. (English) Zbl 07701178 Ann. Univ. Paedagog. Crac., Stud. Math. 340(19), 141-154 (2020). MSC: 39B52 39B72 39B82 46B03 PDF BibTeX XML Cite \textit{E. Ramzanpour} and \textit{A. Bodaghi}, Ann. Univ. Paedagog. Crac., Stud. Math. 340(19), 141--154 (2020; Zbl 07701178) Full Text: DOI
Tiwari, Rina Stability of cubic mappings in fuzzy normed spaces: a fixed point approach. (English) Zbl 07682072 Gaṇita 70, No. 1, 9-15 (2020). MSC: 39B82 39B52 46S40 26E50 46S50 PDF BibTeX XML Cite \textit{R. Tiwari}, Gaṇita 70, No. 1, 9--15 (2020; Zbl 07682072) Full Text: Link
Nikoufar, Ismail Almost tri-cubic functions with Lipschitz condition. (English) Zbl 1500.39018 Tbil. Math. J. 13, No. 2, 207-216 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{I. Nikoufar}, Tbil. Math. J. 13, No. 2, 207--216 (2020; Zbl 1500.39018) Full Text: DOI
Wang, Zhihua; Hu, Chaozhu The cubic \(\rho\)-functional equation in matrix non-Archimedean random normed spaces. (English) Zbl 1499.39126 Filomat 34, No. 8, 2643-2653 (2020). MSC: 39B82 39B72 47H10 46L07 46S10 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{C. Hu}, Filomat 34, No. 8, 2643--2653 (2020; Zbl 1499.39126) Full Text: DOI
Govindan, Vediyappan; Park, Choonkil; Pinelas, Sandra; Baskaran, S. Solution of a 3-D cubic functional equation and its stability. (English) Zbl 1484.39024 AIMS Math. 5, No. 3, 1693-1705 (2020). MSC: 39B52 39B72 39B82 PDF BibTeX XML Cite \textit{V. Govindan} et al., AIMS Math. 5, No. 3, 1693--1705 (2020; Zbl 1484.39024) Full Text: DOI
Akram, Tayyaba; Abbas, Muhammad; Riaz, Muhammad Bilal; Ismail, Ahmad Izani; Ali, Norhashidah Mohd. Development and analysis of new approximation of extended cubic B-spline to the nonlinear time fractional Klein-Gordon equation. (English) Zbl 1482.65022 Fractals 28, No. 8, Article ID 2040039, 20 p. (2020). MSC: 65D07 65M70 34K37 PDF BibTeX XML Cite \textit{T. Akram} et al., Fractals 28, No. 8, Article ID 2040039, 20 p. (2020; Zbl 1482.65022) Full Text: DOI
Park, Choonkil; Bodaghi, Abasalt Two multi-cubic functional equations and some results on the stability in modular spaces. (English) Zbl 1503.39021 J. Inequal. Appl. 2020, Paper No. 6, 16 p. (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{C. Park} and \textit{A. Bodaghi}, J. Inequal. Appl. 2020, Paper No. 6, 16 p. (2020; Zbl 1503.39021) Full Text: DOI
Govindan, V.; Murthy, S.; Saravanan, M. Solution and stability of a cubic type functional equation: using direct and fixed point methods. (English) Zbl 1488.39067 Kragujevac J. Math. 44, No. 1, 7-26 (2020). MSC: 39B52 39B22 PDF BibTeX XML Cite \textit{V. Govindan} et al., Kragujevac J. Math. 44, No. 1, 7--26 (2020; Zbl 1488.39067) Full Text: Link
Jin, Sun-Sook; Lee, Yang-Hi A fixed point approach to the stability of the additive-cubic functional equations. (English) Zbl 1467.39021 Honam Math. J. 42, No. 3, 449-460 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{S.-S. Jin} and \textit{Y.-H. Lee}, Honam Math. J. 42, No. 3, 449--460 (2020; Zbl 1467.39021) Full Text: DOI
Kaskasem, Prondanai; Janchada, Aekarach; Klin-eam, Chakkrid On approximate solutions of the generalized radical cubic functional equation in quasi-\(\beta\)-Banach spaces. (English) Zbl 1474.39062 Sahand Commun. Math. Anal. 17, No. 1, 69-90 (2020). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{P. Kaskasem} et al., Sahand Commun. Math. Anal. 17, No. 1, 69--90 (2020; Zbl 1474.39062) Full Text: DOI
Behroozizadeh, H.; Azadi Kenary, H. Stability of special functional equations on Banach lattices. (English) Zbl 1454.47062 J. Math. Ext. 14, No. 2, 69-80 (2020). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{H. Behroozizadeh} and \textit{H. Azadi Kenary}, J. Math. Ext. 14, No. 2, 69--80 (2020; Zbl 1454.47062) Full Text: Link
Pinelas, Sandra; Govindan, V.; Tamilvanan, K.; Baskaran, S. Intuitionistic fuzzy stability of an finite dimensional cubic functional equation. (English) Zbl 1453.39023 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 333, 713-731 (2020). MSC: 39B82 54A40 PDF BibTeX XML Cite \textit{S. Pinelas} et al., Springer Proc. Math. Stat. 333, 713--731 (2020; Zbl 1453.39023) Full Text: DOI
Bodaghi, Abasalt; Pinelas, Sandra; Vediyappan, Govindan; Gunesekaran, Kokila An \(n\)-dimensional cubic functional equation and its Hyers-Ulam stability. (English) Zbl 1450.39011 J. Anal. 28, No. 3, 663-682 (2020). MSC: 39B52 39B72 39B82 54A40 PDF BibTeX XML Cite \textit{A. Bodaghi} et al., J. Anal. 28, No. 3, 663--682 (2020; Zbl 1450.39011) Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo Generalized Hyers-Ulam stability of some cubic-quadratic-additive type functional equations. (English) Zbl 1450.39018 Kyungpook Math. J. 60, No. 1, 133-144 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Kyungpook Math. J. 60, No. 1, 133--144 (2020; Zbl 1450.39018) Full Text: DOI
Lee, Yang-Hi Hyers-Ulam-Rassias stability of a quadratic-cubic-quartic functional equation. (English) Zbl 1447.39020 Korean J. Math. 28, No. 2, 159-168 (2020). MSC: 39B82 PDF BibTeX XML Cite \textit{Y.-H. Lee}, Korean J. Math. 28, No. 2, 159--168 (2020; Zbl 1447.39020) Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo Stability of some cubic-additive functional equations. (English) Zbl 1447.39021 Nonlinear Funct. Anal. Appl. 25, No. 1, 35-54 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Nonlinear Funct. Anal. Appl. 25, No. 1, 35--54 (2020; Zbl 1447.39021) Full Text: Link
Aribou, Youssef; Dimou, Hajira; Kabbaj, Samir The generalized hyper-stability of cubic functional equation. (English) Zbl 1429.39022 Palest. J. Math. 9, No. 1, 485-492 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y. Aribou} et al., Palest. J. Math. 9, No. 1, 485--492 (2020; Zbl 1429.39022) Full Text: Link
Senthil Kumar, Beri Venkatachalapathy; Dutta, Hemen Fundamental stabilities of various forms of complex valued functional equations. (English) Zbl 1423.39037 Dutta, Hemen (ed.) et al., Applied mathematical analysis: theory, methods, and applications. Cham: Springer. Stud. Syst. Decis. Control 177, 29-59 (2020). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{B. V. Senthil Kumar} and \textit{H. Dutta}, Stud. Syst. Decis. Control 177, 29--59 (2020; Zbl 1423.39037) Full Text: DOI
Lee, Yang-Hi A fixed point approach to the stability of an additive-cubic-quartic functional equation. (English) Zbl 1431.39014 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 4, 267-276 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B22 47H10 PDF BibTeX XML Cite \textit{Y.-H. Lee}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 4, 267--276 (2019; Zbl 1431.39014) Full Text: DOI
Lee, Yang-Hi On the Hyers-Ulam-Rassias stability of an additive-cubic-quartic functional equation. (English) Zbl 1434.39025 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 4, 247-254 (2019). Reviewer: Ghadir Sadeghi (Sabzevār) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 4, 247--254 (2019; Zbl 1434.39025) Full Text: DOI
Lee, Yang-Hi A fixed point approach to the stability of a quadratic-cubic-quartic functional equation. (Korean. English summary) Zbl 1429.39023 East Asian Math. J. 35, No. 5, 559-568 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee}, East Asian Math. J. 35, No. 5, 559--568 (2019; Zbl 1429.39023) Full Text: DOI
Aribou, Youssef; Dimou, Hajira; Kabbaj, Samir Hyperstability of a mixed type cubic-quartic functional equation in ultrametric spaces. (English) Zbl 1436.39020 J. Class. Anal. 14, No. 2, 105-120 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{Y. Aribou} et al., J. Class. Anal. 14, No. 2, 105--120 (2019; Zbl 1436.39020) Full Text: DOI
Maghsoudi, Mohammad; Bodaghi, Abasalt; Motlagh, Abolfazl Niazi; Karami, Majid Almost additive-quadratic-cubic mappings in modular spaces. (English) Zbl 1428.39030 Rev. Unión Mat. Argent. 60, No. 2, 359-379 (2019). MSC: 39B52 39B72 39B82 47H09 PDF BibTeX XML Cite \textit{M. Maghsoudi} et al., Rev. Unión Mat. Argent. 60, No. 2, 359--379 (2019; Zbl 1428.39030)
Lee, Yang-Hi On the stability of a general quadratic-cubic functional equation in non-Archimedean normed spaces. (English) Zbl 1427.39015 East Asian Math. J. 35, No. 3, 331-340 (2019). MSC: 39B82 39B22 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee}, East Asian Math. J. 35, No. 3, 331--340 (2019; Zbl 1427.39015) Full Text: DOI
Lee, Yang-Hi A fixed point approach to the stability of a quadratic-cubic functional equation. (English) Zbl 1426.39027 Korean J. Math. 27, No. 2, 343-355 (2019). MSC: 39B82 47H10 PDF BibTeX XML Cite \textit{Y.-H. Lee}, Korean J. Math. 27, No. 2, 343--355 (2019; Zbl 1426.39027) Full Text: DOI
Lee, Yang-Hi Generalized Hyers-Ulam stability of a quadratic-cubic functional equation in modular spaces. (English) Zbl 1423.39036 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 1, 49-58 (2019). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 26, No. 1, 49--58 (2019; Zbl 1423.39036)
Aribou, Y.; Dimou, H.; Kabbaj, S. Generalized hyperstability of the cubic functional equation in ultrametric spaces. (English) Zbl 1437.39011 J. Linear Topol. Algebra 8, No. 2, 97-104 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{Y. Aribou} et al., J. Linear Topol. Algebra 8, No. 2, 97--104 (2019; Zbl 1437.39011) Full Text: Link
Karthikeyan, S.; Rassias, John M.; Arunkumar, M.; Sathya, E. Generalized Ulam-Hyers stability of \((a,b;k>0)\)-cubic functional equation in intuitionistic fuzzy normed spaces. (English) Zbl 1420.39023 J. Anal. 27, No. 2, 391-415 (2019). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B82 39B52 39B72 PDF BibTeX XML Cite \textit{S. Karthikeyan} et al., J. Anal. 27, No. 2, 391--415 (2019; Zbl 1420.39023) Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo A general theorem on the stability of a class of functional equations including quartic-cubic-quadratic-additive equations. (English) Zbl 1425.39018 Mathematics 6, No. 12, Paper No. 282, 24 p. (2018). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Mathematics 6, No. 12, Paper No. 282, 24 p. (2018; Zbl 1425.39018) Full Text: DOI
Nathan Kutz, J.; Proctor, J. L.; Brunton, S. L. Applied Koopman theory for partial differential equations and data-driven modeling of spatio-temporal systems. (English) Zbl 1409.37029 Complexity 2018, Article ID 6010634, 16 p. (2018). MSC: 37C30 37M10 68Q32 35Q56 35Q55 37L65 PDF BibTeX XML Cite \textit{J. Nathan Kutz} et al., Complexity 2018, Article ID 6010634, 16 p. (2018; Zbl 1409.37029) Full Text: DOI
Nazarianpoor, Mahdi; Sadeghi, Ghadir On the stability of the Pexiderized cubic functional equation in multi-normed spaces. (English) Zbl 1413.39057 Sahand Commun. Math. Anal. 9, No. 1, 45-83 (2018). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{M. Nazarianpoor} and \textit{G. Sadeghi}, Sahand Commun. Math. Anal. 9, No. 1, 45--83 (2018; Zbl 1413.39057) Full Text: DOI
Kim, Hark-Mahn; Shin, Hwan-Yong Approximate cubic Lie derivations on \(\rho\)-complete convex modular algebras. (English) Zbl 1400.39031 J. Funct. Spaces 2018, Article ID 3613178, 8 p. (2018). MSC: 39B82 39B52 16W25 17B50 PDF BibTeX XML Cite \textit{H.-M. Kim} and \textit{H.-Y. Shin}, J. Funct. Spaces 2018, Article ID 3613178, 8 p. (2018; Zbl 1400.39031) Full Text: DOI
Nikoufar, Ismail Behavior of bi-cubic functions in Lipschitz spaces. (English) Zbl 1402.39011 Lobachevskii J. Math. 39, No. 6, 803-808 (2018). MSC: 39B52 PDF BibTeX XML Cite \textit{I. Nikoufar}, Lobachevskii J. Math. 39, No. 6, 803--808 (2018; Zbl 1402.39011) Full Text: DOI
Murali, Ramdoss; Pinelas, Sandra; Raj, Aruldass Antony Orthogonal stability of mixed type additive-cubic functional equations in multi-Banach spaces. (English) Zbl 1390.39103 Demonstr. Math. 51, 106-111 (2018). MSC: 39B82 39B52 46B99 47H10 PDF BibTeX XML Cite \textit{R. Murali} et al., Demonstr. Math. 51, 106--111 (2018; Zbl 1390.39103) Full Text: DOI
Narasimman, Pasupathi; Bodaghi, Abasalt Solution and stability of a mixed type functional equation. (English) Zbl 1488.39072 Filomat 31, No. 5, 1229-1239 (2017). MSC: 39B82 39B22 PDF BibTeX XML Cite \textit{P. Narasimman} and \textit{A. Bodaghi}, Filomat 31, No. 5, 1229--1239 (2017; Zbl 1488.39072) Full Text: DOI arXiv
Kim, Sang Og; Senthil Kumar, Beri Venkatachalapathy; Bodaghi, Abasalt Approximation on the reciprocal-cubic and reciprocal-quartic functional equations in non-Archimedean fields. (English) Zbl 1422.39062 Adv. Difference Equ. 2017, Paper No. 77, 12 p. (2017). MSC: 39B82 39B72 39B52 PDF BibTeX XML Cite \textit{S. O. Kim} et al., Adv. Difference Equ. 2017, Paper No. 77, 12 p. (2017; Zbl 1422.39062) Full Text: DOI
Aribou, Youssef; Almahalebi, Muaadh; Kabbaj, Samir Hyperstability of cubic functional equation in ultrametric spaces. (English) Zbl 1400.39028 Proyecciones 36, No. 3, 461-484 (2017). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y. Aribou} et al., Proyecciones 36, No. 3, 461--484 (2017; Zbl 1400.39028) Full Text: DOI
Pramod Chakravarthy, P.; Dinesh Kumar, S.; Nageshwar Rao, R. Numerical solution of second order singularly perturbed delay differential equations via cubic spline in tension. (English) Zbl 1397.65027 Int. J. Appl. Comput. Math. 3, No. 3, 1703-1717 (2017). MSC: 65D07 65L03 92-08 PDF BibTeX XML Cite \textit{P. Pramod Chakravarthy} et al., Int. J. Appl. Comput. Math. 3, No. 3, 1703--1717 (2017; Zbl 1397.65027) Full Text: DOI
Pan, Xiaowei A note on the arithmetic functional equation \(\sigma \left ( {{x^3}} \right) = {y^2}\). (Chinese. English summary) Zbl 1399.11093 Basic Sci. J. Text. Univ. 30, No. 3, 302-304, 310 (2017). MSC: 11D25 PDF BibTeX XML Cite \textit{X. Pan}, Basic Sci. J. Text. Univ. 30, No. 3, 302--304, 310 (2017; Zbl 1399.11093) Full Text: DOI
Bodaghi, A.; Kang, D.; Rassias, J. M. The mixed cubic-quartic functional equation. (English) Zbl 1399.39062 An. Științ. Univ. Al. I. Cuza Iași, Ser. Nouă, Mat. 63, No. 1, 215-227 (2017). MSC: 39B82 39B22 PDF BibTeX XML Cite \textit{A. Bodaghi} et al., An. Științ. Univ. Al. I. Cuza Iași, Ser. Nouă, Mat. 63, No. 1, 215--227 (2017; Zbl 1399.39062)
Pramod Chakravarthy, Podila; Dinesh Kumar, S.; Nageshwar Rao, R. An exponentially fitted spline method for second-order singularly perturbed delay differential equations. (English) Zbl 1380.65118 Iran. J. Sci. Technol., Trans. A, Sci. 41, No. 2, 515-519 (2017). MSC: 65L03 65L11 65L60 65D07 PDF BibTeX XML Cite \textit{P. Pramod Chakravarthy} et al., Iran. J. Sci. Technol., Trans. A, Sci. 41, No. 2, 515--519 (2017; Zbl 1380.65118) Full Text: DOI
Park, Choonkil Fixed point method for set-valued functional equations. (English) Zbl 1490.39035 J. Fixed Point Theory Appl. 19, No. 4, 2297-2308 (2017). MSC: 39B52 39B82 47H04 PDF BibTeX XML Cite \textit{C. Park}, J. Fixed Point Theory Appl. 19, No. 4, 2297--2308 (2017; Zbl 1490.39035) Full Text: DOI
Korotkikh, A. S. Stable concentrations defined by two-dimensional equation of diffusion with cubic nonlinearity. (Russian. English summary) Zbl 1373.35170 Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2017, No. 1, 115-127 (2017). MSC: 35K57 PDF BibTeX XML Cite \textit{A. S. Korotkikh}, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2017, No. 1, 115--127 (2017; Zbl 1373.35170)
Salehi, N.; Modarres, S. M. S. A fixed point method for the stability of a maximum preserving quadratic functional equation in Banach lattices. (English) Zbl 1419.39056 J. Fixed Point Theory Appl. 19, No. 2, 1515-1524 (2017). MSC: 39B82 46B42 47H10 PDF BibTeX XML Cite \textit{N. Salehi} and \textit{S. M. S. Modarres}, J. Fixed Point Theory Appl. 19, No. 2, 1515--1524 (2017; Zbl 1419.39056) Full Text: DOI
EL-Fassi, Iz-iddine On a new type of hyperstability for radical cubic functional equation in non-Archimedean metric spaces. (English) Zbl 1371.39036 Result. Math. 72, No. 1-2, 991-1005 (2017); erratum ibid. 72, No. 4, 2271 (2017). MSC: 39B82 39B62 47H10 PDF BibTeX XML Cite \textit{I.-i. EL-Fassi}, Result. Math. 72, No. 1--2, 991--1005 (2017; Zbl 1371.39036) Full Text: DOI
Song, Aimin The Ulam stability of matrix intuitionistic fuzzy normed spaces. (English) Zbl 1375.39049 J. Intell. Fuzzy Syst. 32, No. 1, 629-641 (2017). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 46S40 39B52 PDF BibTeX XML Cite \textit{A. Song}, J. Intell. Fuzzy Syst. 32, No. 1, 629--641 (2017; Zbl 1375.39049) Full Text: DOI
Choi, Chang-Kwon; Chung, Jaeyoung; Ju, Yumin; Rassias, John Cubic functional equations on restricted domains of Lebesgue measure zero. (English) Zbl 1359.39016 Can. Math. Bull. 60, No. 1, 95-103 (2017). MSC: 39B82 PDF BibTeX XML Cite \textit{C.-K. Choi} et al., Can. Math. Bull. 60, No. 1, 95--103 (2017; Zbl 1359.39016) Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo General uniqueness theorem concerning the stability of additive, quadratic, and cubic functional equations. (English) Zbl 1419.39055 Adv. Difference Equ. 2016, Paper No. 75, 12 p. (2016). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Adv. Difference Equ. 2016, Paper No. 75, 12 p. (2016; Zbl 1419.39055) Full Text: DOI
Salehi, N.; Modarres, S. M. S. Stablity of maximum preserving quadratic functional equation in Banach lattices. (English) Zbl 1389.39037 Miskolc Math. Notes 17, No. 1, 581-589 (2016). MSC: 39B22 39B82 39B52 PDF BibTeX XML Cite \textit{N. Salehi} and \textit{S. M. S. Modarres}, Miskolc Math. Notes 17, No. 1, 581--589 (2016; Zbl 1389.39037) Full Text: DOI
Park, Choonkil; Shin, Dong Yun; Saadati, Reza; Lee, Jung Rye A fixed point approach to the fuzzy stability of an aqcq-functional equation. (English) Zbl 1465.47058 Filomat 30, No. 7, 1833-1851 (2016). MSC: 47S40 47H10 39B52 54E40 46S40 PDF BibTeX XML Cite \textit{C. Park} et al., Filomat 30, No. 7, 1833--1851 (2016; Zbl 1465.47058) Full Text: DOI
Kim, Seong Sik; Rassias, John Michael; Hussain, Nawab; Cho, Yeol Je Generalized Hyers-Ulam stability of general cubic functional equation in random normed spaces. (English) Zbl 1390.39101 Filomat 30, No. 1, 89-98 (2016). MSC: 39B82 39B52 39B72 47H09 PDF BibTeX XML Cite \textit{S. S. Kim} et al., Filomat 30, No. 1, 89--98 (2016; Zbl 1390.39101) Full Text: DOI
Song, Aimin The Ulam stability of Cauchy-Drygas functional equation. (Chinese. English summary) Zbl 1374.39039 J. Sichuan Norm. Univ., Nat. Sci. 39, No. 6, 851-856 (2016). MSC: 39B82 39B52 46S40 PDF BibTeX XML Cite \textit{A. Song}, J. Sichuan Norm. Univ., Nat. Sci. 39, No. 6, 851--856 (2016; Zbl 1374.39039) Full Text: DOI
Song, Aimin The Ulam stability of Drygas-quadratic functional equation. (Chinese. English summary) Zbl 1374.39038 J. Northwest Norm. Univ., Nat. Sci. 52, No. 6, 22-28 (2016). MSC: 39B82 39B52 46S40 PDF BibTeX XML Cite \textit{A. Song}, J. Northwest Norm. Univ., Nat. Sci. 52, No. 6, 22--28 (2016; Zbl 1374.39038) Full Text: DOI
Bodaghi, Abasalt Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations. (English) Zbl 1361.39013 J. Intell. Fuzzy Syst. 30, No. 4, 2309-2317 (2016). MSC: 39B82 PDF BibTeX XML Cite \textit{A. Bodaghi}, J. Intell. Fuzzy Syst. 30, No. 4, 2309--2317 (2016; Zbl 1361.39013) Full Text: DOI
Song, Aimin The Ulam stability of functional equation on matrix quasi-normed spaces. (Chinese. English summary) Zbl 1374.39036 Adv. Math., Beijing 45, No. 5, 747-754 (2016). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{A. Song}, Adv. Math., Beijing 45, No. 5, 747--754 (2016; Zbl 1374.39036)
Cheng, Lihua Stability of the Euler-Lagrange type cubic functional equation. (Chinese. English summary) Zbl 1363.39035 J. Anhui Univ., Nat. Sci. 40, No. 4, 6-11 (2016). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{L. Cheng}, J. Anhui Univ., Nat. Sci. 40, No. 4, 6--11 (2016; Zbl 1363.39035) Full Text: DOI
Lee, Jung Rye; Shin, Dong-Yun Fuzzy stability of an AQCQ-functional equation in matrix fuzzy normed spaces. (English) Zbl 1443.39016 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 23, No. 3, 287-307 (2016). Reviewer: Ismat Beg (Lahore) MSC: 39B82 39B52 47S40 26E50 PDF BibTeX XML Cite \textit{J. R. Lee} and \textit{D.-Y. Shin}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 23, No. 3, 287--307 (2016; Zbl 1443.39016) Full Text: DOI
Park, Won-Gil; Bae, Jae-Hyeong A multi-dimensional functional equation having cubic forms as solutions. (English) Zbl 1352.39015 J. Nonlinear Sci. Appl. 9, No. 8, 5238-5244 (2016). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{W.-G. Park} and \textit{J.-H. Bae}, J. Nonlinear Sci. Appl. 9, No. 8, 5238--5244 (2016; Zbl 1352.39015) Full Text: DOI Link
Xue, Wenping; Ji, Peisheng On the HUR stability of a mixed functional equation deriving from AQC mappings in FFNLS. (Chinese. English summary) Zbl 1363.39042 J. Shandong Univ., Nat. Sci. 51, No. 4, 1-8 (2016). MSC: 39B82 39B52 39B55 46S40 PDF BibTeX XML Cite \textit{W. Xue} and \textit{P. Ji}, J. Shandong Univ., Nat. Sci. 51, No. 4, 1--8 (2016; Zbl 1363.39042) Full Text: DOI
Almahalebi, M.; Chahbi, A.; Kabbaj, S. A fixed point approach to the stability of a bi-cubic functional equation in 2-Banach spaces. (English) Zbl 1346.39038 Palest. J. Math. 5, No. 2, 220-227 (2016). MSC: 39B82 46B99 PDF BibTeX XML Cite \textit{M. Almahalebi} et al., Palest. J. Math. 5, No. 2, 220--227 (2016; Zbl 1346.39038) Full Text: Link
Eghbali, Nasrin; Rassias, John Michael; Taheri, Maryam On the stability of a \(k\)-cubic functional equation in intuitionistic fuzzy \(n\)-normed spaces. (English) Zbl 1360.39022 Result. Math. 70, No. 1-2, 233-248 (2016). Reviewer: Prasanna Sahoo (Louisville) MSC: 39B82 46S40 PDF BibTeX XML Cite \textit{N. Eghbali} et al., Result. Math. 70, No. 1--2, 233--248 (2016; Zbl 1360.39022) Full Text: DOI
Wang, Zhihua Stability of two types of cubic fuzzy set-valued functional equations. (English) Zbl 1352.39025 Result. Math. 70, No. 1-2, 1-14 (2016). MSC: 39B82 47H10 54C60 PDF BibTeX XML Cite \textit{Z. Wang}, Result. Math. 70, No. 1--2, 1--14 (2016; Zbl 1352.39025) Full Text: DOI
Chu, Hahng-Yun; Yoo, Seung Ki On characterizations of set-valued dynamics. (English) Zbl 1352.39020 Bull. Korean Math. Soc. 53, No. 4, 959-970 (2016). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B82 54C60 PDF BibTeX XML Cite \textit{H.-Y. Chu} and \textit{S. K. Yoo}, Bull. Korean Math. Soc. 53, No. 4, 959--970 (2016; Zbl 1352.39020) Full Text: DOI Link
El-Fassi, Iz-iddine; Kabbaj, Samir On the generalized orthogonal stability of mixed type additive-cubic functional equations in modular spaces. (English) Zbl 1338.39036 Tbil. Math. J. 9, No. 1, 231-243 (2016). MSC: 39B52 39B55 39B82 47H09 PDF BibTeX XML Cite \textit{I.-i. El-Fassi} and \textit{S. Kabbaj}, Tbil. Math. J. 9, No. 1, 231--243 (2016; Zbl 1338.39036) Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo A fixed point approach to the stability of an additive-quadratic-cubic-quartic type functional equation. (English) Zbl 1339.39028 J. Funct. Spaces 2016, Article ID 8746728, 7 p. (2016). MSC: 39B82 39B55 39B22 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, J. Funct. Spaces 2016, Article ID 8746728, 7 p. (2016; Zbl 1339.39028) Full Text: DOI
Park, Choonkil; Shin, Dong Yun; Lee, Sungjin A fixed point approach to the stability of an AQCQ-functional equation in RN-spaces. (English) Zbl 1334.39051 J. Nonlinear Sci. Appl. 9, No. 4, 1787-1806 (2016). MSC: 39B52 39B82 47H10 PDF BibTeX XML Cite \textit{C. Park} et al., J. Nonlinear Sci. Appl. 9, No. 4, 1787--1806 (2016; Zbl 1334.39051) Full Text: DOI Link
Pramod Chakravarthy, Podila; Dinesh Kumar, S.; Nageshwar Rao, Ragi; Ghate, Devendra P. A fitted numerical scheme for second order singularly perturbed delay differential equations via cubic spline in compression. (English) Zbl 1422.34213 Adv. Difference Equ. 2015, Paper No. 300, 14 p. (2015). MSC: 34K28 65L10 34K26 34K10 65L12 PDF BibTeX XML Cite \textit{P. Pramod Chakravarthy} et al., Adv. Difference Equ. 2015, Paper No. 300, 14 p. (2015; Zbl 1422.34213) Full Text: DOI
Balamurugan, K.; Arunkumar, M.; Ravindiran, P. A fixed point approach to the stability of a mixed additive-quadratic-cubic-quartic (AQCQ) functional equation in quasi-\(\beta\)-normed spaces. (English) Zbl 1371.39028 Malaya J. Mat., Spec. Iss. 1, 153-171 (2015). MSC: 39B52 39B72 39B82 PDF BibTeX XML Cite \textit{K. Balamurugan} et al., Malaya J. Mat., 153--171 (2015; Zbl 1371.39028) Full Text: Link
Saadati, Reza; Cho, Yeol Je; Rassias, John Michael Nonlinear \(\mathcal L\)-fuzzy stability of \(k\)-cubic functional equation. (English) Zbl 1461.54029 Filomat 29, No. 5, 1137-1148 (2015). MSC: 54A40 39B82 46S50 46S40 PDF BibTeX XML Cite \textit{R. Saadati} et al., Filomat 29, No. 5, 1137--1148 (2015; Zbl 1461.54029) Full Text: DOI
Ravi, Krishnan; Rassias, Matina J.; Narasimman, Pasupathi; Kumar, Ravi K. Stabilities of a general \(k\)-cubic functional equation in Banach spaces. (English) Zbl 1355.39036 Contemp. Anal. Appl. Math. 3, No. 1, 1-12 (2015). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{K. Ravi} et al., Contemp. Anal. Appl. Math. 3, No. 1, 1--12 (2015; Zbl 1355.39036) Full Text: DOI
Ji, Pei Sheng; Zhou, Shu Juan; Xue, Hai Yan On a Jensen-cubic functional equation and its Hyers-Ulam stability. (English) Zbl 1334.39053 Acta Math. Sin., Engl. Ser. 31, No. 12, 1929-1940 (2015). MSC: 39B72 47H14 PDF BibTeX XML Cite \textit{P. S. Ji} et al., Acta Math. Sin., Engl. Ser. 31, No. 12, 1929--1940 (2015; Zbl 1334.39053) Full Text: DOI
Ji, Peisheng; Zhao, Yingzi On a Jensen-quadratic functional equation and its Hyers-Ulam stability. (Chinese. English summary) Zbl 1340.39043 Acta Math. Sin., Chin. Ser. 58, No. 2, 251-260 (2015). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{P. Ji} and \textit{Y. Zhao}, Acta Math. Sin., Chin. Ser. 58, No. 2, 251--260 (2015; Zbl 1340.39043)
Arunkumar, M.; Mary, C. Devi Shyamala; Shobana, G. Simple \(AQ\) and simple \(CQ\) functional equations. (English) Zbl 1331.39018 J. Concr. Appl. Math. 13, No. 1-2, 120-151 (2015). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 39B52 39B55 PDF BibTeX XML Cite \textit{M. Arunkumar} et al., J. Concr. Appl. Math. 13, No. 1--2, 120--151 (2015; Zbl 1331.39018)
Kim, Seong Sik; Rassias, John Michael; Abdou, Afrah A. N.; Cho, Yeol Je A fixed point approach to stability of cubic Lie derivatives in Banach algebras. (English) Zbl 1337.39008 J. Comput. Anal. Appl. 19, No. 2, 378-388 (2015). Reviewer: Jens Schwaiger (Graz) MSC: 39B82 39B72 39B52 46L57 PDF BibTeX XML Cite \textit{S. S. Kim} et al., J. Comput. Anal. Appl. 19, No. 2, 378--388 (2015; Zbl 1337.39008)
Ostadbashia, S.; Kazemzadehb, J. Orthogonal stability of mixed type additive and cubic functional equations. (English) Zbl 1327.39019 Int. J. Nonlinear Anal. Appl. 6, No. 1, 35-43 (2015). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{S. Ostadbashia} and \textit{J. Kazemzadehb}, Int. J. Nonlinear Anal. Appl. 6, No. 1, 35--43 (2015; Zbl 1327.39019) Full Text: Link
Park, Choonkil; Jang, Sun Young; Saadati, Reza; Shin, Dong Yun An AQCQ-functional equation in normed 2-Banach spaces. (English) Zbl 1325.39023 J. Comput. Anal. Appl. 18, No. 5, 875-884 (2015). Reviewer: Ghadir Sadeghi (Sabzevār) MSC: 39B82 39B52 39B55 PDF BibTeX XML Cite \textit{C. Park} et al., J. Comput. Anal. Appl. 18, No. 5, 875--884 (2015; Zbl 1325.39023)
Wang, Zhihua; Sahoo, Prasanna K. Stability of an ACQ-functional equation in various matrix normed spaces. (English) Zbl 1310.39016 J. Nonlinear Sci. Appl. 8, No. 1, 64-85 (2015). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{P. K. Sahoo}, J. Nonlinear Sci. Appl. 8, No. 1, 64--85 (2015; Zbl 1310.39016) Full Text: DOI Link
Lee, Yang-Hi; Jung, Soon-Mo A general uniqueness theorem concerning the stability of monomial functional equations in fuzzy spaces. (English) Zbl 1311.39048 J. Inequal. Appl. 2015, Paper No. 66, 11 p. (2015). MSC: 39B82 39B52 46S40 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, J. Inequal. Appl. 2015, Paper No. 66, 11 p. (2015; Zbl 1311.39048) Full Text: DOI
Park, Choonkil; Cho, Yeol Je; Cholamjiak, Prasit; Suantai, Suthep Fixed points and orthogonal stability of functional equations in non-Archimedean spaces. (English) Zbl 1364.39024 J. Appl. Funct. Anal. 9, No. 1-2, 25-41 (2014). Reviewer: Ghadir Sadeghi (Sabzevār) MSC: 39B82 39B52 46S10 PDF BibTeX XML Cite \textit{C. Park} et al., J. Appl. Funct. Anal. 9, No. 1--2, 25--41 (2014; Zbl 1364.39024)
Xu, Tian Zhou On fuzzy approximately cubic type mapping in fuzzy Banach spaces. (English) Zbl 06679893 Inf. Sci. 278, 56-66 (2014). MSC: 47S40 47H10 PDF BibTeX XML Cite \textit{T. Z. Xu}, Inf. Sci. 278, 56--66 (2014; Zbl 06679893) Full Text: DOI
Ebadian, A.; Ghobadipour, N.; Nikoufar, I.; Eshaghi, Gordji M. Approximation of the cubic functional equations in Lipschitz spaces. (English) Zbl 1340.39040 Anal. Theory Appl. 30, No. 4, 354-362 (2014). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{A. Ebadian} et al., Anal. Theory Appl. 30, No. 4, 354--362 (2014; Zbl 1340.39040) Full Text: DOI
Yun, Yong Sik; Kim, Chang Il The Hyers-Ulam stability of cubic functrional equations in fuzzy Banach spaces. (English) Zbl 1333.39042 East Asian Math. J. 30, No. 3, 271-281 (2014). Reviewer: Prasanna Sahoo (Louisville) MSC: 39B82 39B52 46S40 PDF BibTeX XML Cite \textit{Y. S. Yun} and \textit{C. I. Kim}, East Asian Math. J. 30, No. 3, 271--281 (2014; Zbl 1333.39042) Full Text: DOI
Lee, Jung Rye; Park, Choonkil; Rassias, Themistocles M. An AQCQ-functional equation in matrix random normed spaces. (English) Zbl 1332.39024 Rassias, Themistocles M. (ed.) et al., Topics in mathematical analysis and applications. Cham: Springer (ISBN 978-3-319-06553-3/hbk; 978-3-319-06554-0/ebook). Springer Optimization and Its Applications 94, 523-540 (2014). Reviewer: Andrzej Smajdor (Kraków) MSC: 39B82 39B52 46S50 PDF BibTeX XML Cite \textit{J. R. Lee} et al., Springer Optim. Appl. 94, 523--540 (2014; Zbl 1332.39024) Full Text: DOI
Lee, Jung Rye; Park, Choonkil; Rassias, Themistocles M. Hyers-Ulam stability of set-valued mappings. (English) Zbl 1320.39035 Rassias, Themistocles M. (ed.) et al., Mathematics without boundaries. Surveys in pure mathematics. New York, NY: Springer (ISBN 978-1-4939-1105-9/hbk; 978-1-4939-1106-6/ebook). 323-336 (2014). Reviewer: Mohammad Sal Moslehian (Karlstad) MSC: 39B82 47H04 PDF BibTeX XML Cite \textit{J. R. Lee} et al., in: Mathematics without boundaries. Surveys in pure mathematics. New York, NY: Springer. 323--336 (2014; Zbl 1320.39035) Full Text: DOI
Ji, Peisheng; Wei, Ranhong; Liu, Rongrong On a Cauchy-cubic functional equation and its Hyers-Ulam stability. (Chinese. English summary) Zbl 1324.39027 Acta Math. Sin., Chin. Ser. 57, No. 3, 559-568 (2014). MSC: 39B82 39B52 46S40 PDF BibTeX XML Cite \textit{P. Ji} et al., Acta Math. Sin., Chin. Ser. 57, No. 3, 559--568 (2014; Zbl 1324.39027)
Chu, Hahng-Yun; Kim, Ahyoung; Yoo, Seung Ki On the stability of the generalized cubic set-valued functional equation. (English) Zbl 1314.39031 Appl. Math. Lett. 37, 7-14 (2014). MSC: 39B82 PDF BibTeX XML Cite \textit{H.-Y. Chu} et al., Appl. Math. Lett. 37, 7--14 (2014; Zbl 1314.39031) Full Text: DOI
Murali, R.; Vithya, V. The generalized Hyers-Ulam fuzzy stability of cubic functional equation. (English) Zbl 1314.39037 Int. J. Differ. Equ. Appl. 13, No. 3, 81-91 (2014). MSC: 39B82 47H10 46S40 46L07 39B52 PDF BibTeX XML Cite \textit{R. Murali} and \textit{V. Vithya}, Int. J. Differ. Equ. Appl. 13, No. 3, 81--91 (2014; Zbl 1314.39037) Full Text: Link
Koh, Heejeong; Kang, Dongseung Approximate generalized cubic \(\ast\)-derivations. (English) Zbl 1309.39017 J. Funct. Spaces 2014, Article ID 757956, 6 p. (2014). MSC: 39B82 39B52 46L57 PDF BibTeX XML Cite \textit{H. Koh} and \textit{D. Kang}, J. Funct. Spaces 2014, Article ID 757956, 6 p. (2014; Zbl 1309.39017) Full Text: DOI
Cheng, Lihua; Lian, Tieyan Stability of cubic functional equations in Banach spaces. (Chinese. English summary) Zbl 1313.39038 Acta Math. Sci., Ser. A, Chin. Ed. 34, No. 2, 266-273 (2014). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{L. Cheng} and \textit{T. Lian}, Acta Math. Sci., Ser. A, Chin. Ed. 34, No. 2, 266--273 (2014; Zbl 1313.39038)