Xu, Xiaoxi; Zhao, Feiyan; Zhou, Yangui; Liu, Bin; Jiang, Xunda; Malomed, Boris A.; Li, Yongyao Vortex gap solitons in spin-orbit-coupled Bose-Einstein condensates with competing nonlinearities. (English) Zbl 07634569 Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106930, 13 p. (2023). MSC: 35Q55 35Q51 82C10 81Q80 78A60 35C08 PDF BibTeX XML Cite \textit{X. Xu} et al., Commun. Nonlinear Sci. Numer. Simul. 117, Article ID 106930, 13 p. (2023; Zbl 07634569) Full Text: DOI arXiv OpenURL
Qiang, Y. Long; Alexander, Tristram J.; de Sterke, C. Martijn Solitons in media with mixed, high-order dispersion and cubic nonlinearity. (English) Zbl 07648131 J. Phys. A, Math. Theor. 55, No. 38, Article ID 385701, 22 p. (2022). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{Y. L. Qiang} et al., J. Phys. A, Math. Theor. 55, No. 38, Article ID 385701, 22 p. (2022; Zbl 07648131) Full Text: DOI arXiv OpenURL
Kruglov, Vladimir I.; Triki, Houria Propagation of periodic and solitary waves in a highly dispersive cubic-quintic medium with self-frequency shift and self-steepening nonlinearity. (English) Zbl 07646462 Chaos Solitons Fractals 164, Article ID 112704, 6 p. (2022). MSC: 78-XX 35-XX PDF BibTeX XML Cite \textit{V. I. Kruglov} and \textit{H. Triki}, Chaos Solitons Fractals 164, Article ID 112704, 6 p. (2022; Zbl 07646462) Full Text: DOI arXiv OpenURL
Xu, Guoan; Li, Jibin; Zhang, Yi Exact solutions and dynamical behaviors of the Raman soliton model with anti-cubic nonlinearity. (English) Zbl 07581588 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 115, 21 p. (2022). Reviewer: Guobao Zhang (Lanzhou) MSC: 34A05 34C05 34C37 35C07 34C23 78A10 PDF BibTeX XML Cite \textit{G. Xu} et al., Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 115, 21 p. (2022; Zbl 07581588) Full Text: DOI OpenURL
Savel’ieva, K. V.; Dashko, O. G. Plane elastic wave interaction. Considering of quadratically and cubically nonlinearity. (Ukrainian. English summary) Zbl 1499.74061 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2022, No. 1, 50-53 (2022). MSC: 74J30 74B20 74E30 PDF BibTeX XML Cite \textit{K. V. Savel'ieva} and \textit{O. G. Dashko}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2022, No. 1, 50--53 (2022; Zbl 1499.74061) Full Text: DOI OpenURL
Bréhier, Charles-Edouard; Cohen, David Strong rates of convergence of a splitting scheme for Schrödinger equations with nonlocal interaction cubic nonlinearity and white noise dispersion. (English) Zbl 1485.65011 SIAM/ASA J. Uncertain. Quantif. 10, 453-480 (2022). MSC: 65C30 65J08 60H15 60H35 60-08 35Q55 PDF BibTeX XML Cite \textit{C.-E. Bréhier} and \textit{D. Cohen}, SIAM/ASA J. Uncertain. Quantif. 10, 453--480 (2022; Zbl 1485.65011) Full Text: DOI arXiv OpenURL
Feizmohammadi, Ali; Oksanen, Lauri Recovery of zeroth order coefficients in non-linear wave equations. (English) Zbl 1484.35408 J. Inst. Math. Jussieu 21, No. 2, 367-393 (2022). MSC: 35R30 35L71 35R01 PDF BibTeX XML Cite \textit{A. Feizmohammadi} and \textit{L. Oksanen}, J. Inst. Math. Jussieu 21, No. 2, 367--393 (2022; Zbl 1484.35408) Full Text: DOI arXiv OpenURL
Chen, Junbo; Zeng, Jianhua Dark matter-wave gap solitons of Bose-Einstein condensates trapped in optical lattices with competing cubic-quintic nonlinearities. (English) Zbl 1498.81085 Chaos Solitons Fractals 150, Article ID 111149, 7 p. (2021). MSC: 81Q80 35Q55 PDF BibTeX XML Cite \textit{J. Chen} and \textit{J. Zeng}, Chaos Solitons Fractals 150, Article ID 111149, 7 p. (2021; Zbl 1498.81085) Full Text: DOI OpenURL
Abushahmina, G. R.; Gusarova, N. I.; Yumagulov, M. G. Lyapunov quantities for Andronov-Hopf bifurcation problem in reaction-diffusion systems. (English) Zbl 1486.35032 Lobachevskii J. Math. 42, No. 15, 3567-3573 (2021). MSC: 35B32 35B35 35K51 35K57 PDF BibTeX XML Cite \textit{G. R. Abushahmina} et al., Lobachevskii J. Math. 42, No. 15, 3567--3573 (2021; Zbl 1486.35032) Full Text: DOI OpenURL
Shablovskiĭ, Oleg Nikiforovich Wave equation with cubic nonlinearity and excitation of oscillations in the “medium-source” system. (Russian. English summary) Zbl 1486.74081 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 13, No. 4, 44-56 (2021). MSC: 74J99 PDF BibTeX XML Cite \textit{O. N. Shablovskiĭ}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 13, No. 4, 44--56 (2021; Zbl 1486.74081) Full Text: DOI MNR OpenURL
Manafian, Jalil; Ilhan, Onur Alp; Mohyaldeen, Sherin Youns; Zeynalli, Subhiya M.; Singh, Gurpreet New strategic method for fractional mitigating Internet bottleneck with quadratic-cubic nonlinearity. (English) Zbl 1486.35398 Math. Sci., Springer 15, No. 4, 345-364 (2021). MSC: 35Q94 PDF BibTeX XML Cite \textit{J. Manafian} et al., Math. Sci., Springer 15, No. 4, 345--364 (2021; Zbl 1486.35398) Full Text: DOI OpenURL
Yin, H. M.; Chow, K. W. Breathers, cascading instabilities and Fermi-Pasta-Ulam-Tsingou recurrence of the derivative nonlinear Schrödinger equation: effects of ‘self-steepening’ nonlinearity. (English) Zbl 1491.76034 Physica D 428, Article ID 133033, 15 p. (2021). MSC: 76E30 76B15 35Q55 PDF BibTeX XML Cite \textit{H. M. Yin} and \textit{K. W. Chow}, Physica D 428, Article ID 133033, 15 p. (2021; Zbl 1491.76034) Full Text: DOI OpenURL
Dai, Chao-Qing; Wu, Gangzhou; Li, Hui-Jun; Wang, Yue-Yue Wick-type stochastic fractional solitons supported by quadratic-cubic nonlinearity. (English) Zbl 1481.78020 Fractals 29, No. 7, Article ID 2150192, 11 p. (2021). MSC: 78A60 78A40 35C08 35B36 33E12 60G22 60H40 35Q55 35R60 26A33 35R11 PDF BibTeX XML Cite \textit{C.-Q. Dai} et al., Fractals 29, No. 7, Article ID 2150192, 11 p. (2021; Zbl 1481.78020) Full Text: DOI OpenURL
Salas, Alvaro H. S. Analytic solution to the generalized complex Duffing equation and its application in soliton theory. (English) Zbl 1480.34003 Appl. Anal. 100, No. 13, 2867-2872 (2021). MSC: 34A05 34B30 34A12 PDF BibTeX XML Cite \textit{A. H. S. Salas}, Appl. Anal. 100, No. 13, 2867--2872 (2021; Zbl 1480.34003) Full Text: DOI OpenURL
Sharma, Neeraj; Jana, Soumendu Dissipative soliton dynamics and switching in split ring resonator based metamaterial with multi-photon absorption and diffusion. (English) Zbl 07409590 Phys. Lett., A 398, Article ID 127261, 9 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{N. Sharma} and \textit{S. Jana}, Phys. Lett., A 398, Article ID 127261, 9 p. (2021; Zbl 07409590) Full Text: DOI OpenURL
Ayela, Amour Marc; Edah, Gaston; Elloh, Camille; Biswas, Anjan; Ekici, Mehmet; Alzahrani, Abdullah Khamis; Belic, Milivoj R. Chirped super-Gaussian and super-sech pulse perturbation of nonlinear Schrödinger’s equation with quadratic-cubic nonlinearity by variational principle. (English) Zbl 07409565 Phys. Lett., A 396, Article ID 127231, 11 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{A. M. Ayela} et al., Phys. Lett., A 396, Article ID 127231, 11 p. (2021; Zbl 07409565) Full Text: DOI OpenURL
Salas, Alvaro H.; Martinez, Lorenzo J.; Ocampo, David L. Analytical and approximate trigonometric solution to Duffing-Helmholtz equation. (English) Zbl 1469.34004 Int. J. Math. Comput. Sci. 16, No. 4, 1523-1531 (2021). MSC: 34A05 34A34 34A25 33E05 PDF BibTeX XML Cite \textit{A. H. Salas} et al., Int. J. Math. Comput. Sci. 16, No. 4, 1523--1531 (2021; Zbl 1469.34004) Full Text: Link OpenURL
Lloyd, David J. Hexagon invasion fronts outside the homoclinic snaking region in the planar Swift-Hohenberg equation. (English) Zbl 1470.35051 SIAM J. Appl. Dyn. Syst. 20, No. 2, 671-700 (2021). MSC: 35B36 35B32 35K35 35K58 37C29 PDF BibTeX XML Cite \textit{D. J. Lloyd}, SIAM J. Appl. Dyn. Syst. 20, No. 2, 671--700 (2021; Zbl 1470.35051) Full Text: DOI arXiv OpenURL
López, José Luis A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. (English) Zbl 1465.35273 Discrete Contin. Dyn. Syst. 41, No. 6, 2601-2617 (2021). MSC: 35K40 35K59 35Q55 92C17 PDF BibTeX XML Cite \textit{J. L. López}, Discrete Contin. Dyn. Syst. 41, No. 6, 2601--2617 (2021; Zbl 1465.35273) Full Text: DOI OpenURL
Khachatryan, Kh. A.; Andriyan, S. M. On the solvability of a class of discrete matrix equations with cubic nonlinearity. (English. Russian original) Zbl 1502.39006 Ukr. Math. J. 71, No. 12, 1910-1928 (2020); translation from Ukr. Mat. Zh. 71, No. 12, 1667-1683 (2019). MSC: 39A22 39A12 PDF BibTeX XML Cite \textit{Kh. A. Khachatryan} and \textit{S. M. Andriyan}, Ukr. Math. J. 71, No. 12, 1910--1928 (2020; Zbl 1502.39006); translation from Ukr. Mat. Zh. 71, No. 12, 1667--1683 (2019) Full Text: DOI OpenURL
Peleg, Avner; Chakraborty, Debananda Radiation dynamics in fast soliton collisions in the presence of cubic loss. (English) Zbl 1490.81085 Physica D 406, Article ID 132397, 18 p. (2020). MSC: 81Q80 35Q51 35Q55 PDF BibTeX XML Cite \textit{A. Peleg} and \textit{D. Chakraborty}, Physica D 406, Article ID 132397, 18 p. (2020; Zbl 1490.81085) Full Text: DOI arXiv OpenURL
Zheng, Xiaoxiao; Di, Huafei; Peng, Xiaoming Orbital stability of solitary waves for the generalized long-short wave resonance equations with a cubic-quintic strong nonlinear term. (English) Zbl 07461012 J. Inequal. Appl. 2020, Paper No. 238, 18 p. (2020). MSC: 35Q55 35B35 35C07 35C08 PDF BibTeX XML Cite \textit{X. Zheng} et al., J. Inequal. Appl. 2020, Paper No. 238, 18 p. (2020; Zbl 07461012) Full Text: DOI OpenURL
Wei, Weiyan; Yabuno, Hiroshi Nonlinear analysis of hunting motion by focusing on non-selfadjointness. (English) Zbl 1484.74037 Kovacic, Ivana (ed.) et al., IUTAM symposium on exploiting nonlinear dynamics for engineering systems. ENOLIDES 2018. Proceedings of the IUTAM symposium, Novi Sad, Serbia, July 15–19, 2018. Cham: Springer. IUTAM Bookser. 37, 303-316 (2020). MSC: 74H55 74H45 70K50 PDF BibTeX XML Cite \textit{W. Wei} and \textit{H. Yabuno}, IUTAM Bookser. 37, 303--316 (2020; Zbl 1484.74037) Full Text: DOI OpenURL
Kovacic, Ivana; Gatti, Gianluca Helmholtz, Duffing and Helmholtz-Duffing oscillators: exact steady-state solutions. (English) Zbl 1482.70022 Kovacic, Ivana (ed.) et al., IUTAM symposium on exploiting nonlinear dynamics for engineering systems. ENOLIDES 2018. Proceedings of the IUTAM symposium, Novi Sad, Serbia, July 15–19, 2018. Cham: Springer. IUTAM Bookser. 37, 167-177 (2020). Reviewer: Alexander Grin (Grodno) MSC: 70K99 34C15 PDF BibTeX XML Cite \textit{I. Kovacic} and \textit{G. Gatti}, IUTAM Bookser. 37, 167--177 (2020; Zbl 1482.70022) Full Text: DOI OpenURL
Al-Ghafri, K. S.; Krishnan, E. V. Optical solitons in metamaterials dominated by anti-cubic nonlinearity and Hamiltonian perturbations. (English) Zbl 1468.35182 Int. J. Appl. Comput. Math. 6, No. 5, Paper No. 144, 19 p. (2020). MSC: 35Q55 35Q41 78A60 78A40 35C08 35C07 PDF BibTeX XML Cite \textit{K. S. Al-Ghafri} and \textit{E. V. Krishnan}, Int. J. Appl. Comput. Math. 6, No. 5, Paper No. 144, 19 p. (2020; Zbl 1468.35182) Full Text: DOI OpenURL
Xu, Xiangsheng Partial regularity of weak solutions and life-span of smooth solutions to a biological network formulation model. (English) Zbl 1456.35062 SN Partial Differ. Equ. Appl. 1, No. 4, Paper No. 18, 31 p. (2020). MSC: 35B65 35B44 35D30 35Q35 35K51 35Q92 PDF BibTeX XML Cite \textit{X. Xu}, SN Partial Differ. Equ. Appl. 1, No. 4, Paper No. 18, 31 p. (2020; Zbl 1456.35062) Full Text: DOI arXiv OpenURL
Zayed, Elsayed M. E.; Shohib, Reham M. A.; El-Horbaty, Mahmoud M.; Biswas, Anjan; Asma, Mir; Ekici, Mehmet; Kamis Alzahrani, Abdullah; Belic, Milivoj R. Solitons in magneto-optic waveguides with quadratic-cubic nonlinearity. (English) Zbl 1448.35093 Phys. Lett., A 384, No. 25, Article ID 126456, 7 p. (2020). MSC: 35C08 35Q55 78A50 78A60 PDF BibTeX XML Cite \textit{E. M. E. Zayed} et al., Phys. Lett., A 384, No. 25, Article ID 126456, 7 p. (2020; Zbl 1448.35093) Full Text: DOI OpenURL
Seadawy, Aly R.; Zafar, A.; Raheel, M. On dark and singular solitons and other solutions with anti-cubic law of nonlinearity in optical metamaterials. (English) Zbl 1443.35152 Int. J. Mod. Phys. B 34, No. 20, Article ID 2050186, 14 p. (2020). MSC: 35Q60 35C08 35A25 35Q55 PDF BibTeX XML Cite \textit{A. R. Seadawy} et al., Int. J. Mod. Phys. B 34, No. 20, Article ID 2050186, 14 p. (2020; Zbl 1443.35152) Full Text: DOI OpenURL
Zayed, Elsayed M. E.; Shohib, Reham M. A.; Alngar, Mohamed E. M. New extended generalized Kudryashov method for solving three nonlinear partial differential equations. (English) Zbl 07249219 Nonlinear Anal., Model. Control 25, No. 4, 598-617 (2020). MSC: 35Q55 35Q53 76X05 76Q05 35C08 34A34 PDF BibTeX XML Cite \textit{E. M. E. Zayed} et al., Nonlinear Anal., Model. Control 25, No. 4, 598--617 (2020; Zbl 07249219) Full Text: DOI OpenURL
Xu, Xiangsheng Global existence of strong solutions to a biological network formulation model in 2+1 dimensions. (English) Zbl 1448.35525 Discrete Contin. Dyn. Syst. 40, No. 11, 6289-6307 (2020). MSC: 35Q92 92C35 76S05 76Z05 35B45 35B65 35D35 35M33 35A01 PDF BibTeX XML Cite \textit{X. Xu}, Discrete Contin. Dyn. Syst. 40, No. 11, 6289--6307 (2020; Zbl 1448.35525) Full Text: DOI arXiv OpenURL
Wang, Xiaojie An efficient explicit full-discrete scheme for strong approximation of stochastic Allen-Cahn equation. (English) Zbl 07243121 Stochastic Processes Appl. 130, No. 10, 6271-6299 (2020). MSC: 65C30 60H35 60H15 PDF BibTeX XML Cite \textit{X. Wang}, Stochastic Processes Appl. 130, No. 10, 6271--6299 (2020; Zbl 07243121) Full Text: DOI OpenURL
Oh, Tadahiro; Okamoto, Mamoru; Robert, Tristan A remark on triviality for the two-dimensional stochastic nonlinear wave equation. (English) Zbl 1448.35587 Stochastic Processes Appl. 130, No. 9, 5838-5864 (2020). MSC: 35R60 35L71 60H15 PDF BibTeX XML Cite \textit{T. Oh} et al., Stochastic Processes Appl. 130, No. 9, 5838--5864 (2020; Zbl 1448.35587) Full Text: DOI arXiv OpenURL
Perchikov, Nathan; Gendelman, O. V. Stability of compact breathers in translationally-invariant nonlinear chains with flat dispersion bands. (English) Zbl 1434.82051 Chaos Solitons Fractals 132, Article ID 109526, 22 p. (2020). MSC: 82C20 37N15 PDF BibTeX XML Cite \textit{N. Perchikov} and \textit{O. V. Gendelman}, Chaos Solitons Fractals 132, Article ID 109526, 22 p. (2020; Zbl 1434.82051) Full Text: DOI arXiv OpenURL
Duruk Mutlubas, Nilay; Geyer, Anna; Quirchmayr, Ronald Well-posedness of a highly nonlinear shallow water equation on the circle. (English) Zbl 1434.35090 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111849, 13 p. (2020). MSC: 35Q35 35L30 PDF BibTeX XML Cite \textit{N. Duruk Mutlubas} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111849, 13 p. (2020; Zbl 1434.35090) Full Text: DOI arXiv OpenURL
Yan, Kai On the blow up solutions to a two-component cubic Camassa-Holm system with peakons. (English) Zbl 1442.35048 Discrete Contin. Dyn. Syst. 40, No. 7, 4565-4576 (2020). Reviewer: Giuseppe Maria Coclite (Bari) MSC: 35B44 35G25 35Q35 PDF BibTeX XML Cite \textit{K. Yan}, Discrete Contin. Dyn. Syst. 40, No. 7, 4565--4576 (2020; Zbl 1442.35048) Full Text: DOI OpenURL
Dimova, M.; Kolkovska, N.; Kutev, N. Global behavior of the solutions to nonlinear Klein-Gordon equation with supercritical energy. (English) Zbl 1465.35070 J. Math. Anal. Appl. 487, No. 2, Article ID 124029, 15 p. (2020). Reviewer: Ivan Naumkin (Nice) MSC: 35B44 35L71 35L15 PDF BibTeX XML Cite \textit{M. Dimova} et al., J. Math. Anal. Appl. 487, No. 2, Article ID 124029, 15 p. (2020; Zbl 1465.35070) Full Text: DOI OpenURL
Guo, Tieding; Rega, Giuseppe Direct and discretized perturbations revisited: a new error source interpretation, with application to moving boundary problem. (English) Zbl 1477.74036 Eur. J. Mech., A, Solids 81, Article ID 103936, 14 p. (2020). MSC: 74H10 74H45 PDF BibTeX XML Cite \textit{T. Guo} and \textit{G. Rega}, Eur. J. Mech., A, Solids 81, Article ID 103936, 14 p. (2020; Zbl 1477.74036) Full Text: DOI OpenURL
Varanis, Marcus V.; Tusset, Angelo Marcelo; Balthazar, José Manoel; Litak, Grzegorz; Oliveira, Clivaldo; Rocha, Rodrigo Tumolin; Nabarrete, Airton; Piccirillo, Vinicius Dynamics and control of periodic and non-periodic behavior of Duffing vibrating system with fractional damping and excited by a non-ideal motor. (English) Zbl 1451.93165 J. Franklin Inst. 357, No. 4, 2067-2082 (2020). MSC: 93C15 26A33 70L05 93C95 93C10 PDF BibTeX XML Cite \textit{M. V. Varanis} et al., J. Franklin Inst. 357, No. 4, 2067--2082 (2020; Zbl 1451.93165) Full Text: DOI OpenURL
Li, Yongqiang; Zhou, Mao; Wang, Tao; Zhang, Yingjie Nonlinear primary resonance with \(1:3:6\) internal resonances of the symmetric rectangular honeycomb sandwich panels. (English) Zbl 1476.74057 Eur. J. Mech., A, Solids 80, Article ID 103908, 13 p. (2020). Reviewer: Girish Kumar Ramaiah (Bangalore) MSC: 74H45 74K20 74E30 74S99 PDF BibTeX XML Cite \textit{Y. Li} et al., Eur. J. Mech., A, Solids 80, Article ID 103908, 13 p. (2020; Zbl 1476.74057) Full Text: DOI OpenURL
Liang, Yu-Hao; Wang, Shin-Hwa Classification and evolution of bifurcation curves for a one-dimensional Dirichlet-Neumann problem with a specific cubic nonlinearity. (English) Zbl 1432.34050 Discrete Contin. Dyn. Syst. 40, No. 2, 1075-1105 (2020). MSC: 34C23 34B18 34B09 34B08 PDF BibTeX XML Cite \textit{Y.-H. Liang} and \textit{S.-H. Wang}, Discrete Contin. Dyn. Syst. 40, No. 2, 1075--1105 (2020; Zbl 1432.34050) Full Text: DOI OpenURL
Seadawy, Aly R.; Lu, Dianchen; Nasreen, Naila; Nasreen, Shamila Structure of optical solitons of resonant Schrödinger equation with quadratic cubic nonlinearity and modulation instability analysis. (English) Zbl 07570671 Physica A 534, Article ID 122155, 12 p. (2019). MSC: 82-XX PDF BibTeX XML Cite \textit{A. R. Seadawy} et al., Physica A 534, Article ID 122155, 12 p. (2019; Zbl 07570671) Full Text: DOI OpenURL
Qiu, Yunli; Malomed, Boris A.; Mihalache, Dumitru; Zhu, Xing; Peng, Jianle; He, Yingji Generation of stable multi-vortex clusters in a dissipative medium with anti-cubic nonlinearity. (English) Zbl 1478.78063 Phys. Lett., A 383, No. 22, 2579-2583 (2019). MSC: 78A60 35Q56 35C08 PDF BibTeX XML Cite \textit{Y. Qiu} et al., Phys. Lett., A 383, No. 22, 2579--2583 (2019; Zbl 1478.78063) Full Text: DOI arXiv OpenURL
Andres, Jan; Pennequin, Denis Existence, localization and stability of limit-periodic solutions to differential equations involving cubic nonlinearities. (English) Zbl 1481.34051 Topol. Methods Nonlinear Anal. 54, No. 2B, 887-906 (2019). Reviewer: Alessandro Calamai (Ancona) MSC: 34C25 37C60 34D20 PDF BibTeX XML Cite \textit{J. Andres} and \textit{D. Pennequin}, Topol. Methods Nonlinear Anal. 54, No. 2B, 887--906 (2019; Zbl 1481.34051) Full Text: DOI Euclid OpenURL
Fan, Zhiwei; Malomed, Boris A. Dynamical control of solitons in a parity-time-symmetric coupler by periodic management. (English) Zbl 07264533 Commun. Nonlinear Sci. Numer. Simul. 79, Article ID 104906, 10 p. (2019). MSC: 78Axx 74Jxx 35Qxx PDF BibTeX XML Cite \textit{Z. Fan} and \textit{B. A. Malomed}, Commun. Nonlinear Sci. Numer. Simul. 79, Article ID 104906, 10 p. (2019; Zbl 07264533) Full Text: DOI arXiv OpenURL
Lepidi, Marco; Bacigalupo, Andrea Wave propagation properties of one-dimensional acoustic metamaterials with nonlinear diatomic microstructure. (English) Zbl 1430.74068 Nonlinear Dyn. 98, No. 4, 2711-2735 (2019). MSC: 74J30 76Q05 37L60 PDF BibTeX XML Cite \textit{M. Lepidi} and \textit{A. Bacigalupo}, Nonlinear Dyn. 98, No. 4, 2711--2735 (2019; Zbl 1430.74068) Full Text: DOI OpenURL
Zhou, Shouming; Yang, Li Persistence properties for the two-component Novikov equation in weighted \(L^p\) spaces. (English) Zbl 1428.35102 Appl. Anal. 98, No. 11, 2105-2117 (2019). MSC: 35G25 35L05 35D35 PDF BibTeX XML Cite \textit{S. Zhou} and \textit{L. Yang}, Appl. Anal. 98, No. 11, 2105--2117 (2019; Zbl 1428.35102) Full Text: DOI OpenURL
Naumkin, P. I. Time decay estimates for solutions of the Cauchy problem for the modified Kawahara equation. (English. Russian original) Zbl 1416.35042 Sb. Math. 210, No. 5, 693-730 (2019); translation from Mat. Sb. 210, No. 5, 72-108 (2019). MSC: 35B40 35Q53 PDF BibTeX XML Cite \textit{P. I. Naumkin}, Sb. Math. 210, No. 5, 693--730 (2019; Zbl 1416.35042); translation from Mat. Sb. 210, No. 5, 72--108 (2019) Full Text: DOI OpenURL
Pal, Ritu; Loomba, Shally; Kumar, C. N.; Milovic, Daniela; Maluckov, Aleksandra Matter wave soliton solutions for driven Gross-Pitaevskii equation with distributed coefficients. (English) Zbl 1415.35255 Ann. Phys. 401, 116-129 (2019). MSC: 35Q55 35C08 PDF BibTeX XML Cite \textit{R. Pal} et al., Ann. Phys. 401, 116--129 (2019; Zbl 1415.35255) Full Text: DOI OpenURL
Zha, Dongbing Global and almost global existence for general quasilinear wave equations in two space dimensions. (English. French summary) Zbl 1411.35210 J. Math. Pures Appl. (9) 123, 270-299 (2019). Reviewer: Dongbing Zha (Shanghai) MSC: 35L72 35L15 PDF BibTeX XML Cite \textit{D. Zha}, J. Math. Pures Appl. (9) 123, 270--299 (2019; Zbl 1411.35210) Full Text: DOI OpenURL
Shi, Qihong; Peng, Congming Wellposedness for semirelativistic Schrödinger equation with power-type nonlinearity. (English) Zbl 1406.35370 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 178, 133-144 (2019). MSC: 35Q55 35B65 35A01 PDF BibTeX XML Cite \textit{Q. Shi} and \textit{C. Peng}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 178, 133--144 (2019; Zbl 1406.35370) Full Text: DOI OpenURL
Liang, Jianli; Li, Jibin Bifurcations and exact solutions of nonlinear Schrödinger equation with an anti-cubic nonlinearity. (English) Zbl 1462.34051 J. Appl. Anal. Comput. 8, No. 4, 1194-1210 (2018). MSC: 34C05 34C37 34C23 34A05 34L40 PDF BibTeX XML Cite \textit{J. Liang} and \textit{J. Li}, J. Appl. Anal. Comput. 8, No. 4, 1194--1210 (2018; Zbl 1462.34051) Full Text: DOI OpenURL
Weng, Yuanhang; Wang, Hong; Huang, Jing Families of fundamental and vortex solitons under competing cubic-quintic nonlinearity with complex potentials. (English) Zbl 07265260 Commun. Nonlinear Sci. Numer. Simul. 64, 66-73 (2018). MSC: 35Q51 35C08 35B06 37K40 35B35 PDF BibTeX XML Cite \textit{Y. Weng} et al., Commun. Nonlinear Sci. Numer. Simul. 64, 66--73 (2018; Zbl 07265260) Full Text: DOI OpenURL
Chen, Yi-Xiang Vortex and multipole coupled solitons in the spatially modulated cubic-quintic-septimal nonlinear material. (English) Zbl 1442.35415 Comput. Math. Appl. 76, No. 9, 2119-2128 (2018). MSC: 35Q55 35C08 PDF BibTeX XML Cite \textit{Y.-X. Chen}, Comput. Math. Appl. 76, No. 9, 2119--2128 (2018; Zbl 1442.35415) Full Text: DOI OpenURL
Valovik, D. V. On the existence of infinitely many nonperturbative solutions in a transmission eigenvalue problem for nonlinear Helmholtz equation with polynomial nonlinearity. (English) Zbl 1480.34113 Appl. Math. Modelling 53, 296-309 (2018). MSC: 34L30 47J10 78A25 PDF BibTeX XML Cite \textit{D. V. Valovik}, Appl. Math. Modelling 53, 296--309 (2018; Zbl 1480.34113) Full Text: DOI OpenURL
Kirichuka, A.; Sadyrbaev, F. On boundary value problem for equations with cubic nonlinearity and step-wise coefficient. (English) Zbl 1415.34053 Differ. Equ. Appl. 10, No. 4, 433-447 (2018). Reviewer: Petio S. Kelevedjiev (Sliven) MSC: 34B15 34A36 PDF BibTeX XML Cite \textit{A. Kirichuka} and \textit{F. Sadyrbaev}, Differ. Equ. Appl. 10, No. 4, 433--447 (2018; Zbl 1415.34053) Full Text: DOI OpenURL
Bulygin, A. D.; Zemlyanov, A. A. Variational statement of the Schrödinger equation with a nonstationary nonlinearity and its integrals of motion. (English. Russian original) Zbl 1420.35277 Differ. Equ. 54, No. 10, 1394-1398 (2018); translation from Differ. Uravn. 54, No. 10, 1420-1424 (2018). Reviewer: Eric Stachura (Marietta) MSC: 35Q41 78A60 35A15 PDF BibTeX XML Cite \textit{A. D. Bulygin} and \textit{A. A. Zemlyanov}, Differ. Equ. 54, No. 10, 1394--1398 (2018; Zbl 1420.35277); translation from Differ. Uravn. 54, No. 10, 1420--1424 (2018) Full Text: DOI OpenURL
Dimova, Milena; Kolkovska, Natalia; Kutev, Nikolay Orbital stability or instability of solitary waves to generalized Boussinesq equation with quadratic-cubic nonlinearity. (English) Zbl 1424.35257 C. R. Acad. Bulg. Sci. 71, No. 8, 1011-1019 (2018). Reviewer: Petar Popivanov (Sofia) MSC: 35L75 35Q51 37K45 PDF BibTeX XML Cite \textit{M. Dimova} et al., C. R. Acad. Bulg. Sci. 71, No. 8, 1011--1019 (2018; Zbl 1424.35257) OpenURL
Rudenko, O. V.; Hedberg, C. M. Single shock and periodic sawtooth-shaped waves in media with non-analytic nonlinearities. (English) Zbl 1407.35048 Math. Model. Nat. Phenom. 13, No. 2, Paper No. 18, 27 p. (2018). MSC: 35C07 35G20 35K55 74J40 76E30 76Q05 35L67 PDF BibTeX XML Cite \textit{O. V. Rudenko} and \textit{C. M. Hedberg}, Math. Model. Nat. Phenom. 13, No. 2, Paper No. 18, 27 p. (2018; Zbl 1407.35048) Full Text: DOI Link OpenURL
Raschetova, D. V.; Tikhov, S. V.; Valovik, D. V. Electromagnetic guided waves in a lossless cubic-quintic nonlinear waveguide. (English) Zbl 1406.78014 Lobachevskii J. Math. 39, No. 8, 1108-1116 (2018). MSC: 78A50 78A48 78A40 78A60 78A25 35P30 PDF BibTeX XML Cite \textit{D. V. Raschetova} et al., Lobachevskii J. Math. 39, No. 8, 1108--1116 (2018; Zbl 1406.78014) Full Text: DOI OpenURL
Stingo, Annalaura Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decaying Cauchy data. (Existence globale et comportement asymptotique de petites solutions pour des équation de Klein-Gordon critiques 1D.) (English. French summary) Zbl 1409.35146 Bull. Soc. Math. Fr. 146, No. 1, 155-213 (2018). Reviewer: Dongbing Zha (Shanghai) MSC: 35L72 35L15 PDF BibTeX XML Cite \textit{A. Stingo}, Bull. Soc. Math. Fr. 146, No. 1, 155--213 (2018; Zbl 1409.35146) Full Text: arXiv OpenURL
Gao, Xinjun Global well-posedness for the cubic fractional Schrödinger equation. (English) Zbl 1397.35271 Colloq. Math. 153, No. 1, 81-96 (2018). MSC: 35Q55 35Q40 35R11 PDF BibTeX XML Cite \textit{X. Gao}, Colloq. Math. 153, No. 1, 81--96 (2018; Zbl 1397.35271) Full Text: DOI OpenURL
Liu, Bin; Zhang, Lei The Cauchy problem for an integrable generalized Camassa-Holm equation with cubic nonlinearity. (English) Zbl 1400.37080 Bull. Korean Math. Soc. 55, No. 1, 267-296 (2018). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 37K10 37L05 35G25 35Q35 35A10 PDF BibTeX XML Cite \textit{B. Liu} and \textit{L. Zhang}, Bull. Korean Math. Soc. 55, No. 1, 267--296 (2018; Zbl 1400.37080) Full Text: Link OpenURL
Gong, Luozhong; Fan, Guobing The lower bound of second-order nonlinearity of cubic functions. (English) Zbl 1413.94044 Ars Comb. 136, 255-261 (2018). MSC: 94A60 PDF BibTeX XML Cite \textit{L. Gong} and \textit{G. Fan}, Ars Comb. 136, 255--261 (2018; Zbl 1413.94044) OpenURL
Khanmamedov, Azer; Yayla, Sema Global attractors for the 2D hyperbolic Cahn-Hilliard equations. (English) Zbl 1458.35065 Z. Angew. Math. Phys. 69, No. 1, Paper No. 14, 17 p. (2018). MSC: 35B41 35B45 35D30 35L35 35L76 PDF BibTeX XML Cite \textit{A. Khanmamedov} and \textit{S. Yayla}, Z. Angew. Math. Phys. 69, No. 1, Paper No. 14, 17 p. (2018; Zbl 1458.35065) Full Text: DOI OpenURL
Luckins, Ellen K.; Van Gorder, Robert A. Bose-Einstein condensation under the cubic-quintic Gross-Pitaevskii equation in radial domains. (English) Zbl 1382.35272 Ann. Phys. 388, 206-234 (2018). MSC: 35Q55 82B10 PDF BibTeX XML Cite \textit{E. K. Luckins} and \textit{R. A. Van Gorder}, Ann. Phys. 388, 206--234 (2018; Zbl 1382.35272) Full Text: DOI OpenURL
Cardoso, Wesley B.; Couto, Hugo L. C.; Avelar, Ardiley T.; Bazeia, Dionisio Modulation of localized solutions in quadratic-cubic nonlinear Schrödinger equation with inhomogeneous coefficients. (English) Zbl 07257661 Commun. Nonlinear Sci. Numer. Simul. 48, 474-483 (2017). MSC: 34-XX 35-XX PDF BibTeX XML Cite \textit{W. B. Cardoso} et al., Commun. Nonlinear Sci. Numer. Simul. 48, 474--483 (2017; Zbl 07257661) Full Text: DOI arXiv OpenURL
Haris, Ahmed; Motato, Eliot; Theodossiades, Stephanos; Rahnejat, Homer; Kelly, Patrick; Vakakis, Alexander; Bergman, Lawrence A.; McFarland, D. Michael A study on torsional vibration attenuation in automotive drivetrains using absorbers with smooth and non-smooth nonlinearities. (English) Zbl 1443.70004 Appl. Math. Modelling 46, 674-690 (2017). MSC: 70-10 70K99 PDF BibTeX XML Cite \textit{A. Haris} et al., Appl. Math. Modelling 46, 674--690 (2017; Zbl 1443.70004) Full Text: DOI OpenURL
Savel’yeva, K. V.; Sinchylo, S. V.; Symchuk, Ya. V. Transverse plane waves in nano-composite materials. (Ukrainian. English summary) Zbl 1399.74093 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2017, No. 3, 197-200 (2017). MSC: 74M25 74J30 PDF BibTeX XML Cite \textit{K. V. Savel'yeva} et al., Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2017, No. 3, 197--200 (2017; Zbl 1399.74093) OpenURL
Wang, Yanzheng; Achenbach, Jan D. Interesting effects in harmonic generation by plane elastic waves. (English) Zbl 1381.74112 Acta Mech. Sin. 33, No. 4, 754-762 (2017). MSC: 74J05 74B20 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{J. D. Achenbach}, Acta Mech. Sin. 33, No. 4, 754--762 (2017; Zbl 1381.74112) Full Text: DOI OpenURL
Zayed, Elsayed M. E.; Al-Nowehy, Abdul-Ghani Exact solutions and optical soliton solutions for the nonlinear Schrödinger equation with fourth-order dispersion and cubic-quintic nonlinearity. (English) Zbl 1386.78017 Ric. Mat. 66, No. 2, 531-552 (2017). MSC: 78A60 35Q51 35Q55 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{A.-G. Al-Nowehy}, Ric. Mat. 66, No. 2, 531--552 (2017; Zbl 1386.78017) Full Text: DOI OpenURL
Kim, Donghyun A note on a system of cubic nonlinear Klein-Gordon equations in one space dimension. (English) Zbl 1378.35201 Differ. Equ. Dyn. Syst. 25, No. 3, 431-451 (2017). MSC: 35L71 35L70 35B40 35L15 PDF BibTeX XML Cite \textit{D. Kim}, Differ. Equ. Dyn. Syst. 25, No. 3, 431--451 (2017; Zbl 1378.35201) Full Text: DOI arXiv OpenURL
Korotkikh, A. S. Stable concentrations defined by two-dimensional equation of diffusion with cubic nonlinearity. (Russian. English summary) Zbl 1373.35170 Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2017, No. 1, 115-127 (2017). MSC: 35K57 PDF BibTeX XML Cite \textit{A. S. Korotkikh}, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2017, No. 1, 115--127 (2017; Zbl 1373.35170) OpenURL
Suneera, T. P.; Subha, P. A. Single-hump and double-hump solitons in a \(\mathcal{PT}\) symmetric complex potential. (English) Zbl 1366.35172 Waves Random Complex Media 27, No. 2, 241-254 (2017). MSC: 35Q55 35C08 81R12 PDF BibTeX XML Cite \textit{T. P. Suneera} and \textit{P. A. Subha}, Waves Random Complex Media 27, No. 2, 241--254 (2017; Zbl 1366.35172) Full Text: DOI OpenURL
Naumkin, Ivan Neumann problem for the nonlinear Klein-Gordon equation. (English) Zbl 1355.35141 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 149, 81-110 (2017). MSC: 35L71 35L20 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{I. Naumkin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 149, 81--110 (2017; Zbl 1355.35141) Full Text: DOI OpenURL
Quirchmayr, Ronald A new highly nonlinear shallow water wave equation. (English) Zbl 1360.35189 J. Evol. Equ. 16, No. 3, 539-567 (2016). MSC: 35Q35 35L30 PDF BibTeX XML Cite \textit{R. Quirchmayr}, J. Evol. Equ. 16, No. 3, 539--567 (2016; Zbl 1360.35189) Full Text: DOI OpenURL
Wang, Ying; Li, Shaohong; Guo, Jiyuan; Zhou, Qingchun; Zhou, Yu; Wen, Wen Analytical solution and soliton-like behavior for the \((1+1)\)-dimensional quantum system with generalized cubic-quintic nonlinearity. (English) Zbl 1352.35007 Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 12, Article ID 1650195, 6 p. (2016). MSC: 35A09 35Q55 35C08 PDF BibTeX XML Cite \textit{Y. Wang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 26, No. 12, Article ID 1650195, 6 p. (2016; Zbl 1352.35007) Full Text: DOI OpenURL
Wu, Hong-Yu; Jiang, Li-Hong; Wu, Yu-Feng Spatiotemporal localized solitons in cubic and power-law competing nonlinear media with different diffractions and \(\mathcal {PT}\)-symmetric potentials. (English) Zbl 1355.35044 Nonlinear Dyn. 85, No. 2, 1223-1230 (2016). MSC: 35C08 35Q55 78A60 81V80 PDF BibTeX XML Cite \textit{H.-Y. Wu} et al., Nonlinear Dyn. 85, No. 2, 1223--1230 (2016; Zbl 1355.35044) Full Text: DOI OpenURL
Naumkin, I. P. Klein-Gordon equation with critical nonlinearity and inhomogeneous Dirichlet boundary conditions. (English) Zbl 1349.35246 Differ. Integral Equ. 29, No. 1-2, 55-92 (2016). Reviewer: Marie Kopáčková (Praha) MSC: 35L70 35L20 35M13 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{I. P. Naumkin}, Differ. Integral Equ. 29, No. 1--2, 55--92 (2016; Zbl 1349.35246) OpenURL
Togun, Necla Nonlocal beam theory for nonlinear vibrations of a nanobeam resting on elastic foundation. (English) Zbl 1336.35329 Bound. Value Probl. 2016, Paper No. 57, 14 p. (2016). MSC: 35Q74 35C20 74K10 74B20 74M25 74H45 PDF BibTeX XML Cite \textit{N. Togun}, Bound. Value Probl. 2016, Paper No. 57, 14 p. (2016; Zbl 1336.35329) Full Text: DOI OpenURL
Genoud, François; Malomed, Boris A.; Weishäupl, Rada M. Stable NLS solitons in a cubic-quintic medium with a delta-function potential. (English) Zbl 1398.35213 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 133, 28-50 (2016). MSC: 35Q55 35B32 35C08 35J61 37C75 74J30 78A60 35J60 PDF BibTeX XML Cite \textit{F. Genoud} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 133, 28--50 (2016; Zbl 1398.35213) Full Text: DOI arXiv OpenURL
Wazwaz, Abdul-Majid The generalized Kaup-Boussinesq equation: multiple soliton solutions. (English) Zbl 1397.35264 Waves Random Complex Media 25, No. 4, 473-481 (2015). MSC: 35Q53 35C08 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Waves Random Complex Media 25, No. 4, 473--481 (2015; Zbl 1397.35264) Full Text: DOI OpenURL
Zhou, Shouming; Xie, Ming; Zhang, Fuchen Persistence properties for the Fokas-Olver-Rosenau-Qiao equation in weighted \(L^{p}\) spaces. (English) Zbl 1343.35024 Bound. Value Probl. 2015, Paper No. 224, 11 p. (2015). MSC: 35B30 35G25 35L05 PDF BibTeX XML Cite \textit{S. Zhou} et al., Bound. Value Probl. 2015, Paper No. 224, 11 p. (2015; Zbl 1343.35024) Full Text: DOI OpenURL
Chossat, Pascal; Faye, Grégory Pattern formation for the Swift-Hohenberg equation on the hyperbolic plane. (English) Zbl 1342.35039 J. Dyn. Differ. Equations 27, No. 3-4, 485-531 (2015). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35B36 35B32 34K18 58E09 35C07 35K58 PDF BibTeX XML Cite \textit{P. Chossat} and \textit{G. Faye}, J. Dyn. Differ. Equations 27, No. 3--4, 485--531 (2015; Zbl 1342.35039) Full Text: DOI arXiv OpenURL
Ozawa, Tohru; Machihara, Shuji; Fujiwara, Kazumasa Remark on a semirelativistic equation in the energy space. (English) Zbl 1336.35311 Discrete Contin. Dyn. Syst. 2015, Suppl., 473-478 (2015). MSC: 35Q40 35Q55 PDF BibTeX XML Cite \textit{T. Ozawa} et al., Discrete Contin. Dyn. Syst. 2015, 473--478 (2015; Zbl 1336.35311) Full Text: DOI OpenURL
Lee, Sanghyuk; Kwon, Soonsik; Hwang, Gyeongha; Cho, Yonggeun Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. (English) Zbl 1332.35339 Discrete Contin. Dyn. Syst. 35, No. 7, 2863-2880 (2015). MSC: 35Q55 35Q40 PDF BibTeX XML Cite \textit{S. Lee} et al., Discrete Contin. Dyn. Syst. 35, No. 7, 2863--2880 (2015; Zbl 1332.35339) Full Text: DOI arXiv OpenURL
Chen, Yi-Xiang; Xu, Zhou-Xiang; Jiang, Yun-Feng; Shi, Jin; Xu, Fang-Qian \((2+1)\)-dimensional spatial localized modes in cubic-quintic nonlinear media with the \(\mathcal{PT}\)-symmetric potentials. (English) Zbl 1319.35235 Commun. Theor. Phys. 64, No. 1, 71-80 (2015). MSC: 35Q55 35B35 35C08 PDF BibTeX XML Cite \textit{Y.-X. Chen} et al., Commun. Theor. Phys. 64, No. 1, 71--80 (2015; Zbl 1319.35235) Full Text: DOI OpenURL
Wei, Jingdong; Tian, Lixin; Zhen, Zaili; Gao, Weiwei Inelastic collision of two solitons for generalized BBM equation with cubic nonlinearity. (English) Zbl 1321.35206 Electron. J. Differ. Equ. 2015, Paper No. 147, 30 p. (2015). MSC: 35Q53 35C10 35B35 35B40 35C08 PDF BibTeX XML Cite \textit{J. Wei} et al., Electron. J. Differ. Equ. 2015, Paper No. 147, 30 p. (2015; Zbl 1321.35206) Full Text: EMIS OpenURL
Bulut, Aynur The defocusing energy-supercritical cubic nonlinear wave equation in dimension five. (English) Zbl 1320.35216 Trans. Am. Math. Soc. 367, No. 9, 6017-6061 (2015). MSC: 35L71 35B44 35P25 PDF BibTeX XML Cite \textit{A. Bulut}, Trans. Am. Math. Soc. 367, No. 9, 6017--6061 (2015; Zbl 1320.35216) Full Text: DOI arXiv OpenURL
Gandhi, Punit; Beaume, Cédric; Knobloch, Edgar A new resonance mechanism in the Swift-Hohenberg equation with time-periodic forcing. (English) Zbl 1316.35030 SIAM J. Appl. Dyn. Syst. 14, No. 2, 860-892 (2015). MSC: 35B34 37C60 35B36 35K58 PDF BibTeX XML Cite \textit{P. Gandhi} et al., SIAM J. Appl. Dyn. Syst. 14, No. 2, 860--892 (2015; Zbl 1316.35030) Full Text: DOI arXiv OpenURL
Gu, Feng Long; Aoki, Yuriko; Springborg, Michael; Kirtman, Bernard Calculations on nonlinear optical properties for large systems. The elongation method. (English) Zbl 1321.78001 SpringerBriefs in Molecular Science. Electrical and Magnetic Properties of Atoms, Molecules, and Clusters. Cham: Springer (ISBN 978-3-319-11067-7/pbk; 978-3-319-11068-4/ebook). xvi, 93 p. (2015). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 78-02 78A60 81V80 PDF BibTeX XML Cite \textit{F. L. Gu} et al., Calculations on nonlinear optical properties for large systems. The elongation method. Cham: Springer (2015; Zbl 1321.78001) Full Text: DOI OpenURL
Dai, Honghua; Yue, Xiaokui; Yuan, Jianping; Atluri, Satya N. A time domain collocation method for studying the aeroelasticity of a two dimensional airfoil with a structural nonlinearity. (English) Zbl 1349.76567 J. Comput. Phys. 270, 214-237 (2014). MSC: 76M22 74S25 65L60 74F10 76G25 PDF BibTeX XML Cite \textit{H. Dai} et al., J. Comput. Phys. 270, 214--237 (2014; Zbl 1349.76567) Full Text: DOI OpenURL
Handa, Himesh; Sharma, B. B. Simple synchronisation scheme of chaotic Chua’s systems with cubic nonlinearity in complex coupled networks. (English) Zbl 1344.37043 Int. J. Appl. Nonlinear Sci. 1, No. 4, 300-311 (2014). MSC: 37D45 34D06 34C28 93C15 37M05 PDF BibTeX XML Cite \textit{H. Handa} and \textit{B. B. Sharma}, Int. J. Appl. Nonlinear Sci. 1, No. 4, 300--311 (2014; Zbl 1344.37043) Full Text: DOI OpenURL
Mi, Yongsheng; Mu, Chunlai Cauchy problem for an integrable three-component model with peakon solutions. (English) Zbl 1316.35088 Front. Math. China 9, No. 3, 537-565 (2014). MSC: 35G55 35B30 35A10 35Q53 PDF BibTeX XML Cite \textit{Y. Mi} and \textit{C. Mu}, Front. Math. China 9, No. 3, 537--565 (2014; Zbl 1316.35088) Full Text: DOI OpenURL
D’Ambroise, J.; Lepri, S.; Malomed, B. A.; Kevrekidis, P. G. \(\mathcal{PT}\)-symmetric ladders with a scattering core. (English) Zbl 1298.35192 Phys. Lett., A 378, No. 38-39, 2824-2830 (2014). MSC: 35Q55 35B35 81Q05 PDF BibTeX XML Cite \textit{J. D'Ambroise} et al., Phys. Lett., A 378, No. 38--39, 2824--2830 (2014; Zbl 1298.35192) Full Text: DOI arXiv OpenURL
Sun, Bo; Huang, Tingwen Chaotic oscillations of the Klein-Gordon equation with distributed energy pumping and van der Pol boundary regulation and distributed time-varying coefficients. (English) Zbl 1304.35433 Electron. J. Differ. Equ. 2014, Paper No. 188, 28 p. (2014). MSC: 35L71 70L05 35L20 37D45 PDF BibTeX XML Cite \textit{B. Sun} and \textit{T. Huang}, Electron. J. Differ. Equ. 2014, Paper No. 188, 28 p. (2014; Zbl 1304.35433) Full Text: EMIS OpenURL
Liu, Yue; Olver, Peter J.; Qu, Changzheng; Zhang, Shuanghu On the blow-up of solutions to the integrable modified Camassa-Holm equation. (English) Zbl 1302.35074 Anal. Appl., Singap. 12, No. 4, 355-368 (2014). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35B44 35G25 PDF BibTeX XML Cite \textit{Y. Liu} et al., Anal. Appl., Singap. 12, No. 4, 355--368 (2014; Zbl 1302.35074) Full Text: DOI OpenURL
Xue, Ru Ying Scattering problem for Klein-Gordon equation with cubic convolution nonlinearity. (English) Zbl 1290.35173 Acta Math. Sin., Engl. Ser. 30, No. 5, 827-836 (2014). MSC: 35P25 81Q05 PDF BibTeX XML Cite \textit{R. Y. Xue}, Acta Math. Sin., Engl. Ser. 30, No. 5, 827--836 (2014; Zbl 1290.35173) Full Text: DOI arXiv OpenURL
Liu, Xiaochuan; Liu, Yue; Qu, Changzheng Orbital stability of the train of peakons for an integrable modified Camassa-Holm equation. (English) Zbl 1288.35063 Adv. Math. 255, 1-37 (2014). MSC: 35B35 35C07 35Q35 PDF BibTeX XML Cite \textit{X. Liu} et al., Adv. Math. 255, 1--37 (2014; Zbl 1288.35063) Full Text: DOI OpenURL
Wang, Hongwei; Esfahani, Amin Global rough solutions to the sixth-order Boussinesq equation. (English) Zbl 1288.35199 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 102, 97-104 (2014). MSC: 35G25 35Q35 35A01 35A02 PDF BibTeX XML Cite \textit{H. Wang} and \textit{A. Esfahani}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 102, 97--104 (2014; Zbl 1288.35199) Full Text: DOI OpenURL
Lai, Ning-An; Zhao, Jinglei Potential well and exact boundary controllability for radial semilinear wave equations on Schwarzschild spacetime. (English) Zbl 1284.35254 Commun. Pure Appl. Anal. 13, No. 3, 1317-1325 (2014). MSC: 35L20 35L71 93B05 93C20 PDF BibTeX XML Cite \textit{N.-A. Lai} and \textit{J. Zhao}, Commun. Pure Appl. Anal. 13, No. 3, 1317--1325 (2014; Zbl 1284.35254) Full Text: DOI OpenURL